高二数学知识点总结人教版

合集下载

人教版高二年级数学知识点总结

人教版高二年级数学知识点总结

【一】一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關係;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關係式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質;10.週期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的座標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)1.橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質。

高二人教版数学知识点

高二人教版数学知识点

高二人教版数学知识点一、直角三角形的性质1. 直角三角形的定义:一个角为直角的三角形称为直角三角形。

2. 勾股定理:直角三角形中,直角边的平方等于其他两边平方的和。

即a² + b² = c²,其中a、b为直角边,c为斜边。

3. 特殊直角三角形:a) 等腰直角三角形:两个直角边相等的直角三角形。

b) 30-60-90特殊直角三角形:一个角为30度,一个角为60度,另一个角为90度的直角三角形。

c) 45-45-90特殊直角三角形:两个直角边相等,并且每个直角角度为45度的直角三角形。

二、向量的基本概念和运算1. 向量的定义:有大小和方向的量称为向量。

2. 向量的表示方法:用有向线段表示向量,线段的方向表示向量的方向,线段的长度表示向量的大小。

3. 向量的运算:a) 向量的加法:将两个向量的相对起点放在一起,以第一个向量的终点和第二个向量的起点之间绘制一条线段,该线段就是这两个向量的和向量。

b) 向量的数乘:将向量的大小与一个实数相乘,得到一个新的向量,其方向与原来的向量相同(或相反),大小为原来的向量大小的绝对值与实数的乘积。

c) 向量的减法:将减去向量看作加上其相反向量,即a - b = a + (-b)。

d) 基本向量的概念:分别沿着x轴、y轴和z轴正方向的单位向量分别为i、j和k。

三、平面向量的数量积和坐标表示1. 平面向量的数量积:设有两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积(内积)定义为a·b = x₁x₂ + y₁y₂,也可以表示为|a||b|cosθ,其中θ为a、b之间的夹角。

2. 数量积的性质:a) a·b = b·a(数量积的交换律)b) a·(b + c) = a·b + a·c(数量积的分配律)c) (k·a)·b = k·(a·b) = a·(k·b)(数量积与数乘的结合律)3. 数量积的应用:a) 判断两个向量是否垂直:若a·b = 0,则a与b垂直。

2024年人教版高二数学复习知识点总结

2024年人教版高二数学复习知识点总结

2024年人教版高二数学复习知识点总结第一章函数与方程1.1 函数与映射函数的定义、函数的性质、函数的四则运算、复合函数、反函数映射的定义、映射的性质、一一映射、单射、满射1.2 一元二次函数及其应用一元二次函数的定义、一元二次函数的图像、一元二次函数的性质、一元二次函数的解析式、一元二次函数的图像与解析式的关系、一元二次函数的最值、一元二次函数的应用1.3 不等式不等式的定义、解不等式、不等式的性质、不等式的运算、一元一次不等式、一元二次不等式1.4 线性规划线性规划的定义、线性规划中的常见问题、线性规划的解法、线性规划的应用第二章三角函数与解三角形2.1 三角函数三角函数的定义、三角函数的性质、三角函数的图像、三角函数的周期、三角函数的关系式2.2 平面向量平面向量的定义、平面向量的运算、平面向量的线性运算、平面向量的数量积、平面向量的夹角、平面向量的投影、平面向量的正交2.3 解三角形解直角三角形、解一般三角形、解等腰三角形、解等边三角形、解特殊三角形、解复合三角形第三章数列与数项级数3.1 数列的概念数列的定义、数列的性质、数列的通项、数列的分类、数列的极限3.2 数列的通项公式等差数列、等比数列、等差数列与等比数列的关系、通项公式的推导方法、通项公式的应用3.3 数列的求和部分和、数列的前n项和、无穷数列的求和、等差数列的求和、等比数列的求和、部分和公式的应用3.4 级数级数的定义、级数的性质、无穷级数的收敛性、级数的求和、级数的应用第四章导数与导数应用4.1 导数的基本概念导数的定义、导数的性质、导数的基本运算、导数与函数的图像关系4.2 导数的应用函数的单调性、函数的极值、函数的曲线与切线、函数的凹凸性、函数的拐点、函数的极限与导数4.3 高阶导数和隐函数高阶导数的定义、高阶导数的求法、高阶导数的性质、隐函数的导数、隐函数的高阶导数第五章积分与积分应用5.1 不定积分不定积分的定义、不定积分的性质、不定积分的基本公式、不定积分的线性运算5.2 定积分定积分的定义、定积分的性质、定积分的线性运算、定积分的几何意义、定积分的求法5.3 微分方程微分方程的定义、微分方程的解、一阶微分方程、二阶微分方程、线性微分方程、微分方程的应用5.4 积分应用反常积分、曲线长度、曲线面积、体积、几何应用、物理应用以上是____年人教版高二数学的复习知识点总结,共计____字。

人教版高二数学备考知识点归纳

人教版高二数学备考知识点归纳

【篇一】1.求導法則:(c)/=0這裏c是常數。

即常數的導數值為0。

(xn)/=nxn-1特別地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x)2.導數的幾何物理意義:k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。

V=s/(t)表示即時速度。

a=v/(t)表示加速度。

3.導數的應用:①求切線的斜率。

②導數與函數的單調性的關係已知(1)分析的定義域;(2)求導數(3)解不等式,解集在定義域內的部分為增區間(4)解不等式,解集在定義域內的部分為減區間。

我們在應用導數判斷函數的單調性時一定要搞清以下三個關係,才能準確無誤地判斷函數的單調性。

以下以增函數為例作簡單的分析,前提條件都是函數在某個區間內可導。

③求極值、求最值。

注意:極值≠最值。

函數f(x)在區間[a,b]上的值為極大值和f(a)、f(b)中的一個。

最小值為極小值和f(a)、f(b)中最小的一個。

f/(x0)=0不能得到當x=x0時,函數有極值。

但是,當x=x0時,函數有極值f/(x0)=0判斷極值,還需結合函數的單調性說明。

4.導數的常規問題:(1)刻畫函數(比初等方法精確細微);(2)同幾何中切線聯繫(導數方法可用於研究平面曲線的切線);(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於次多項式的導數問題屬於較難類型。

2.關於函數特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。

3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。

九、不等式一、不等式的基本性質:注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用於不成立的命題。

(2)注意課本上的幾個性質,另外需要特別注意:①若ab>0,則。

即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。

高二数学知识点总结新教材人教版

高二数学知识点总结新教材人教版

高二数学知识点总结新教材人教版高二数学是中学数学学科中的重要一年,学生需要在这一年巩固和拓展他们在高一所学的数学知识。

以新教材人教版为教材,以下是高二数学的重要知识点总结。

一、函数与方程1. 函数及其性质函数是数学中的一种重要关系,表示不同数值之间的依赖关系。

在高二数学中,学生需要了解函数的定义,并掌握函数的性质,如奇偶性、单调性、周期性等。

2. 一次函数与二次函数一次函数是指最高次幂为一次的函数,二次函数是指最高次幂为二次的函数。

高二数学中,学生需要学习如何表示和绘制一次函数和二次函数,并掌握求解一次方程和二次方程的方法。

3. 指数函数与对数函数指数函数和对数函数是高二数学中的重要内容。

学生需要理解指数函数和对数函数的定义,并学会求解指数方程和对数方程。

4. 不等式不等式是高二数学中的重要内容,学生需要学会解不等式,并掌握不等式的性质和图像表示方法。

5. 数列与数列的通项公式数列是一组按照一定规律排列的数,数列的通项公式表示第n 个数与n之间的关系。

学生需要掌握求解数列的通项公式以及利用通项公式解决实际问题的方法。

二、解析几何1. 平面与空间直角坐标系平面与空间直角坐标系是解析几何的基础。

学生需要理解坐标系的定义和性质,并学会在坐标系中表示和计算点、线、圆等几何图形的相关属性。

2. 直线与圆的方程直线和圆是解析几何中的基本图形。

学生需要学习直线和圆的方程及其性质,并能够根据已知信息写出直线和圆的方程。

3. 二次曲线二次曲线是解析几何中的重要内容,包括抛物线、椭圆、双曲线等。

学生需要学会表示和计算二次曲线的相关属性,如焦点、顶点、离心率等。

4. 空间几何体的性质空间几何体包括球、柱体、锥体等,学生需要掌握这些几何体的性质及其相关计算方法。

三、数学推理与证明1. 数学归纳法数学归纳法是数学推理中的重要方法,学生需要理解数学归纳法的原理,并能够灵活运用数学归纳法解决问题。

2. 数学证明数学证明是高二数学中的重要内容,学生需要学会用严谨的推理和论证方法证明数学命题。

人教版高二年级数学知识点归纳

人教版高二年级数学知识点归纳

高二年級數學知識點歸納(一)第一章:解三角形。

掌握正弦余弦公式及其變式和推論和三角面積公式即可。

第二章:數列。

考試必考。

等差等比數列的通項公式、前n項和及一些性質。

這一章屬於學起來很容易,但做題卻不會做的類型。

考試題中,一般都是要求通項公式、前n項和,所以拿到題目之後要帶有目的的去推導。

第三章:不等式。

這一章一般用線性規劃的形式來考察。

這種題一般是和實際問題聯繫的,所以要會讀題,從題中找不等式,畫出線性規劃圖。

然後再根據實際問題的限制要求求最值。

選修中的簡單邏輯用語、圓錐曲線和導數:邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是後者,四種命題的真假性關係,邏輯連接詞,及否命題和命題的否定的區別,考試一般會用選擇題考這一知識點,難度不大;圓錐曲線一般作為考試的壓軸題出現。

而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的運算式難度就不大。

後面兩到三問難打一般會很大,而且較費時間。

所以不建議做。

這一章屬於學的比較難,考試也比較難,但是考試要求不高的內容;導數,導數公式、運算法則、用導數求極值和最值的方法。

一般會考察用導數求最值,會用導數公式就難度不大。

高二年級數學知識點歸納(二)第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。

次一級的知識點就是集合的韋恩圖,會畫圖,集合的“並、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。

在第一輪復習中一定要反復去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。

第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質及圖像。

函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。

關於這三大函數的運算公式,多記多用,多做一點練習基本就沒多大問題。

函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。

高二数学人教版知识点归纳

高二数学人教版知识点归纳

高二数学人教版知识点归纳高二数学是中学数学学习的重要阶段,学生需要在这一阶段掌握一系列的基础知识和解题方法。

本文将以人教版教材为基础,对高二数学的知识点进行归纳总结。

一、函数与导数1. 函数的概念与表示:函数的定义域、值域,函数的图像与性质。

2. 函数的运算:函数的加法、乘法、复合运算。

3. 三角函数:正弦函数、余弦函数、正切函数及其性质。

4. 导数与导数公式:导数的定义、导数的几何意义,导数的四则运算、复合函数的求导法则。

5. 函数的单调性与极值:函数的增减性,函数的极值与最值。

二、平面向量与解析几何1. 平面向量的基本概念:向量的表示、模、方向角,零向量、单位向量,向量的加法与减法。

2. 向量的数量积与夹角:数量积的定义与性质,数量积与夹角的关系。

3. 平面解析几何:点、直线、圆的方程及性质,直线与圆的相交关系,曲线的参数方程。

三、概率与数理统计1. 随机事件与概率:随机事件的基本概念,概率的定义与性质,事件的独立性。

2. 随机变量:随机变量的概念与分类,离散型随机变量与连续型随机变量,随机变量的数学期望与方差。

3. 列联表与条件概率:列联表的分析与应用,条件概率的计算与性质。

四、立体几何1. 空间直线与平面:直线与平面的位置关系,直线与平面的交点,平面与平面的交线。

2. 空间几何体:长方体、正方体、棱柱、棱锥、圆锥、球的表面积与体积的计算。

五、数列与数学归纳法1. 数列的概念与性质:数列的定义与表示,等差数列与等比数列,通项公式与前 n 项和公式。

2. 递归数列与数学归纳法:递推公式与递归数列,数学归纳法的基本思想与应用。

六、三角恒等变换与解三角形1. 三角函数的恒等变换:基本恒等式、和差化积、积化和差。

2. 解三角形:已知三角形的一些条件,求解三角形的边长与角度。

以上仅为高二数学人教版教材的知识点归纳,详细学习还需参考教材中的相关内容,并进行大量的练习和实际应用。

通过系统的学习和不断的实践,相信同学们能够在高二数学学习中取得优异的成绩。

人教版高二数学复习知识点.doc

人教版高二数学复习知识点.doc

人教版高二数学复习知识点人教版高二数学复习知识点(一)等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

面积公式若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:S=ab/2。

且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:S=ch/2=c2/4。

等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

人教版高二数学复习知识点(二)第一章:三角函数。

考试必考题。

诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。

第二章:平面向量。

个人觉得这一章难度较大,这也是我掌握最差的一章。

向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。

向量共线和垂直的数学表达,这是计算当中经常要用的公式。

向量的共线定理、基本定理、数量积公式。

难点在于分点坐标公式,首先要准确记忆。

向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。

有同样情况的同学建议多看有关题的图形。

第三章:三角恒等变换。

这一章公式特别多。

和差倍半角公式都是会用到的公式,所以必须要记牢。

由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。

而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记。

除此之外,就是多练习。

要从多练习中找到变换的规律,比如一般都要化等等。

这一章也是考试必考,所以一定要重点掌握。

人教版高二数学复习知识点(三)反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学知识点总结人教版
因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。

下面给大家分享一些关于高二数学知识点总结人教版,希望对大家有所帮助。

高二数学知识点总结1
在中国古代把数学叫算术,又称算学,最后才改为数学。

1.任意角
(1)角的分类:
①按旋转方向不同分为正角、负角、零角.
②按终边位置不同分为象限角和轴线角.
(2)终边相同的角:
终边与角相同的角可写成+k360(kZ).
(3)弧度制:
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径.
③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.
④弧度与角度的换算:360弧度;180弧度.
⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.
2.任意角的三角函数
(1)任意角的三角函数定义:
设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.
(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.
3.三角函数线
设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.
高二数学知识点总结2
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:
定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。

f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满
足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。

如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。

(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

对称变换y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x),关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。

(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像
关于直线x=a对称;
高二数学知识点总结3
直线与圆:
1、直线的倾斜角的范围是
在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。

当直线与轴重合或平行时,规定倾
斜角为0;
2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率
k=tanα.
过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,
⑵斜截式:直线在轴上的截距为和斜率,则直线方程为
4、直线与直线的位置关系:
(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0
5、点到直线的距离公式;
两条平行线与的距离是
6、圆的标准方程:.⑵圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②
相切③相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线
与圆相交所得弦长。

相关文档
最新文档