物理学史结课论文
物理学史论文

物理学史论文将物理学史融入物理课程,拓展物理课程的教育功能,是物理教育研究的重要课题,同时也是当前我国基础教育物理课程改革面临的一个重要问题。
下面是店铺为大家整理的物理学史论文,供大家参考。
物理学史论文范文一:物理学在建筑节能的应用摘要:在中国的能源消耗排行榜中,建筑耗能位居榜首,而且随着经济发展的加剧,能源的消耗与日俱增,我国每年建成的房屋总共有16-20亿平方米,超过了所有发达国家年建筑面积的综合,这些建筑物95%以上属于高能耗建筑,且建筑单位面积的能耗差不多是发达国家能耗的三倍。
关键词:物理学;建筑节能一、物理学知识在建筑节能中的运用(一)以物理手段实现太阳光照明经医学专家研究证明,太阳光可以降低诸如忧郁症、慢性疲劳综合征之类疾病产生的几率,采用物理方法将太阳光引进室内不仅可以增加晒太阳的机会,更有利于人的身体健康。
在没有机会到户外享受阳光的时候,采用导光管装置就能将阳光引入室内,它主要是通过物理学中的反射原理传递光线,但是光线的每一次传递都会造成能量的损失,这种导光管装置不适合长距离的光线传递。
物理学家爱德曼兹发明了一种神奇的装置,这个装置的主体是一个塑料控板,控板上安装了许多由激光切割而成的镜片,这些镜片按照一定的规律进行排列,当太阳光照射到塑料控板上时亮度便会增强,然后传递到每一个角落。
许多科学家开始将研究的重点放在彩色荧光塑料上,他们试图采用荧光塑料来采集阳光,这项研究的原理是:白色是由红、绿、蓝三个颜色组合而成,科学家们尝试将由这三种颜色的塑料收集到的阳光进行重新组合,然后就形成了人类生活中所需要的白色太阳光。
通过这种物理手段形成的太阳光所发出的亮度相当于两个75瓦灯泡所发出的亮度。
(二)利用太阳能取暖要利用太阳能进行取暖就必须选用热阻和吸热系数较大的材料,热阻是指材阻挡能量进行传递的能力,吸热系数是指物体本身吸取热量的能力。
在传统热学工艺中这种方式较为常见,为了满足工艺需求一般使用热阻与吸热系数较高的材料,在减缓热量传递的同时最大限度地吸收热量。
物理学史在初中物理教学中的作用论文

物理学史在初中物理教学中的作用论文物理学史在初中物理教学中的作用论文1物理学史的介绍,可以帮助学生更好地理解物理学知识科学的发展过程始终是一个生动的历史过程。
教育重演论认为,“现代学生的学习过程是对人类文化发展过程的一种认知意义上的重演,即现代人的认知发展是对其祖先认知水平长期演化过程的浓缩”。
如果学生对所学知识的来源和理论体系的形成感到深奥莫测,就很容易形成对这些知识的僵化的绝对化的理解。
只有在相应的文化背景中学习,才能构建合理的知识体系。
建构主义的学习观认为,学习不是知识由教师向学生的传递,而是学生自己建构知识的过程,学习者不是被动的信息吸收者,而是主动地建构信息的意义,这种建构不可能由其他人代替。
所以物理学史应该成为物理教学必不可少的有机组成部分。
从整个物理学科的发展来看,物理学可以分成两大块,一块是物理学知识,另一块是物理学史和物理学方法论。
如果说物理学的理论体系是骨架的话,那么物理学史就是附着在骨架上的血肉。
对于物理学中各个基本概念、基本规律和基本理论,学生只有了解它们产生、形成和发展演化的过程,才能深刻掌握它们的意义。
在物理教学时,教师不但要教学生物理知识,还应该讲清知识的由来和发展,讲述它的成功,讲它解决了哪些问题,当然也要讲清它的缺陷和局限性,使学生在很短的时间内“亲身经历”一下各部分物理知识的“系统发育过程”。
这样,不仅会消除学生对这些知识来源的神秘感,而且还会让学生从知识的更替演变中认识它的条件性、局限性,认识科学理论的相对真理性。
如果学生只是生硬地记住一些物理概念、数据、定律和公式,并不表示他们真正理解物理知识。
对物理学知识的实质的全面理解,有助于学生更好理解、掌握物理知识内容,更好地应用物理知识解决问题。
比如探索微观粒子的教学中,由于日常生活中学生无法亲自看到或接触到微观粒子,使学生感觉很抽象,很难在头脑里构建相应的物理情境,因此在认识上较为模糊。
如果在教学中能呈现这段历史,将有助于学生形成对微观粒子的认识。
物理学史论文

浅谈相对论的建立在科学史上,爱因斯坦创立相对论的过程艰辛而充满质疑,然而当我们真正认识和了解到相对论时,我们知道爱因斯坦为什么能够称之为伟大。
几十年来的历史发展证明,相对论大大推动了科学进程,成为现代物理学的基本理论之一。
作为一个非专业的物理学爱好者,下面是我对相对论建立过程的管窥。
一门新理论的诞生有其外在条件,也有其内在因素。
就外在条件而言:18世纪欧洲工业革命兴起,经过一个多世纪,工业生产、科学技术有了长足的进步。
电力应用逐渐推广,内燃机、蒸汽机被采用,交通运输不断扩展……,所有这些对物理学的发展都有着直接的影响。
生产的发展需要科学;反过来,生产的发展又进一步推动了科学的进步。
相对论理论同其他任何一门科学理论一样,是生产水平和科学技术发展到一定阶段的必然产物。
牛顿力学是狭义相对论在低速情况下的近似。
经典物理学经过近300年的发展,到19世纪末已经建立起比较完整的理论体系到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组在经典力学的伽利略变换下不具有协变性。
而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。
在这样的背景下,才有了狭义相对论。
解开以太之谜,是爱因斯坦在相对论建立的道路上走出的第一步。
其实,爱伊斯坦在对以太的长期思索中早就对以太的存在产生了怀疑。
也就是在这些不断的怀疑中,爱因斯坦一步步的建立的属于自己的观点——狭义相对论,当然之后也被科学界认可。
1905年,爱因斯坦在《论运动物体的电动力学》一文中正式提出了他的狭义相对论。
他首先提出了两条假设:[1]相对性原理。
在伽利略力学相对性原理的基础上,爱因斯坦提出一切惯性系对于描述物理现象来说都是等价的,物理定律对于一切惯性系都应采取相同的数学形式。
[2]光速不变原理。
在迈克尔逊-莫雷的基础上,爱因斯坦提出,光在真空中的传播速度是c,与光源的运动状态无关。
这就是说,在一切惯性系(都是匀速直线运动)中所测得的光速都是相等的,而且是各向同性的,与观察者的运动速度也没有关系。
大学物理总结论文

大学物理总结论文大学物理总结论文(通用10篇)从小学、初中、高中到大学乃至工作,大家都跟论文打过交道吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。
相信写论文是一个让许多人都头痛的问题,下面是小编收集整理的大学物理总结论文,希望对大家有所帮助。
大学物理总结论文篇1牛顿定律为基础的力学理论被称为牛顿力学或经典力学,它曾经被尊为完美普遍的理论而兴盛了约三百年。
尽管在二十世纪初发现了它的局限性,其在高速领域被相对论所取代,在微观领域被量子力学所取代,但在一般的技术领域,如机械制造、土木建筑,甚至航空航天技术中,经典力学仍保持着充沛的活力而处于基础理论的地位。
另外,由于经典力学是最早形成的物理理论,后来的许多理论,包括相对论和量子力学的形成都受到它的影响。
后者的许多概念和思想都是由经典力学的概念和思想发展、改造而来。
经典力学在一定意义上是整个物理学的基础。
经典力学中的质点力学和刚体力学基础是大学物理中的必修内容,而质点力学又是大学物理中的开篇内容。
质点力学在中学物理中就开始讲授,但在中学物理中质点力学仅限于处理质点作匀速、匀变速运动,质点受恒力作用问题,而在大学物理中的质点力学,不仅仅讲述基本概念、原理和定律,而且将物理学中最常用、最基本的研究方法体现出来,这对学生学习大学物理的后继内容,乃至后继的相关课程都很重要。
本文从三方面分析。
一、建立物理模型的研究方法质点力学中建立的第一个、也是最简单的物理模型是质点,它从两个方面反映了运动物体的主要特征:几何点反映了物体的位置;质量反映了物体的惯性。
一个物体如果作平动,它的各个部分具有完全相同的运动状态,即具有相同的位移、速度、加速度等,可以用一个点的运动代表物体整体的运动。
平动物体可按质点模型处理,如图1所示。
如果一个物体自身的线度与它的运动范围的线度相比微不足道,或者在所研究的问题中允许忽略物体各部分运动状态的差异,这样的物体可按质点模型处理。
物理学史课程论文

当科学遭遇哲学与艺术故事从18世纪末至19世纪中期的有关对牛顿颜色学说的批判开始。
这场争论可以看做是艺术与科学、哲学与科学分歧的一次具体体现。
牛顿的颜色学说从色散研究起步。
色散指光在介质中传播时折射率随频率而变化的现象。
尽管色散现象在生活中如此常见并且中世纪后人们已经知道日光可以透过棱镜产生彩带,但在牛顿之前没有人能对这种现象做出正确解释。
在近代,较早进行色散研究的是笛卡尔。
他利用棱镜做了一系列色散实验,得到了一些认识,仅此而已。
直到1666年,牛顿为制造出没有色差的望远镜,开始对光和颜色的性质进行深入研究,并且受笛卡尔的启发,也利用棱镜进行分光实验。
从1666年至1672年,通过大量光学实验,牛顿取得了重要的认识成果。
1704年,他出版了《光学》一书,对自己的研究成果进行了系统的总结。
《光学》的结构和《自然哲学的数学原理》一样,均由公理化体系构成。
在第一篇开头牛顿指出:“我的计划不是用假设来解释光的性质,而是用推理和实验来提出和证明它们。
为此,我将先讲下列定义和公理。
”牛顿的颜色学说主要包含有以下七点:(1)光线随其折射率不同,颜色也不同。
颜色不是光的变态,而是光线原来的、固有的属性。
(2)同一颜色属于同一折射率,不同的颜色折射率不同。
(3)颜色的种类和折射的程度是光线所固有的,不会因折射、反射或其他任何原因而改变。
(4)必须区分两种颜色,一中是原始的、单纯的色,另一种是由原始的色混合而成的复合色。
(5)本身是白色的光线是没有的,白色是由所有颜色的光线按适当比例混合而成。
(6)日光经棱镜折射后产生颜色,可以解释虹的形成。
(7)自然物体的颜色是由于对某种光的反射大于其他光的反射的缘故造成的。
尽管牛顿的颜色学说对于推动光学发展有着重要作用,但是由于传统观念的影响引起了后人众多争论,尤其是德国诗人歌德和哲学家黑格尔的批判。
1790年,歌德重做牛顿的光学实验,但没有看到牛顿所说的彩带现象,于是断定牛顿的颜色理论完全错误。
关于物理学史的论文1000子

关于物理学史的论文1000子物理学史论文———物理在现代科技中的应用班级:学号:姓名:摘要:从物理在人们生活周边,到学科应用、能源开发,乃至军事战争等几个方面论述了物理在现代科技中的广泛应用,并且物理今后在现代科技中的应用将会越来越广泛,作用也将越来越大。
关键词:生活学科能源正文:当今物理学已经发展成为研究宇宙间物质的基本组元及其基本相互作用和基本运动规律的学科。
物理学的学科性质决定了它是整个自然科学的基础。
物理学的基本概念、基本理论、基本实验手段和研究、测试方法,已经成为并将继续成为自然科学的各个学科(诸如宇宙学、天文学、地学、化学、生物学、医学等)的重要概念、理论的基础和实验、研究方法,从而推动各个学科深入而迅速地发展。
物理学向自然科学各个学科的广泛渗透和移植,促使一系列交叉学科、边缘学科不断涌现。
而正是这些交叉学科、边缘学科,有可能成为未来学科中最有希望、取得成果最多的领域。
宇宙学就是在物理学一系列研究成果的基础上而获得了迅速发展。
作为宇宙学理论基础的热大爆炸理论,就是依赖于广义相对论以及粒子物理学的飞速发展和射电望远镜等天文观察手段的提高而诞生的。
热大爆炸宇宙论被称为20世纪后半叶自然科学的四大成就之一。
然而,该理论还存在着很多不完备性和局限性,尤其关于宇宙的起源问题仍然没有得到最终的回答。
对此朱洪元教授曾指出:“高能物理的研究成果将对甚早期宇宙的演化的理解起推进作用”。
可以相信,随着物理学尤其是高能物理研究的不断深入发展,宇宙的起源和演化过程将逐步被认识、理解,宇宙学将被推进到一个崭新的阶段。
物理学对地球科学的影响是深远的。
地球物理学就是地学受物理学的影响而产生的一门交叉学科,正是由于对电磁波传播机制的研究而发现了大气电离层,对宇宙线的研究而发现了地球内辐射带并从而导致太阳风的发现;而对洋底岩石磁性的研究,则是确定板块构造学说——这一地球科学的革命性进展——的关键因素。
地球科学所需要的实验测量技术也在很大程度上依赖于现代物理学。
物理学史论文

学习物理学史选修课的几点体会08物理1班物理学发展的历史就是人类文明的发展史,重大物理理论的突破,在人类文明发展史上往往起到里程碑的作用。
但是我们在以往的学习中,由于种种原因,往往对习题学习比较重视,而对物理学史重视不够,学习中花时较少,大家了解得比较肤浅,更缺乏系统性。
对于物理学史的认识大都只停留在阿基米德“王冠的故事”、伽利略“比萨斜塔实验”以及牛顿对“苹果为什么落地”的思考等等点滴之中,很难形成系统的认识。
因此,学习物理学史选修课,既是对物理课堂学习的深化和补充,又是对我们实施素质教育的一条非常有效的渠道。
利用大量的科学史实,让科学家的人格魅力感染我们、让科学家的思想方法深入我们心田,下面谈几点体会。
1.了解物理学史能使我们融会贯通知识的来龙去脉物理学既是一门古老的学科,又是一门发展十分迅速的学科,知识面广量大,体系严密,公式繁多。
对物理公式我们经常忽视适用条件,张冠李戴。
其中根本原因是没有搞清知识的来龙去脉,割断了知识之间的内在联系,不能用一条清晰的线索将知识贯穿起来,靠对物理定理,物理公式的肤浅理解,甚至死记硬背去分析解决许多物理问题。
这样必然会使我们学习物理带来许多困难。
而实际上,在看似庞杂的物理知识之间有着必然的联系,也有一个发展完善的过程。
在课堂学习过程中,如果对物理学史缺乏应有的重视,学习的重点放在定律、定理、公式的掌握、应用上,搞题海战术,则对我们的综合素质的提高是极为不利的。
其结果是使我们对定律的认识只停留在其表面上。
开设物理学史选修课,就可以弥补我们这方面的不足。
力与运动的关系,古希腊哲学家亚里士多德的观点是:有力作用物体就运动,没有力作用物体就不运动。
即:“力是使物体运动的原因”,或者说“力产生速度的原因”。
日常生活中人们能见到这种现象:马拉车,车就运动,不用力拉,车就停下来;用力推桌面上的木块,木块就运动,不用力推它就停下来;等等。
亚里士多德正以对这些常见现象的感性认识为基础,通过大量的观察,进行归纳和总结,最后得出的结论,这似乎符合人们的认知,所以在长达数千年时间里(时至今日也不乏其人)。
物理学史教学质量论文

物理学史教学质量论文1穿插物理学史,帮助学员掌握科学的研究方法物理教学的目的不仅是对科学结论的理解和应用,更重要的是帮助学员掌握和理解产生这些科学结论的研究方法。
我们知道,科学研究中观察和分析的方法是主导的研究方法之一,许多物理概念的形成、物理规律的发现都是物理学家通过对具体事物和现实生活的观察与分析得来的。
像伽利略正是从对悬灯摆动的观察中得到启示,然后通过实验,最终确定了单摆周期的影响因素和单摆的等时性。
牛顿正是因为一只打在头上的苹果从而悟出了万有引力定律。
理想模型的方法也是物理学中经常应用的方法,根据具体问题,提出相应的物理模型,抓住主要矛盾,忽略次要矛盾,这种研究方法是很有实际意义的。
像质点运动学中的“质点”模型、刚体转动中的“刚体”模型、静电场中的“点电荷”模型等都是运用了这种方法。
另外,假设和推论的方法、类比和综合的方法等都在物理学的发展历史上起了重要的作用。
所有物理学及其他学科的科学方法几乎都可在物理学史中找到。
通过穿插物理学史,了解著名科学家创建理论体系的过程,我们可以学习一些培养创造性意识的方法和途径、掌握重要的科学研究方法,使学员具备创造性思维的能力,并能潜移默化地运用到之后的学习和研究当中去,为学员以后的发展提供良好的铺垫。
2渗透物理学史,帮助学员提升科学素养在物理教学中渗透物理学史教育,使学员认识物理学理论的变化、发展过程,体会到科学理论不是一成不变的,它是不断进化的、发展的。
物理学理论的内容的有限性总是和可能观察到的物质世界的无限丰富多样性相对立的,因此没有任何一个物理学理论可以被看作是完美的。
人们在一定条件下的物理学认识只能是相对的、近似的,这种教育可以潜移默化地培养学员的辨证唯物主义真理观,清除学员对物理学理论绝对化、僵化的理解,也可以防止学员机械的不加限制的搬用物理公式、定律去解决问题,有助于培养学员质疑和批判的科学态度以及实事求是的科学精神。
另外,科学家们在追求真理的过程中所呈现出的顽强的意志和献身科学的牺牲精神,在培养学员高尚的情感、进取的人生态度、正确的价值观方面具有不可替代的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理学史结课论文———物理在现代科技中的应用班级:学号:姓名:摘要:从物理在人们生活周边,到学科应用、能源开发,乃至军事战争等几个方面论述了物理在现代科技中的广泛应用,并且物理今后在现代科技中的应用将会越来越广泛,作用也将越来越大。
关键词:生活学科能源正文:当今物理学已经发展成为研究宇宙间物质的基本组元及其基本相互作用和基本运动规律的学科。
物理学的学科性质决定了它是整个自然科学的基础。
物理学的基本概念、基本理论、基本实验手段和研究、测试方法,已经成为并将继续成为自然科学的各个学科(诸如宇宙学、天文学、地学、化学、生物学、医学等)的重要概念、理论的基础和实验、研究方法,从而推动各个学科深入而迅速地发展。
物理学向自然科学各个学科的广泛渗透和移植,促使一系列交叉学科、边缘学科不断涌现。
而正是这些交叉学科、边缘学科,有可能成为未来学科中最有希望、取得成果最多的领域。
宇宙学就是在物理学一系列研究成果的基础上而获得了迅速发展。
作为宇宙学理论基础的热大爆炸理论,就是依赖于广义相对论以及粒子物理学的飞速发展和射电望远镜等天文观察手段的提高而诞生的。
热大爆炸宇宙论被称为20世纪后半叶自然科学的四大成就之一。
然而,该理论还存在着很多不完备性和局限性,尤其关于宇宙的起源问题仍然没有得到最终的回答。
对此朱洪元教授曾指出:“高能物理的研究成果将对甚早期宇宙的演化的理解起推进作用”。
可以相信,随着物理学尤其是高能物理研究的不断深入发展,宇宙的起源和演化过程将逐步被认识、理解,宇宙学将被推进到一个崭新的阶段。
物理学对地球科学的影响是深远的。
地球物理学就是地学受物理学的影响而产生的一门交叉学科,正是由于对电磁波传播机制的研究而发现了大气电离层,对宇宙线的研究而发现了地球内辐射带并从而导致太阳风的发现;而对洋底岩石磁性的研究,则是确定板块构造学说——这一地球科学的革命性进展——的关键因素。
地球科学所需要的实验测量技术也在很大程度上依赖于现代物理学。
近年来,电子自旋共振、质子激发荧光分析技术和氡测量技术等核分析技术的研究对地质学正在产生越来越重要的影响。
高压物理研究则对解决深部地质问题具有重要意义。
随着地质学研究范围的扩大和核探测技术的不断提高,地质学的发展与核物理学的关系将日益密切。
地质科学的前沿与尖端技术融为一体,它们所开辟的科研领域和所达到的知识深度已超过了以往任何时代。
现代地质学将沿纵向和横向交叉的方向发展,核物理与地质学的衔接日益紧密,它们的交叉点将可能成为学科或新方向的生长点。
物理学与化学之间的关系也愈来愈密切。
物理学发展中出现的理论工具和实验方法,使化学科学得以如虎添翼般的飞速发展。
传统的物理化学就是着重应用物理理论和实验方法去处理化学问题而形成的一门化学分支学科,并已成为化学科学的理论核心之一。
化学物理是由物理学与化学之间的密切结合而产生的一门正在蓬勃发展中的交叉学科,它以化学和物理学的新成就及近代实验方法来研究原子、分子及其聚集态的结构、性质和变化规律。
物理分析方法(如光谱、色谱和快速流动等)的发展,使得对化学反应过程的跟踪成为可能,从而使化学动力学发展到基元反应研究的重要阶段。
基元反应研究的进一步深入,产生了非平衡化学反应过程的新领域,并进而使化学动力学深入到态—态反应的程度。
而态—态反应的研究,无论在理论上和实验方法上,都使化学动力学与物理学中的碰撞动力学融为一体。
表面科学包含在一些最重要和令人迷惑的化学过程之中,多相催化包含着表面和发生在其上的化学反应之间的深奥的相互作用。
为此人们调动了几乎所有的现代物理学的理论方案和实验手段来进行研究,诸如表面电子能谱、扫描电镜、原子力电镜、X射线衍射、同步辐射、傅里叶变换光谱和分子束——表面散射等最现代化的实验装置、仪器和技术。
1985至1994年的10项诺贝尔化学奖,其中就有4项与物理学密切交叉。
可以相信,与物理学的进一步密切结合,将会更加促进化学的迅速发展。
物理学对生物学、生命科学发展的影响更是重大而深远的。
20世纪50年代以来,随着物理学的发展及取得的辉煌成就,使生物学的研究从现象的描述进入了现代生命科学的新阶段,物理学参与和渗入生命科学的研究已成大势所趋。
物理学对生命科学的巨大贡献,首先是为生命科学提供了现代化的实验手段。
例如,正是利用X射线衍射技术而促成了人们对DNA双螺旋结构主体模型的认识,开创了分子生物学的新时代。
其次,物理学为生命科学提供了概念、理论和方法。
物理学和信息科学处理宏观体系的理论(如热力学、统计力学、耗散结构理论、信息论、控制论等),使人们可以从系统的宏观角度研究生物体系的物质、能量和信息转换的关系;物理学的微观理论(如分子和原子物理、量子力学、粒子物理等)及有关结构分析技术,使人们可以从微观角度研究生物大分子和分子聚集体(膜、细胞、组织等)的结构、运动与功能。
非线性理论、混沌理论则为脑科学的研究提供了理论指导,并预示了新的更伟大的科学革命——智能革命的到来。
而生物物理学的创立,则是人类用物理学知识去揭示生命之谜的一个极其重要的里程碑,它为生命科学,为生物工程展现出一个无限美好的前景。
一些有远见的科学家预言,21世纪将是生命科学的世纪。
物理学家将与生物学家等携手并进、一起共同开创和迎接新的生命科学的世纪。
科技发展史表明,物理学与技术的关系变得愈来愈密切。
如果说发生于18世纪60年代的以蒸汽机的应用为主要标志的第一次技术革命,开始了物理学(主要是力学、热学)与技术的互相影响的话,那么,开始于19世纪70年代的以电力技术的广泛应用为重要标志的第二次技术革命,则是以物理学的发展(主要是电磁理论)为重要基础的。
而发生于20世纪50年代的第三次技术革命(或称第三次浪潮),则是以20世纪初的物理学革命为先导,物理学开始全方位渗透到技术领域,成为推动技术进步的主导力量、主要源泉。
物理学的研究成果直接导致了一系列新技术的产生,物理学的研究方法和手段也越来越普遍地转变为技术的方法和手段,而且转变的时间间隔愈来愈短。
物理学革命导致现代科学的分化和综合的同时,也引起了技术领域的分化和综合,从而形成了目前正蓬勃发展的新高技术群:材料技术、信息技术、能源技术、生物技术、空间技术和海洋技术等。
新高技术群是科学理论与技术的高度密集和综合应用,在其今后的发展中,物理学的先导和基础作用将更加显著和重要。
未来技术的进步,将更极大地依赖于物理学以及与物理学有关的边缘学科和交叉学科的进展。
材料、能源和信息技术是人类社会现代文明的三大支柱。
科技发展史表明,每一项重大的技术新发明、新发现,往往都有赖于新材料的发展。
因此,新材料被称为“发明之母”和“产品粮食”。
而被称为近代材料科学技术的三大支柱的电子显微学、电子理论和晶体缺陷理论,对了解材料的微观结构及变化规律发挥了重要作用,为一系列新材料的研制提供了启示和指导。
而电子显微学的发展正是建立在物理学的理论基础之上的。
电子理论和晶体缺陷理论,实际就是凝聚态物理学的一部分。
凝聚态物理的主要任务就是研究凝聚态物质的宏观性质和微观结构以及宏、微观间的联系,从而为按指定性能创制新材料的“分子设计”或“分子工程”提供科学途径和理论指导。
例如,对无损耗输电、大型强磁体、高速计算机和高灵敏度、高精度测电压、磁场的高Tc超导材料的研究,以及对被誉为“21世纪最有前途的材料”—纳米固体材料的研究和对可能带来一场电子工业革命的微结构器件的研究等,都是当前凝聚态物理学中最活跃的前沿课题。
因此材料科学技术将随着物理学的发展而获得迅速发展,从而为未来21世纪的科学技术的发展乃至整个人类社会文明进步奠定基础。
能源是人类社会活动的物质基础。
当前,在人们正在开发的各种能源中,最理想、最有前途的新能源当属裂变核能和聚变核能。
尤其是聚变能,是一种取之不尽,用之不竭(燃料从海水中提取)的最干净、最完整、最经济的理想能源,它没有如裂变堆那样产生大量放射性废物,故其发展远景很好,预计在21世纪中叶可得到广泛应用。
而原子核物理和高能物理、等离子体物理,为核能的开发、利用提供了最直接、最基本的理论基础和方法。
21世纪被称为信息时代,人类社会已开始进入信息社会。
信息资源已成为现代社会最主要的战略资源。
第三次技术革命就是以信息技术为核心内容的。
现代信息技术是以微电子学、光电子学为基础,以计算机、通信、控制技术为核心的综合化技术。
微电子学、光电子学都是当代物理学中最活跃的前沿分支学科。
兴起于本世纪90年代的纳米电子学和纳米科学技术,是光电子学的重要组成部分。
纳米电子学将立足于最新的物理理论和最先进的工艺手段,按照全新的概念来构造电子系统;将超越传统的极限,实现信息采集和处理能力的革命性突破;将进一步开发物质内潜在的信息和结构潜力,使单位体积物质储存和处理信息的能力提高百万倍以上。
作为纳米科技重要组成部分的分子组装技术,单原子、分子测控科学与技术,就是面向21世纪高科技发展的技术基础之一,将是21世纪信息科学发展的关键技术。
空间技术是探索、开发和利用太空以及地球以外天体的高度综合性的现代科学技术。
它以基础科学和技术科学为基础,集中应用了力学、热学、材料学、医学、电子技术、自动控制、喷气推进、计算机、真空技术、制造工艺等多项现代科学技术新成就。
而力学、热学、电子技术等就是物理学的分支学科,自动控制、计算机、喷气推进,真空技术等也都与物理学直接密切相关。
海洋开发技术是以大海及其资源为开发、利用对象的综合性现代科学技术群。
在对海洋资源的开发、利用中所形成的诸如海水淡化技术、海水提取稀有化学元素技术、海洋能发电技术、深海底锰结核开采技术等,也都与物理学的知识如力学、热学、电学、声学、电子技术等密切相关。
例如,海洋中的底质、地层、地貌、测探、定位、目标探测、识别、通信、导航、遥控、内波、寻找油气、开发矿产、海洋内部及海底的遥感等一系列问题,都广泛地应用到声学技术。
另外,战争对人类社会的影响极大。
海湾战争的事实表明,现代战场已经成为高科技武器的竞技场。
展望未来,将会有更多的高科技武器投入战场。
除核武器外,目前世界各国正在研制、试验并进展较快、有希望投入实用的高科技未来武器有激光武器、微波波束武器、粒子束武器、电磁炮和次声武器等,还有军用隐形技术、夜视技术等等。
这些都是以基本的物理学理论为依托的。
所以物理学对未来战争将产生极其重要的影响。
总之,物理学是当今高新技术的水之源、木之本。
物理学在未来高新技术发展中将继续发挥基础、主导作用,并对整个人类社会产生重要影响。