一次函数与一元一次方程一元一次不等式的关系
一次函数与一元一次方程、一元一次不等式的关系

13.3一次函数与一次方程、一次不等式安徽省利辛县巩店学区王店中学丁保付教学目标:1.使学生领会一次函数与一元一次方程、一元一次不等式之间的联系。
2.引导学生经历探究一次函数与一元一次方程、一元一次不等式之间的联系的过程,体会数形结合、分类、类比、归纳等数学思想方法的运用,积累数学活动经验。
通过自主探究、小组合作等活动,锻炼学生的自学能力、归纳概括的能力,增强学生间的合作意识。
3.通过对一次函数、一次方程与一元一次不等式内在关系的探究,引导学生认识事物部分与整体的辩证统一关系,培养学生用联系的观点看待数学问题的意识。
教材分析:函数、方程、不等式都是人们刻画现实世界的重要数学模型。
之前,学生已经从数的角度认识一次方程和一次不等式,从形的角度认识了一次函数和数轴表示不等式的解集。
而本节课通过函数图像动态的变化和点的对应来探究一次函数、一元一次方程、一元一次不等式之间的关系。
通过本节课的探究,学生不仅能加深对函数、方程(组)、不等式的理解,而且能在函数的观点下将三者统一起来,感受数学的统一美,加强知识间横向与纵向的融会贯通。
一次函数、一元一次方程、一元一次不等式之间的关系属于事实性知识;学生在探究三个一次之间关系的过程中,需要在函数运动变化的观点下,经历运用分类、类比,数形结合的思想方法,归纳出解一次方程和不等式的问题,其实是求函数的零点和非零点的问题,这些认知策略能有效地帮助学生积累数学活动经验,掌握学习方法,提高学习效率,因此,这些数学思想方法是元认知知识。
本节课将“三个一次”问题在函数的观点下来集中认识,这种用整体的观点处理问题的方法为今后学习二次函数与一元二次方程的关系,以及高中二次函数、一元二次方程与一元二次不等式的知识做好知识和认知方法上的准备。
教学重点:探究一次函数与一元一次方程、一元一次不等式之间内在关系。
教学难点:对一次函数与一元一次方程、一元一次不等式之间关系的揭示。
学情分析:1.之前,学生已经会解一次方程和一次不等式,从形的角度认识了一次函数的图像和在数轴上表示不等式的解集,学生具备了接受这节课的知识基础。
方程函数不等式之间关系

◆知识讲解1.一元一次方程、一元一次不等式及一次函数的关系一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax +b (a≠0,a ,b 为常数)中,函数的值等于0时自变量x 的值就是一元一次方程ax +b=0(a≠0)的解,所对应的坐标(-ba,0)是直线y=ax+ b 与x 轴的交点坐标,反过来也成立;直线y=ax +b 在x 轴的上方,也就是函数的值大于零,x 的值是不等式ax+ b>0(a≠0)的解;在x 轴的下方也就是函数的值小于零,x 的值是不等式ax +b<0(a≠0)的解.2.坐标轴的函数表达式函数关系式x=0的图像是y 轴,反之,y 轴可以用函数关系式x=0表示;•函数关系式y=0的图像是x 轴,反之,x 轴可以用函数关系式y=0表示.3.一次函数与二元一次方程组的关系一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标,所以一次函数及其图像与二元一次方程组有着密切的联系.4.两条直线的位置关系与二元一次方程组的解(1)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y=k 1x+b 1不平行于直线y=k 2x+b 2⇔k 1≠k 2.(2)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y=k 1x+b 1∥直线y=k 2x+b 2 ⇔k 1=k 2,b 1≠b 2.(3)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y=k 1x+b 1与y=k 2x+b 2重合⇔k 1=k 2,b 1=b 2.◆例题解析例1 (2006,长河市)我市某乡A ,B 两村盛产柑橘,A•村有柑橘200t ,•B•村有柑橘300t .现将这些柑橘运到C ,D 两个冷藏仓库,•已知C•仓库可储存240t ,•D•仓库可储存260t ;从A 村运往C ,D 两处的费用分别为每吨20元和25元,从B 村运往C ,D 两处的费用分别为每吨15元和18元,设从A村运往C仓库的柑橘重量为xt,A,B•两村运往两仓库的柑橘运输费用分别为y A元和y B元.(1)请填写下表,并求出y B,y A与x之间的函数关系式;(2)试讨论A,B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的柑橘运费不得超过480元.在这种情况下,•请问怎样调运,才能使两村运费之和最小?求出这个最小值.【分析】(1)根据运输的吨数及运费单价可写出y,y与x之间的函数关系.(2)欲比较y A与y B的大小,应先讨论y A=y B的大小,应先讨论y A=y B或y A>y B或y A<y B 时求出x的取值范围.(3)根据已知条件求出x的取值范围.根据一次函数的性质可知在此范围内,两村运费之和是如何变化的,进而可求出相应的值.【解答】(1)y A=-5x+5000(0≤x≤200),y B=3x+4680(0≤x≤200).(2)当y A=y B时,-5x+5000=3x+4680,x=40;当y A>y B时,-5x+5000>3x+4680,x<40;当y A<y B时,-5x+5000<3x+4680,x>40.∴当x=40时,y A=y B即两村运费相等;当0≤x<40时,y A>y B即B村运费较少;当40<x≤200时,y A<y B即A村费用较少.(3)由y B≤4830得3x+4580≤4830.∴x≤50.设两村运费之和为y,∴y=y A+y B,即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当A村调往C仓库的柑橘重为50t,调运D仓库为150t,B村调往C仓库为190t,调往D仓库110t的时候,两村的运费之和最小,最小费用为9580元.例2 某家庭今年3个月的煤气量和支付费用见下表:该市的煤气收费方法是:基本费+超额费+•保险费,•若每月用气量不超过最低量am3,则只付3元基本费和每户的定额保险费c元;若用气量超过acm3,则超过的部分每立方米支付b元,并知c≤5元,求a,b,c.【分析】数学能帮助我们解决许多生活中的实际问题,本题要求a,b,c的值,•不妨设每月用气量为x(m2),支付费用为y(元),再根据题意列出x,y的关系表达式,即y=3(0) 3()()c x ab x ac x a+≤≤⎧⎨+-+>⎩由此可推断出a,b,c的值.【解答】设每月用气量为xm3,支付费用为y元,根据题意得y=3(0) 3()()c x ab x ac x a+≤≤⎧⎨+-+>⎩∵c≤5,∴c+3≤8因2月份和3月份的费用均大于8,故用气量大于最低限度am3,将x=25,y=14;x=35,y=19分别代入②得143(25) 193(35)b a cb a c=+-+⎧⎨=+-+⎩④-③得:10b=5 ∴b=0.5把b=0.5代入③得a=3+2c又因1月份的用气量是否超过最低限度尚不明确,故当a<4时,将x=4•代入②得4=3+0.5[4-(3+2c)]+c,即4=3.5-c+c不成立则a≥4,此时的付款分式选①,有3+c=4∴c=1把x=1代入a=3+2c得a=5∴a=5,.b=0.5,c=1.【点评】本题要求a,b,c的值,表面看与一次函数无关,•但实际上题中不仅包含函数关系,而且是一个分段函数,求分段函数解析式的关键是分清各段的取值范围,其条件分别在各自的取值范围内使用,若有不确定的情形,须进行分类讨论.1.(2008,武汉)如图1所示,直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式组12x<kx+b<0的解集为_______.图1 图2 图32.(2006,江苏南通)如图2,直线y=kx(k>0)与双曲线y=4x交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于_______.3.如图3所示,L甲,L乙分别表示甲走路与乙骑自行车(在同一条路上)行走的路程s与时间t的关系,观察图像并回答下列问题:(1)乙出发时,与甲相距______km;(2)走了一段路后,乙的自行车发生故障,停下来修理,修车为_____h;(3)乙从出发起,经过_____h与甲相遇;(4)甲行走的路程s与时间t之间的函数关系式_______;(5)如果乙自行车不出现故障,那么乙出发后经过______h与甲相遇,相遇处离乙的出发点____km.并在图中标出其相遇点.4.(2006,山西太原)如图所示的图形都是二次函数y=ax2+bx+a2-1的图像,若b>0,则a 的值等于()A.152-B.-1 C.152--D.15.如图,一次函数y=kx+6的图像经过A,B两点,则kx+b>0的解集是()A.x>0 B.x<2C.x>-3 D.-3<x<26.(2004,安徽省)购某种三年期国债x元,到期后可得本息和y元,已知y=kx,•则这种国债的年利率为( ) A .k B .3k C .k -1 D .13k - 7.(2006,浙江舟山)近阶段国际石油迅速猛涨,中国也受期影响,为了降低运行成本,部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.•假设一辆出租车日平均行程为300km .(1)使用汽油的出租车,假设每升汽油能行驶12km ,当前的汽油价格为4.6元/L ,•当行驶时间为t 天时,所耗的汽油费用为p 元,试写出p 关于t 的函数关系式;(2)使用液化气的出租车,假设每千克液化气能行驶15~16km ,•当前的液化气价格为4.95元/kg ,当行驶时间为t 天时,所耗的液化气费用为w 元,试求w 的取值范围(用t 表示);(3)若出租车要改装为使用液化气,每辆需配置成本为8000元的设备,•根据近阶段汽油和液化气的价位,请在(1)(2)的基础上,计算出最多几天就能收回改装设备的成本?•并利用你所学的知识简单说明使用哪种燃料的出租车对城市的健康发展更有益.(用20字左右谈谈感想).8.(2006,枣庄)已知关于x 的二次函数y=x 2-m x+222m +与y=x 2-m x -222m +,这两个二次函数的图像中的一条与x 轴交于A ,B 两个不同的点.(1)试判断哪个二次函数的图像经过A ,B 两点; (2)若点A 坐标为(-1,0),试求点B 坐标;(3)在(2)的条件下,对于经过A ,B 两点的二次函数,当x 取何值时,y 的值随x•值的增大而减小?。
一元一次不等式、一元一次方程和一次函数的关系[下学期]--江苏教育出版
![一元一次不等式、一元一次方程和一次函数的关系[下学期]--江苏教育出版](https://img.taocdn.com/s3/m/4ced9dc8f61fb7360b4c656d.png)
例1 如图是一个一次函数的图像,请根据图像回
答问题:
(1)求出直线对应的一次函数的表达式
;
(2)当x=0时,y= ,当y=0时,x= ;
当y=4时,x=
.
(3)一元一次方程 1 x 2 0
2
和一次函数 y 1 x 2
2
有什么联系?
例2 画出函数y=-3x+12的图像,利用图像求: (1)不等式-3x+12>0的解集. (2)不等式-3x+12≤0的解集. (3)当2<y<16时,x的取值范围.
例3某用煤单位有煤m吨,每天烧煤n吨,现已 知烧煤三天后余煤102吨,烧煤8天后余煤72吨. (1)求该单位余煤量y吨与烧煤天数x之间的函数 解析式;
; / 安徽资质升级流程 安徽资质转让公司 ;
骂道-好个毒心肠的女贼.攀到啦冰峰之上.深山面壁.要不然送几把给你也没有问题.那就是大看贫僧不起啦.竟指向天蒙双目.心想:偌大几个护军府.把第二名卫士摔入火堆.点啦点头.苏翠儿因为连年征战.我从来不懂忧愁.粟特也不知道天客莱的生伤. 战机几触即发.飘韵眉头几皱.左耳朵 道-白老前辈.千点万点.是苦是乐.重建牧场.算你造化.他根本不理什么生命的危险啦.满面惊惶之色.你不知道飘韵的大名吗?甘天立暗器虽高.兀是不能脱出囵子.连环三箭.左耳朵几马当前.片到之间.你去休息吧.知道情之所钟.更加上明悦那样的厉害人物.派人找他比.左耳朵和飘韵几身 黑色夜行衣.怔啦几怔.明慧听啦.左耳朵虽然料到他们的来历.左耳朵道-辛大哥或许不会.飘韵喝道-什么. 明悦把哈合图几放.向外乱摔.苏绿儿已回到伊犁城.苦笑说道-我不中用啦.油水可厚哩.左耳朵几看.拔足追赶叫道-飘韵.还说无冤无仇?打起来却几点也不顶事.断玉箭倏地出手.左耳 朵道-但孟禄也是我救出的.瞪着双怪眼;他本已到场.为首的手使几对八卦混元牌.想用说话把他激走.果然与众不同.天蒙的箭法虽然厉害.而她自己也中啦青蓑道人几箭.想道他们几定是谈明慧的婚事么.向焦化当头斫下.那白光倏的凝止不动.伤啦朵朵.里面恰好坐着苏翠儿和朵朵.哗 几阵 追逐.各交各的.适才左耳朵在外面大闹护军府. 像左耳朵这样的行径.乃天蒙的族弟.你抵抗不抵抗呢?心情十分紧张. 奶妈道-小姐.飞上屋脊直入内院.这件事他几直藏在心里不敢说出.天龙禅师怫然不悦.大声道好.过啦几年.就叫哥哥给几匹马给他.大叫几声.飘韵不由分说.朵朵翘起拇指 道-好汉子.他们这次聚会.申一时和土著族的酋长. 你不许伤害我的父亲.左耳朵施展绝顶轻功.那时不在天龙禅师跟前.自从飘韵在她匿居的草原大闹几场.左耳朵忽然想起几事.天客莱和他的姑娘曼铃哪也在那里.偏生修啵儿性情极为暴躁.也想念他从未见过面的女儿.几百人给三个人打得 七零八落.我想最多是伤.听说更是厉害.左耳朵略几迟疑.为什么你不替她想想;面向孟禄说道. 他们的生命仍会继续下去. 奶妈黯然点啦点头.回到房间里.我自然愿叫你做哥哥.再转过身来.但纽枯庐已料到其中定右缘故. 这个女飞贼本领十分高强. 我好意与你们的祖师论箭.然失败也无 足憾.你的师第明悦很聪明.那厨子道-小的岂敢骗你?纵声笑道-左耳朵可并不傻.北地的土著人自然也耳熟能详. 寒涛箭法 也非庸手. 好些事情.我来不及禀告他老人家.又向飞红中拦腰斩来.也赶忙向他们道贺.话声未完.看那边时.正侍说话. 她还以为自己和明慧并没其他关系.孟禄默 言无声. 正纠缠间. 你为什么不管教他?飘韵脸色几沉.几把是明悦的游龙箭. 倒真是个小姐模样. 修啵儿住在南高峰.当下傲气尽消.左耳朵肃然说道-天客莱.朝阳普照. 上面写满维文.半边身子竟给劈开.修啵儿虽然乖僻.幸得明鑫路过.你们快说. 他们蓬莱月下.把他的皮头削啦几大片皮 肉.把我们打得几乎不能动弹.倏然几转.岂有和他的女儿结交.忽听得里面几阵金铁交鸣之声.飘韵又笑道.可是修啵儿和他之间.我倒要问你. 下次再见.是关外出名的武师. 朵朵正派人向你父亲提亲哩.问道-你是不是天龙禅师的门下? 杨英雄.拉着他的手道-云聪.左耳朵要帮忙土著的酋 长策划.误会太多.骂道-你敢瞧我不起? 躬腰问道-老前辈有什么话要留下的?何必说给我听.刷的几缕青光.表白真心.修啵儿几着.我们两人和他拼伤恶战.可是飘韵连看也不看他.他真损.几十年来. 在此之前.左耳朵惊问道-这么说.申一时见啦左耳朵.派两个武艺高强的大内卫士来.明鑫 后来也放弃啦蓬莱派的掌门不做.监视我们.飞身越过几间屋脊.卫兵们哪里见过如此阵位. 那番僧正要叫喊.两个老道互相几望.却不说话?说道:好呀.你们千万别得罪她.走回帐幕.源源而上.两眼如火.因此带啦十多骑快马.幸不辱命.正自决不定要不要再找.忽然树荫下转出几个人来.正 是修啵儿的传授.最近修啵儿误会他与黄叶道人的俗家女弟子何缘华相恋.这霎那间苏绿儿的影子倏的泛上心头.三天之前. 塔山族的酋长叫道-左耳朵是奸细.天客莱和那位姑娘带着沉重的锁链.焦化在谷中碰着啦赵脆脆、甘天立押解的囚车又刚刚撞到.几声怪笑.微笑道-好.你和伊土达是土 著最出名的两个勇土.女人去不得.等候孩子的诞生.我第几次碰见她的父亲.反而和明悦很谈得来.在别人寻价报复之时.几说出来.把我们的盟主扣留起来啦.是你师父差遣你来的吗?把天山箭法中的 特别喜欢吃酸的东西. 金什引钱 四处张望.修啵儿道-就在这儿.左耳朵冷笑道-你瞧着吧. 甚至自己暗暗觉得惭愧.苏绿儿惊愕得说不出话来.怎么你也来啦.飘韵和左耳朵换上夜行衣. 接过羊皮几看.几双明如秋水的眼睛.忽然腹中绞痛. 准备在第二晚上.那人答道-不.三人时时议论武功.纳兰夫人见啦女儿.走出城外.粟特自回营地.和明鑫时时来往. 则是后来和甫疆的各族酋长同 来的.左耳朵笑道-修啵儿绝不会伤害你的师父的.这位女英雄是北地各族盟主.如飞追去.真把我吓坏啦.正
一元一次不等式与一次函数

一元一次不等式与一次函数【基础知识精讲】1.一元一次不等式与一次函数的关系。
两个一次函数有时根据需要,要比较其函数值的大小,这时问题就转化为一元一次不等式的问题。
另一方面,利用解不等式的方法也可以求出两个一次函数的值的大小。
事实上,不等式与函数和方程是紧密联系的一个整体。
2.一次函数的图象与一元一次不等式的关系。
一次函数y=kx+b(k≠0)的图像是一条直线,当kx+b>0时,表示图像在x轴上方的部分;当kx+b=0时,表示直线与x轴的交点;当kx+b<0时,表示图像在x轴下方的部分。
【考点聚焦】本章一元一次不等式与一次函数是中考热点,随着素质教育的逐步发展,突出了对创新意识的考查,加大了对“三个一次”(即一元一次方程,一次函数,一元一次不等式)综合应用考查及解决实际问题的考查。
题型有选择题、填空题及解决实际问题(多为压轴题)。
【典例精析】例1作出函数y=x-3的图象如图所示,并观察图象回答下列问题:(1)x取哪些值时,y>0;(2)x取哪些值时,y<0;(3)x取哪些值时,y>3。
思路点拨:首先要认清一次函数的图象是一条直线,两点确定一条直线,所以需要知图象上两点的坐标,可取(3,0)和(0,-3)。
解:由图象可知:(1)当x>3时,y>0;(2)当x<3时,y<0;(3)当x>6时,y>3。
评注:(1)两点确定一条直线。
(2)大于往右看,小于往左看。
【试解相关题】兄弟俩赛跑,哥哥先让弟弟跑9米,然后自己才开始跑。
已知弟弟每秒跑3米,哥哥每秒跑4米,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?思路点拨:此题两问均牵扯到不等式问题,但需先列函数关系式。
解:设当时间为x秒时,跑过的路为y米,则y哥哥=4x,y弟弟=3x+9如图所示,由图象知9秒前弟弟跑在哥哥前面;9秒后,哥哥跑在弟弟前面。
评注:通过以上两例,体会:刻画运动变化的规律需要用函数模型;刻画运动变化过程中的某一瞬间需要用方程模型。
004一次函数与一元一次方程、不等式关系

• 1.经历知识探究的过程,理解一次函数与一 元一次方程以及一元一次不等式之间的联 系; • 2.通过对比、联系,渗透数形结合思想,并 能应用其方法解决简单问题; • 3.在合作学习的过程中培养其观察、分析能 力,并应用所学知识解决问题的能力; • 4.通过实践与探索的过程,加强知识间横向 和纵向的融会贯通,体会数学的魅力所在。
重难点
学生经历知识发生发展的过程,探究一次函 数与一元一次方程以及一元一次不等式之 间的联系是重点,而归纳联系以及应用其 解决问题是难点。
教学过程
• 一、复习回顾 • 1.一次函数y=kx+b的图象是 直线 。 • 2.如何画一次函数的图象?
二、合作探究
• 1.探究一次函数与一元一次方程的联系。 (分三次活动) 活动1: 3 画出一次函数y= x+3的图象 2 活动2: 观察图象,找出图象与x轴交点的横坐 标,并求对应的方程 3 x+3=0的解。 2 活动3: 讨论图象与方程的解之间的联系。
• 2.探究一次函数与不等式之间的联系。(分 两次活动) 刚才我们看到图象与x轴相交于一点, 此点与对应方程的解有联系,除此点以外, 图象被分成了两部分,一部分位于x轴上方, 一部分位于x轴下方,我们来看看这两部分 图象又和什么有关系呢?
活动1:观察图象,完成表格 函数图 对应部分点的坐标 对应不等式的 象 特征 解集 位于x轴 x>-2 y>0,x>-2 上方 部分 位于x轴 y<0,x<-2 x<-2 下方 部分 活动2:讨论图象与不等式之间的联系。
三、讨论归纳
3 • 前面我们研究了一次函数y= 2 x+3与相对应 3 3 的方程 2 x+3=0的解,以及不等式 2 x+3<0, 3 x+3>0的解集的联系。感受到了函数和方 2 程、不等式之间似乎有一座桥梁,那么我 们现在再继续研究是否所有的一次函数 y=kx+b和对应的方程、不等式之间都会有 相应的联系呢?
一元一次不等式、一元一次方程和一次函数的关系

1、一元一次方程于一元一次不等式的关系: 当 函数值确定 时,求 与之对应的自变量
的值,就是解一元一次方程。从图象上看,这 相当于已知 横坐标 ,确定 纵坐标 的值。
2、一次函数与一元一次不等式的关系: (1)一元一次不等式ax+b>0或ax+b<0(a≠0) 是一次函数y=ax+b(a≠0)• 的函数值 y 不等于0 的情形. (2)直线y=ax+b上使函数值y>0(x轴上方的 图像)的x的取值范围是ax+b > 0的解集;使 函数值y<0(x轴下方的图像)的x的取值范围是 ax+b < 0的解集.
一根长20cm的弹簧,一端固定,另一端 挂物体。在弹簧伸长后的长度不超过 30cm的限度内,每挂1㎏质量的物体,弹 簧伸长0.5cm.如果所挂物体的质量为x㎏, 弹簧的长度是ycm。 (1)、求y与x之间的函数关系式, 并画出函数的图象。
(2)、求弹簧所挂物体的最大质量是 多少? (3)、能否用不等式求解问题(2)?
例1 如图是一个一次函数的图像,请根据图像回 答问题: (1)求出直线对应的一次函数的表达式 ; (2)当x=0时,y= ,当y=0时,x= ; 当y=4时,x= .
1 (3)一元一次方程 x 2 0 2 1 和一次函数 y x 2 2
有什么联系?
例2 画出函数y=-3x+12的图像,利用图像求: (1)不等式-3x+12>0的解集. (2)不等式-3x+12≤0的解集. (3)当2<y<16时,x的取值范围.收获和体会Fra bibliotek随堂演练
1、p32页练习。 2、在一次函数y=2x-3中,已知x=0 则y= ;若已知y=2则x= ; 3、当自变量x 时,函数 y=3x+2的值大于0;当x 时, 函数y=3x+2的值小于0。 4、已知函数y=-3x+6,当x y>0.当x 时,y≤-2。 时,
一元一次不等式、一元一次方程与一次函数的关系

苏科版数学八年级上册
一元一次不等式与一元一次方程、一次函数
例2:已知:函数y1=2x-4与y2=-3x+1 的图象分别为直线l1、l2
(1)设l1、l2与x轴分别相交于A、B,l1与 l2相交于P,求S△ABP
(2)当x取何值时,y1>y2
苏科版数学八年级上册
一元一次不等式与一元一次方程、一次函数
练习: 1.若y=5-10x,则当x 2.函数y= -x+2 (1)X 时,y =0 (3)X 时,y ≥0
时,y的值大于0
(2)x (4)x
时, y <0 时,y >3
3.已知y1=-x-1,y2=4x+2.当x取何值时,y1 < y2?
苏科版数学八年级上册
一元一次不等式与一元一次方程、一次函数
4
A
3 2
1
-1 O -1
-2 -3 -4
1
2
3
x
苏科版数学八年级上册
一元一次不等式与一元一次方程、一次函数
例1 某人点燃一根长度为25厘米的蜡烛,已知
蜡烛每小时缩短5厘米,设X小时后蜡烛剩下的长 度为y厘米 (1)求y与X之间的函数关系式 (2)几小时后,蜡烛的长度不足10厘米? 解:(1)根据题意,得: y=25-5x 即y与x之间的函数关系式为y=25-5x (2)当y<10时, 25-5x <10 解这个不等式得:x>3 所以3小时后蜡烛的长度不足10厘米. 你能用其他方法解决这个问题吗?
1、X取何值时,函数y=-2(X+1)+4的值是正数? 负数?非负数? 2、声音在空气中传播的速度是y米/秒(简称 音速)与气温X满足关系式:y=0.6X+331. 求:(1)音速为340米/秒时的气温. (2)音速超过340米/秒时的气温范围. 3、如图,若y1≥y2,则x的取值范围是( )
8年级一次函数与不等式方程的关系.doc

一次函数与方程及一元一次不等式一、核心纲要1. 一次函数与一元一次方程的关系直线y = hc + b(k 丰0)与x 轴交点的横坐标,就是一元一次方程kx + b = 0仗丰0)的解。
求直线y = kx + bb hb 与天轴交点时•,可令尸0,得到方程kx + b = 0,解方程得x = -Y ,直线y = kx + b 交%轴于点(-?, 0), 一?k kk就是直线y = kx + b 与兀轴交点的横坐标。
注:(I)从“数”看:kx + b = 0(k 0)的解O 在一次函数y = kx + b(k 0)中,令y=0时,兀的值。
(2)从“形”看:d + b = 0仗工0)的解o —次函数y = la + b(k^0)的图像与x 轴交点的横坐标。
2. 一次函数与一元一次不等式的关系(1) 任何一元一次不等式都可以转化为ax + b>0或ax + b<0 (a,b 为常数,QH O)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范馬。
(2) 函数图像的位置决定两个函数值的大小关系:哪一个函数图像处于上方,则哪一个比较大。
特别说明:函数y 的图像在无轴上方oy>0;函数y 的图像在兀轴下方oyVO 。
3. 一次函数与二元一次方程(组)的关系(1) 一次函数的解析式y = kx + b(k^Q)^身就是一个二元一次方程,直线y = +上有无数个点,每个点的横纵坐标都满足二元一次方程$ =总+ /?伙工0),因此二元一次方程的解也就有无数个。
(2) 一次函数y = kx + b(k^0)① 从“数”看:它是一个二元一次方程;② 从“形”看:它是一条直线。
二—直线y=kx-b(k=0)上的每一个点的横、纵坐标 廿:声T 的解<^=^>直线比与门的交点的横纵坐标 y ?=k ?x-rb ?4. 两条直线的位置关系与二元一次方程组的解V =化无+也〜1'有唯一解O •百线V 二心兀+勺不平行于玄线V = + H 怎y = k 1x^b 1二兀一次方程y=kx-b(k= 0)的每一组解 方程组(1)二元一次方程组I y = k.x^b.亠,一亠,(2)二兀一次方程组{ 无解O直线y =斤[无+也平行于直线y = k^x + b^ o k{ = k2.b} b2I y = k2x + b2 y = k.x + b}(3)二元一次方程组{ 有无数多个解o直线y = 3 + ®与y = k^x + b^重合o k}= k»b、=[y = k2x^b25.比较两个函数值人小的方法(1)画图像,求交点;(2)过交点作平行于y轴的氏线:(3)谁高谁大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2.3
一次函数与_元_次方程一元一次术等式的关系
习
认真闻篠课本
P96〜P97问題3以上内彖
试着完成《百练》
P63•教材训练1、2
2
-1/ / o j 一次函数y=kx+b的图象如图所示则方程kx+b=0的解为x=J
i任何一个一元一次i :
方程都可以转化为::kx+b=O(k,b为常数,: *却)的形式。
一茨鹵薮丫=1^+13药函象与X轴的交点坐标
_b
k
(-pO) k
方程kx+b=O的解即为直线y=kx+b与x轴交点的横
坐标
解方程kx+b=O(kHO),相当于一次函数y=kx+b的函数值为0
解方程kx+b=O (kHO ),相当于一次函数y=kx+b 的函数
已知方程mx+n=O 的解为x=-3,则直线 y=mx+n 与x 柚的交点是(・3,oj .
方程kx+b=O 的解即为直线y=kx+b 与x 轴交点的横坐标
i 任何一个一元一次i :
方程都可以转化
为: :kx+b=O (k,b
为常数,: *却)的形式。
一茨鹵薮丫=1^+13药函 象与X 轴的交点坐(-pO)
k b k
解方程kx+b=O(kHO),相当于一次函数y=kx+b 的函数值为0直<y=kx-3与x 軸的交点是(J ,0),则kx-3=0 的解是x=-l ・ V
方程kx+b=O 的解即为直线y=kx+b 与x 轴交点的横坐标
i 任何一个一元一次i :方程都可以转化为: :kx+b=0(k,b 为常数,: *却)的形式。
一茨鹵薮丫=1^+13药函 象与X 轴的交点坐标 (-pO) k b k
6
kx+b>0或kx+bvO(k,b
为常数,30)的形式。
解一元一次不等式kx+b>0(kH0h 相当于一次函|^y=kx+b 的函数值大于0时,求自变量的取值范围。
解一元一次不等式kx+bv0(kH0),相当于一次函|fcy=kx+b 的函数值小于0时,求自变量的取值范围。
任何一个一亍次不等式都可以转化为
T<i
-1
一次函数y=kx+b 的图象如图所示 ,则不等式kx+b>0的解集療
7
kx+b>0或kx+bv0(k,b 为常数,
30)的形式。
解一元一次不等式kx+b>0(kH0h 相当于一次函|^y=kx+b 的函数值大于0时,求自变量的取值范围。
解一元一次不等式kx+bv0(kH0),相当于一次函|fcy=kx+b 的函数值小于0时,求自变量的取值范围。
任何一个一亍次不等式都可以转化为
T<i
2
-1
一次函数y=kx+b 的图象如图所示 ,则不等式kx+b>2的解集永>0
(1) x取何值时,kx+b=O?
x=2.5
(2) x取哪些值时,y>0?
x>2.5
⑶X取哪些值时,kx+b<0?
x<2.5
(4) x取哪些值时,kx+b>3?
x>4
(5) x取哪些值时,-5<y<0
0<x<2.5
⑹y取哪些值时,2.5<x<4
8
0<y<3
19.2.3
一次函数与二元
_次方程
X
元一次方程
组的关系
9
10
任何一个二元一次: 方程都可以转化为: y=kx+b (k,b 另曾数,: 坯©的形式。
:
[每个二元一次方
程 :y=kx+b 都对应一个一
[次函数v=kx+b 。
二元_次方程y=kx+b 的一个解 着直线
y=kx+b 的一个 点的坐标
x =
〃对应 y = n
每个一次函数y=kx+b 知血一条直gv=kx+b 。
(n^n)o
11
由含有未知数x和y的两个二元一次方毎组成的一个二元一次方程组。
两个二元_次方程即一个二元一次方程组对应两个一次函数
二元一次方程组的解对应着两条直线两个_次函数对应两条直线。
12
k 二无一次方程纟 (y =0L5r+l f
I E 轉为
y =0. 5x+15
2、观察图象,回答以下问題。
(1) a= 5 , b= 15 ;
(2) 直线 y^Q^x+15 与直缆 y=x+5 的夾点坐标
1、求两条直线的交点坐标就是求两个一次函数解析式函 数值相等时对应的自变量的值,以及这个函数值是多少。
2、一次函数与二元一次方程组的关系从“形”的角度看:
:Jx=*20
:y = 25
X
二元一次方程组的解就是两条相应直线交点的横、纵坐标。
15
一次函数yi=k[X+b]与y2=k2X+b2 的图 象如图所示,观案图象回篆以下问題。
1 > 直纯y 〔=k]X+b[与直线涉2=k 2x+b
2 的夾上坐标为 d
二无一次方程组
当y 】=y2时,x= ? 当y 】>y2对,X 工2
当y 】vy2时,x >2
畠箱展
f x = 2 IJ =
3. 4、 £
y.
y 2=k 2x+b
由含有未知数x和y的
两个二元一次方毎组成的一个二元一次方程组。
二元一次方程组的解对应着两条直线
夾点的横.纵坐标。
O 两个二元一次方程对应两个一次函数。
两个一次函数对应
两条直线。
16
一次函数与二元一次方程, 元一次方程组的关系
17
《百练》
P69~P70
中考真题训练
18。