2020年材料的许用应力和安全系数

合集下载

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系我们在设计的时候常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样。

校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力关系如下:<一> 许用(拉伸)应力钢材的许用拉应力[δ]与抗拉强度极限、屈服强度极限的关系:1.对于塑性材料[δ]= δs /n2.对于脆性材料[δ]= δb /nδb ---抗拉强度极限δs ---屈服强度极限n---安全系数轧、锻件n=1.2-2.2 起重机械n=1.7人力钢丝绳n=4.5 土建工程n=1.5载人用的钢丝n=9 螺纹连接n=1.2-1.7 铸件n=1.6-2.5 一般钢材n=1.6-2.5注:脆性材料:如淬硬的工具钢、陶瓷等。

塑性材料:如低碳钢、非淬硬中炭钢、退火球墨铸铁、铜和铝等。

<二> 剪切许用剪应力与许用拉应力的关系:1.对于塑性材料[τ]=0.6-0.8[δ]2.对于脆性材料[τ]=0.8-1.0[δ]<三> 挤压许用挤压应力与许用拉应力的关系1.对于塑性材料[δj]=1.5-2.5[δ]2.对于脆性材料[δj]=0.9-1.5[δ]注:[δj]=1.7-2[δ](部分教科书常用)<四> 扭转许用扭转应力与许用拉应力的关系:1.对于塑性材料[δn]=0.5-0.6[δ]2.对于脆性材料[δn]=0.8-1.0[δ]轴的扭转变形用每米长的扭转角来衡量。

对于一般传动可取[φ]=0.5°--1°/m;对于精密件,可取[φ]=0.25°-0.5°/m;对于要求不严格的轴,可取[φ]大于1°/m计算。

<五> 弯曲许用弯曲应力与许用拉应力的关系:1.对于薄壁型钢一般采取用轴向拉伸应力的许用值2.对于实心型钢可以略高一点,具体数值可参见有关规范。

2020年智慧树知道网课《材料力学(长安大学)》课后章节测试满分答案

2020年智慧树知道网课《材料力学(长安大学)》课后章节测试满分答案

第一章测试1【单选题】(1分)下列结论中正确的是A.内力是应力的代数和B.应力是内力的平均值C.内力必大于应力D.应力是内力的集度2【单选题】(1分)杆件的刚度是指A.杆件的承载能力B.杆件对弹性变形的抵抗能力C.杆件的软硬程度D.杆件对弯曲变形的抵抗能力3【单选题】(1分)下列结论中正确的是(1)为保证构件能正常工作,应尽量提高构件的强度。

(2)为保证构件能正常工作,应尽量提高构件的刚度。

(3)为保证构件能正常工作,应尽量提高构件的稳定性。

(4)为保证构件能正常工作,应满足构件的强度、刚度和稳定性。

A.(1)B.(3)C.(2)D.(4)4【单选题】(1分)下列结论中哪个是的是(1)杆件横截面上的轴力,其作用线必垂立于该横截面。

(2)杆件横截面上的剪力,其作用线必位于该横截面内。

(3)杆件横截面上的扭矩,其力偶矢量必垂直于该横截面。

(4)杆件横截面上的弯矩,其力偶矢量必垂直于该横截面。

A.(1)B.(2)C.(3)D.(4)5【单选题】(1分)下列结论中哪个是的的是:(1)若物体产生位移,则必定同时产生变形。

(2)若物体各点均无位移,则该物体必定无变形。

(3)若物体产生变形,则物体内总有一些点要产生位移。

(4)度量一点变形过程的两个基本量是应变和切应变。

A.(1)B.(3)C.(2)D.(4)第二章测试1【单选题】(1分)低碳钢试件拉伸时,其横截面上的应力公式:下列四种答案中,正确的是A.只适用于B.在试件拉断前适用C.只适用于D.只适用于2【单选题】(1分)所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是A.强度低,对应力集中不敏感B.应力-应变关系严格遵循胡克定律C.相同拉力作用下变形小D.断裂前几乎没有塑性变形3【单选题】(1分)在图示结构中,横杆AB为刚性杆,斜杆CD为直径d=20mm的圆杆,其材料的弹性模量E=200GPa,F=15.07kN,节点B的垂直位移是:A.3.33mmB.2.07mmC.5.12mmD.1.56mm4【单选题】(1分)两杆的横截面面积,材料的许用应力,(不考虑稳定性),结构的许可荷载[P]是:A.106.7kNB.69.3kNC.30.2kND.58.6kN5【单选题】(1分)已知杆受力如图所示,当时,补充方程式为()A.(分别为A,B两个固定端处约束反力的绝对值)B.(分别为A,B两个固定端处约束反力的绝对值)C.(分别为A,B两个固定端处约束反力的绝对值)D.(分别为A,B两个固定端处约束反力的绝对值)第三章测试1【判断题】(1分)静矩、极惯性矩和惯性积的值可正、可负,也可为零。

材料许用应力

材料许用应力

材料许用应力材料的许用应力是指材料在受力作用下所能承受的最大应力值。

对于不同材料来说,其许用应力是不同的,这主要取决于材料的性能和用途。

在工程设计和制造中,合理地确定材料的许用应力是非常重要的,它直接关系到材料的安全可靠性和使用寿命。

在本文中,将对材料许用应力的概念、计算方法以及影响因素进行探讨。

首先,材料的许用应力是指在材料的弹性极限范围内,材料所能承受的最大应力值。

超过这个值,材料就会发生塑性变形或破坏。

许用应力的计算方法一般有两种,一种是根据材料的弹性模量和屈服强度来计算,另一种是根据材料的抗拉强度和安全系数来计算。

不同的计算方法适用于不同的材料和工程要求,工程师需要根据具体情况进行选择。

其次,影响材料许用应力的因素有很多,主要包括材料的性能、工作条件、制造工艺等。

材料的性能是决定许用应力的关键因素,包括弹性模量、屈服强度、抗拉强度等。

工作条件是指材料在实际工作中所受到的载荷和环境条件,包括温度、湿度、腐蚀等。

制造工艺也会对材料的性能产生影响,不同的制造工艺可能导致材料的微观结构和性能发生变化,从而影响许用应力的大小。

最后,合理地确定材料的许用应力对于工程设计和制造非常重要。

如果许用应力确定得过大,就会导致材料过早地发生塑性变形或破坏,从而影响工程的安全可靠性;如果许用应力确定得过小,就会导致材料的使用寿命变短,从而增加了工程的成本。

因此,工程师需要充分考虑材料的性能、工作条件和制造工艺等因素,合理地确定材料的许用应力,以确保工程的安全可靠性和使用寿命。

综上所述,材料的许用应力是一个非常重要的参数,它直接关系到材料的安全可靠性和使用寿命。

工程师需要充分考虑材料的性能、工作条件和制造工艺等因素,合理地确定材料的许用应力,以确保工程的安全可靠性和使用寿命。

希望本文对您有所帮助。

许用应力安全系数n取值范围

许用应力安全系数n取值范围

许用应力安全系数n取值范围许用应力安全系数是指材料在使用过程中所允许的最大应力与材料屈服强度之比,通常用n表示。

在工程设计中,为了保证产品的稳定可靠性,许用应力安全系数的取值范围需根据实际情况进行选择。

一般来说,许用应力安全系数n的取值范围与产品所处的应用环境、材料性质、结构形式、载荷情况等因素有关。

在一些对稳定性要求较高的产品中,许用应力安全系数通常取值比较大,一般在2到4之间。

而在某些轻载、低费用、短寿命的产品中,许用应力安全系数则可以适量降低,但一般不低于1.5。

在实际应用中,需要综合考虑多种因素,通过合理的计算和分析来确定许用应力安全系数的取值范围。

同时也需要在产品设计和制造过程中进行严格的检测和测试,确保产品稳定可靠地运行。

材料的极限应力和许用应力

材料的极限应力和许用应力
课题十一 应力集中对构件强度的影响
一、材料的极限应力和许用应力
1、极限应力 材料能承受的最大应力叫做材料的极限应力,用σu表示 对塑性材料 对脆性材料 2、许用应力 ,用[σ]表示。 对塑性材料 对脆性材料
材料的极限应力和许用应力
u s u b
用极限应力除以大于1的安全系数作为构件工作应力的最高限度叫许用应力
s [ ] s
[ ]
b
课题十一
材料的极限应力和许用应力 应力集中对构件强度的影响
二、应力集中对构件强度的影响
如图11-1所示,由于杆件外形的突然变化而引起局部应力急剧增大的现象叫 应力集中。 应力集中对塑性材料构件的承载能力的影响并不太大,在强度计算中可以不 予考虑。但应力集中会严重降低脆性材料构件的承载能力,因此,必须考虑应力 集中对脆性材料构件强度的影响。
图 11-1

z许用应力和安全系数

z许用应力和安全系数

FN 2 FN 1
30
y
C
x
G
解 (1)计算BC杆的轴力 当电动葫芦处于AC梁的C 端时,杆 BC受力最大。此时取铰链C为研究对 象,其受力如图所示,其中FN1、FN2 分别为AC、BC杆的轴力。由平衡方 程
§3-3 拉伸与压缩时的强度计算
å
Fy = 0, F
N 2
?sin 30
G=0
FN 2 =
第三章 杆件的基本变形
许用应力和安全系数
§3-3 直杆轴向拉伸和压缩时的强度计算
一、材料失效与构件失效
材料发生屈服或断裂而丧失正常功能,称为材料失效。 对于脆性材料,其失效形式为断裂;对于塑性材料,因为工 程中一般不允许出现明显的塑性变形,因此塑性材料的失效 形式为屈服。
结构构件或机器零件在外力作用下丧失正常工作能力,称为 构件失效。构件的失效主要有强度失效、刚度失效、稳定失 效和疲劳失效等形式。
§3-3 拉伸与压缩时的强度计算
例3-4 图示支架中,杆①的许用应力[]1=100MPa,杆②的 许用应力[]2=160MPa,两杆的面积均为A=200mm2,求结构 的许可载荷[F]。
B
解 (1)计算AC杆和BC杆的轴力
取C铰为研究对象,受力如图所示。列平衡 方程
A

② 45 30
C
å å
45 30
G = 40kN sin 30
(2)设计截面
FN 2 A? [s ]
40´ 103 N = 400mm2 100MPa
由于BC杆由两根角钢组成,每根角钢的面积记为A1,则
A A1 = ? 200mm 2 2
查型钢表,3.6号角钢中,b=36mm,d=3mm,r =4.5mm,面积为 210.9mm2>A1,可满足要求。故选用3.6号等边角钢。

材料强度计算与安全系数

材料强度计算与安全系数
减小Q的值 增大拉杆面积
工程中允许工作应力略大于许用应力[], 但不得超过[]的5%
例:已知压缩机汽缸直径 D = 400mm,气压 q =1.2 MPa, 缸盖用 M20 螺栓与汽缸联接,d2 =18 mm,活塞杆
求:[活]1 塞= 杆50直MP径a,d螺1 栓和螺[栓 ]个2 =数40n。MPa,
Dq
d1
解:1.缸盖和活塞杆的压力
D2
P qA q N 4
2.螺栓和活塞杆的面积
A1

d12
4
A2


d
2 2
4
Dq
d1
[ ] 3.求活塞杆直径

1
N A1


1
(压)
d1≥
4P
[ ]1
1.2 106 4002 62mm
50
4.求螺栓数目
[ ]
2
N n A2


2 (拉)
[ ] n≥ N A2
2
1.2 106 4002 182 40
14.8
实际设计选用:15个
例题:轴向拉压杆系结构,杆AB为直径d=25mm的圆截
面钢杆;杆AC由两根3.6号等边角钢构成,两根杆
的 [ ] 120MPa, a 20o 不计杆的自重,试求结构
内容提要
§2.7 失效、安全系数和强度计算
失Failu效re
材料丧失正常工作时的承载能力,表现形 式主要是:
(1)断裂或屈服 – 强度不足 (2)过量的弹(塑)性变形 – 刚度不足 (3)压杆丧失稳定性 – 稳定性不足
机械工程中常见的几种失效形式
机件在使用的过程中一旦断裂就失去了其所具有 的效能,机械工程中把这种现象称为失效。在工程中 常见的失效形式有下列几种:

材料的许用应力和安全系数

材料的许用应力和安全系数

由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs。

脆性材料的强度极限σb、塑性材料屈服极限σs称为构件失效的极限应力。

为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。

在强度计算中,把材料的极限应力除以一个大于1的系数n(称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。

对于脆性材料,许用应力(5-8)对于塑性材料,许用应力(5-9)其中、分别为脆性材料、塑性材料对应的安全系数。

安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。

安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取,甚至取到5~9。

为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即(5-10)上式就是杆件受轴向拉伸或压缩时的强度条件。

根据这一强度条件,可以进行杆件如下三方面的计算。

1.强度校核已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。

2.截面设计已知杆件所受载荷和材料的许用应力,将公式(5-10)改成,由强度条件确定杆件所需的横截面面积。

3.许用载荷的确定已知杆件的横截面尺寸和材料的许用应力,由强度条件确定杆件所能承受的最大轴力,最后通过静力学平衡方程算出杆件所能承担的最大许可载荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作者:非成败
作品编号:92032155GZ5702241547853215475102
时间:2020.12.13
第四节 许用应力·安全系数·强度条件
由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。

脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。

为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。

在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。

对于脆性材料,许用应力
b b n σσ=
][ (5-8)
对于塑性材料,许用应力 s s n σσ=
][ (5-9) 其中b n 、s n 分别为脆性材料、塑性材料对应的安全系数。

安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。

安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取0.2~5.1=s n ;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取0.5~0.2=b n ,甚至取到5~9。

为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即
][max max σσ≤=A N (5-10)
上式就是杆件受轴向拉伸或压缩时的强度条件。

根据这一强度条件,可以进行杆件如下三方面的计算。

1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。

2.截面设计 已知杆件所受载荷和材料的许用应力,将公式(5-10)改成][σN A ≥

由强度条件确定杆件所需的横截面面积。

3.许用载荷的确定 已知杆件的横截面尺寸和材料的许用应力,由强度条件][max σA N ≤确定杆件所能承受的最大轴力,最后通过静力学平衡方程算出杆件所能承担的最大许可载荷。

例5-4 一结构包括钢杆1和铜杆2,如图5-21a 所示,A 、B 、C 处为铰链连接。

在节点A 悬挂一个G=20kN 的重物。

钢杆AB 的横截面面积为A 1=75mm 2,铜杆的横截面面积为A 2=150mm 2。

材料的许用应力分别为][1σ=160MPa ,][2σ=100MPa ,试校核此结构的强度。

图5-21
解:(1)求各杆的轴力
取节点A 为研究对象,作出其受力图(图5-21b ),图中假定两杆均为拉力。

由平衡方程
045sin 30sin ,012=︒-︒=∑X N N
030cos 45cos ,021=-+=∑Y G N N
解得
kN 4.101=N kN 6.142=N
两杆横截面上的应力分别为
a a A N MP =P ⨯⨯==-1391075104.1063
111σ
a A N MP =⨯⨯==-6.9710150106.1463
222σ
由于a a M P =<M P =<100][,160][2211σσσσ,故此结构的强度足够。

例5-5 如图5-22a 所示,三角架受载荷Q=50kN 作用,AC 杆是圆钢杆,其许用应力
][1σ=160MP a ;BC 杆的材料是木材,圆形横截面,其许用应力][2σ=8MP a ,试设计两杆的直径。

图5—22
解: 由于][1σ、][2σ已知,故首先求出AC 杆和BC 杆的轴力N 1和N 2,然后由][11
1σN ≥A ,][22
2σN ≥A 求解。

(1) 求两杆的轴力
取节点C 研究,受力分析如图5-22b ,列平衡方程
030cos 30cos ,0=--=∑X ︒︒BC AC N N
解得 AC BC N N -=
030sin 30sin ,
0=--=∑Y ︒︒Q N N BC AC
解得
N AC =Q=50kN (拉)
N BC = - N AC = -50kN (压) (2) 求截面直径
分别求得两杆的横截面面积为 22426322
222426311
1cm 5.62m 105.62m 1081050][cm 13.3m 1013.3m 101601050][=⨯=⨯⨯=≥A =⨯=⨯⨯=≥A --σσN N 直径 cm 9.84,cm 0.242
21
1≥=≥=ππA d A d
例5-6 图5-23所示某冷镦机的曲柄滑块机构,镦压时,截面为矩形的连杆AB 处于水平位置,高宽比h/b=1.2,材料为45钢,许用应力[σ]=90MPa 。

若不考虑杆的自重,已知
镦压力P=4500kN ,试按照强度条件确定h 、b 的大小。

图5-23
解:如图5-23b 所示,AB 杆为轴向压缩,由截面法可得连杆的轴力数值大小为
N=P=4500kN 将强度条件改写为][σN A ≥
,由于22.1b bh A ==,所以
22.1b ][σN ≥
即 m 204.0m 10902.1104500][2.163=⨯⨯⨯=≥σN b
h=1.2b ≥0.245m
例5-7 图5-24a 所示的三角架由钢杆AC 和木杆BC 在A 、B 、C 处铰接而成,钢杆AC 的横截面面积为A AC =12cm 2,许用应力[σ1]=160MP a ,木杆BC 的横截面面积A BC =200cm 2,许用应力[σ2]=8MP a ,求C 点允许起吊的最大载荷P 为多少?
图5-24
解: (1)求AC 杆和BC 杆的轴力
取节点C 研究,受力分析如图5-24b 所示,列平衡方程
,0=∑X -N AC cos300-N BC =0
,0=∑Y N AC sin300 - P=0
解得
)(3)(2压拉P N P N BC AC -==
(2)求许可的最大载荷P
由公式(5-10)得到N AC ≤A AC [σ1],即
2P ≤12⨯10-4⨯160⨯106N , P 1≤96kN
同样,由公式(5-10)得到 N BC ≤A BC [σ2],即
N 1081000236-4⨯⨯⨯≤P , P 2≤92.4kN
为了保证整个结构的安全,C 点允许起吊的最大载荷应选取所求得的P 1、P 2中的较小值,即92.4kN ][max =P 。

作者:非成败
作品编号:92032155GZ5702241547853215475102
时间:2020.12.13。

相关文档
最新文档