高考数学高三模拟考试试卷压轴题高考数学模拟试卷文科001

合集下载

高考数学高三模拟试卷试题压轴押题阶段测试卷文科

高考数学高三模拟试卷试题压轴押题阶段测试卷文科

高考数学高三模拟试卷试题压轴押题阶段测试卷(文科)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( ) A.{}2,1--B.{}2-C.{}1,0,1-D.{}0,12.已知向量 (1,),(,2)a m b m ==, 若a//b, 则实数m 等于( ) A.2-22-2D.03.函数lg(1)()1x f x x +=-的定义域是 ( ) A.(1,)-+∞ B.[1,)-+∞ C.(1,1)(1,)-+∞ D.[1,1)(1,)-+∞4.3sin cos 2αα==若( ) A.23B.13 C.13-D.23-5.下面四个条件中,使a >b 成立的充分而不必要的条件是 ( ) A.a >b +1 B.a >b 1 C.2a >2b D.3a >3b6.已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( ) A.2B.1C.0D.27.已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是( )A.p q ∧B.p q ⌝∧C.p q ∧⌝D.p q ⌝∧⌝8.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 ( ) A.21n n S a =- B.32n n S a =- C.43n n S a =- D.32n n S a =- 9.已知0>x ,0>y ,822=++xy y x ,则y x 2+的最小值为 ( ) A.3 B.4 C.29 D. 211 10.用{}b a ,max 表示两个数a ,b 中的最大数,设{}x x x x f 22log ,48max )(-+-=,若函数kx x f x g -=)()(有两个零点,则实数k 的取值范围为 ( )A.()3,0B.(]3,0C.()4,0D.[]4,0二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11.在等差数列{}n a 中,若2013=a ,1320=a ,则2014a =_________;12.已知函数f(x)=32,0,πtan ,0,2x x x x ⎧<⎪⎨-≤<⎪⎩则π4f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=__________; 13. 已知向量a ,b 满足2=a ,2=b ,且32=+b a,则a 与b 的夹角为__________;14.设变量,x y 满足1,x y +≤则2x y +的最大值为__________;15.已知a 为常数,若曲线x x ax y ln 32-+=存在与直线01=-+y x 垂直的切线,则实数a 的取值范围是__________。

高考数学高三模拟考试试卷压轴题高考数学模拟试卷文科001

高考数学高三模拟考试试卷压轴题高考数学模拟试卷文科001

高考数学高三模拟考试试卷压轴题高考数学模拟试卷(文科)一、选择题(每小题5分,共40分)1.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x﹣1)2+(y﹣1)2=22.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}3.(5分)下列函数中为偶函数的是()A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=2﹣x4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.(5分)执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.66.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.C.D.28.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)5月1日12 350005月15日48 35600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升二、填空题9.(5分)复数i(1+i)的实部为.10.(5分)2﹣3,,log25三个数中最大数的是.11.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.16.(13分)已知等差数列{an}满足a1+a2=10,a4﹣a3=2(1)求{an}的通项公式;(2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √× √√217 × √× √200 √√√×300 √× √×85 √× × ×98 × √× ×(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C 交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.高考数学模拟试卷(文科) (2)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x﹣1)2+(y﹣1)2=2【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.2.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.【点评】本题考查集合的交集的运算法则,考查计算能力.3.(5分)下列函数中为偶函数的是()A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=2﹣x【分析】首先从定义域上排除选项C,然后在其他选项中判断﹣x与x的函数值关系,相等的就是偶函数.【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sinx;是奇函数;对于B,(﹣x)2cos(﹣x)=x2cosx;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣x)=2x≠2﹣x,2x≠﹣2﹣x;是非奇非偶的函数;故选:B.【点评】本题考查了函数奇偶性的判断;首先判断定义域是否关于原点对称;如果不对称,函数是非奇非偶的函数;如果对称,再判断f(﹣x)与f(x)关系,相等是偶函数,相反是奇函数.4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.300【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.【点评】本题考查分层抽样,考查学生的计算能力,比较基础.5.(5分)执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a <,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由便可得到夹角为0,从而得到∥,而∥并不能得到夹角为0,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.【解答】解:(1);∴时,cos=1;∴;∴∥;∴“”是“∥”的充分条件;(2)∥时,的夹角为0或π;∴,或﹣;即∥得不到;∴“”不是“∥”的必要条件;∴总上可得“”是“∥”的充分不必要条件.故选:A.【点评】考查充分条件,必要条件,及充分不必要条件的概念,以及判断方法与过程,数量积的计算公式,向量共线的定义,向量夹角的定义.7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.C.D.2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC═该几何体最长棱的棱长为:故选:C.【点评】本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键8.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)5月1日12 350005月15日48 35600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升【分析】由表格信息,得到该车加了48升的汽油,跑了600千米,由此得到该车每100千米平均耗油量.【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.【点评】本题考查了学生对表格的理解以及对数据信息的处理能力.二、填空题9.(5分)复数i(1+i)的实部为﹣1.【分析】直接利用复数的乘法运算法则,求解即可.【解答】解:复数i(1+i)=﹣1+i,所求复数的实部为:﹣1.故答案为:﹣1.【点评】本题考查复数的基本运算,复数的基本概念,考查计算能力.10.(5分)2﹣3,,log25三个数中最大数的是log25.【分析】运用指数函数和对数函数的单调性,可得0<2﹣3<1,1<<2,log25>log24=2,即可得到最大数.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.【点评】本题考查数的大小比较,主要考查指数函数和对数函数的单调性的运用,属于基础题.11.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.【分析】由正弦定理可得sinB,再由三角形的边角关系,即可得到角B.【解答】解:由正弦定理可得,=,即有sinB===,由b<a,则B<A,可得B=.故答案为:.【点评】本题考查正弦定理的运用,同时考查三角形的边角关系,属于基础题.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.【分析】求得双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),可得b的方程,即可得到b的值.【解答】解:双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),由题意可得=2,解得b=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点的求法,属于基础题. 13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.【分析】利用线性规划的知识,通过平移即可求z的最大值.【解答】解:由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.即A(2,1).此时z的最大值为z=2×2+3×1=7,故答案为:7.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.【分析】(1)根据散点图1分析甲乙两人所在的位置的纵坐标确定总成绩名次;(2)根据散点图2,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成绩名次大于数学成绩名次,反之小于.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知,两个图中,同一个人的总成绩是不会变的.从第二个图看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在左边的图中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.【点评】本题考查了对散点图的认识;属于基础题.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.【分析】(1)由三角函数恒等变换化简函数解析式可得f(x)=2sin(x+)﹣,由三角函数的周期性及其求法即可得解;(2)由x∈[0,],可求范围x+∈[,π],即可求得f(x)的取值范围,即可得解.【解答】解:(1)∵f(x)=sinx﹣2sin2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.16.(13分)已知等差数列{an}满足a1+a2=10,a4﹣a3=2(1)求{an}的通项公式;(2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?【分析】(I)由a4﹣a3=2,可求公差d,然后由a1+a2=10,可求a1,结合等差数列的通项公式可求(II)由b2=a3=8,b3=a7=16,可求等比数列的首项及公比,代入等比数列的通项公式可求b6,结合(I)可求【解答】解:(I)设等差数列{an}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴an=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{bn}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴=128,而128=2n+2∴n=63∴b6与数列{an}中的第63项相等【点评】本题主要考查了等差数列与等比数列通项公式的简单应用,属于对基本公式应用的考查,试题比较容易.17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √× √√217 × √× √200 √√√×300 √× √×85 √× × ×98 × √× ×(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.【点评】本题主要考查古典概率、互斥事件的概率加法公式的应用,属于基础题.18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【分析】(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,∴S△VAB=,∵OC⊥平面VAB,∴VC﹣VAB=•S△VAB=,∴VV﹣ABC=VC﹣VAB=.【点评】本题考查线面平行的判定,考查平面与平面垂直的判定,考查体积的计算,正确运用线面平行、平面与平面垂直的判定定理是关键.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【分析】(1)利用f'(x)≥0或f'(x)≤0求得函数的单调区间并能求出极值;(2)利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.【解答】解:(1)由f(x)=f'(x)=x﹣由f'(x)=0解得x=f(x)与f'(x)在区间(0,+∞)上的情况如下:X (0,)() f'(x)﹣ 0 +f(x)↓↑所以,f(x)的单调递增区间为(),单调递减区间为(0,);f(x)在x=处的极小值为f()=,无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x=是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【点评】本题考查利用函数的导数求单调区间和导数的综合应用,在高考中属于常见题型.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C 交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【分析】(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可. 【解答】解:(1)∵椭圆C:x2+3y2=3,∴椭圆C的标准方程为:+y2=1,∴a=,b=1,c=,∴椭圆C的离心率e==;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y1),B(1,﹣y1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y1)(x﹣2),令x=3,得M(3,2﹣y1),∴直线BM的斜率kBM==1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知kBM=1,又∵直线DE的斜率kDE==1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x1,y1),B(x2,y2),则直线AE的方程为y﹣1=(x﹣2),令x=3,则点M(3,),∴直线BM的斜率kBM=,联立,得(1+3k2)x2﹣6k2x+3k2﹣3=0,由韦达定理,得x1+x2=,x1x2=,∵kBM﹣1====0,∴kBM=1=kDE,即BM∥DE;综上所述,直线BM与直线DE平行.【点评】本题是一道直线与椭圆的综合题,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷文科001

高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷文科001

高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2iB.2iC.﹣2D.23.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3B.﹣1C.1D.34.(5分)已知cosx=,则cos2x=()A.﹣B.C.﹣D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3B.x>4C.x≤4D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2B.4C.6D.810.(5分)若函数exf(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2﹣xB.f(x)=x2C.f(x)=3﹣xD.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x∈[﹣3,0]时,f(x)=6﹣x,则f(919)=.15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=﹣6,S△ABC=3,求A和a.18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.19.(12分)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{an}通项公式;(2){bn} 为各项非零的等差数列,其前n项和为Sn,已知S2n+1=bnbn+1,求数列的前n项和Tn.20.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF 的最小值.高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

高考数学高三模拟试卷试题压轴押题全国统一高考数学试卷文科全国卷Ⅰ

高考数学高三模拟试卷试题压轴押题全国统一高考数学试卷文科全国卷Ⅰ

高考数学高三模拟试卷试题压轴押题全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A.B.C.D.2.(5分)函数y=+的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}3.(5分)(1+)5的展开式中x2的系数()A.10B.5C.D.14.(5分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°5.(5分)在△ABC中,=,=.若点D满足=2,则=()A.B.C.D.6.(5分)y=(sinx﹣cosx)2﹣1是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数7.(5分)已知等比数列{an}满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.2438.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2xC.e2x+1D.e2x+29.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1B.a2+b2≥1C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.12.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,则点A到△BCD所在平面的距离等于.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)在数列{an}中,a1=1,an+1=2an+2n.(Ⅰ)设bn=.证明:数列{bn}是等差数列;(Ⅱ)求数列{an}的前n项和Sn.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.22.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.2.(5分)函数y=+的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】保证两个根式都有意义的自变量x的集合为函数的定义域.【解答】解:要使原函数有意义,则需,解得0≤x≤1,所以,原函数定义域为[0,1].故选:D.【点评】本题考查了函数定义域的求法,求解函数的定义域,是求使的构成函数解析式的各个部分都有意义的自变量x的取值集合.3.(5分)(1+)5的展开式中x2的系数()A.10B.5C.D.1【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出展开式中x2的系数【解答】解:,故选:C.【点评】本题主要考查了利用待定系数法或生成法求二项式中指定项.4.(5分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k=y′|x=1,再结合正切函数的值求出角α的值即可.【解答】解:y′=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选:B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.5.(5分)在△ABC中,=,=.若点D满足=2,则=()A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的6.(5分)y=(sinx﹣cosx)2﹣1是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【考点】GG:同角三角函数间的基本关系.【分析】把三角函数式整理,平方展开,合并同类项,逆用正弦的二倍角公式,得到y=Asin(ωx+φ)的形式,这样就可以进行三角函数性质的运算.【解答】解:∵y=(sinx﹣cosx)2﹣1=1﹣2sinxcosx﹣1=﹣sin2x,∴T=π且为奇函数,故选:D.【点评】同角三角函数的基本关系式揭示了同一个角的六种三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.单在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.7.(5分)已知等比数列{an}满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243【考点】87:等比数列的性质.【分析】由a1+a2=3,a2+a3=6的关系求得q,进而求得a1,再由等比数列通项公式求解.【解答】解:由a2+a3=q(a1+a2)=3q=6,∴q=2,∴a1(1+q)=3,∴a1=1,∴a7=26=64.故选:A.【点评】本题主要考查了等比数列的通项及整体运算.8.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2xC.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(ey﹣1)2=e2y﹣2,改写为:y=e2x﹣2 ∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.9.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,BF=1,B1F=A1S=,AF=3,在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种【考点】D4:排列及排列数公式.【专题】16:压轴题.【分析】填好第一行和第一列,其他的行和列就确定,因此只要选好第一行的顺序再确定第一列的顺序,就可以得到符合要求的排列.【解答】解:填好第一行和第一列,其他的行和列就确定,∴A33A22=12,故选:B.【点评】排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为9.【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x ﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x ﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e=.【考点】K2:椭圆的定义.【专题】11:计算题;16:压轴题.【分析】令AB=4,椭圆的c可得,AC=3,BC=5依据椭圆定义求得a,则离心率可得.【解答】解:令AB=4,则AC=3,BC=5则2c=4,∴c=2,2a=3+5=8∴a=4,∴e=故答案为.【点评】本题主要考查了椭圆的定义.要熟练掌握椭圆的第一和第二定义.16.(5分)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,则点A到△BCD所在平面的距离等于.【考点】MJ:二面角的平面角及求法;MK:点、线、面间的距离计算.【专题】11:计算题;16:压轴题.【分析】本题考查了立体几何中的折叠问题,及定义法求二面角和点到平面的距离,我们由已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD ﹣C为120°,及菱形的性质:对角线互相垂直,我们易得∴∠AOC即为二面角A﹣BD﹣C的平面角,解△AOC后,OC边的高即为A点到平面BCD的距离.【解答】解:已知如下图所示:设AC∩BD=O,则AO⊥BD,CO⊥BD,∴∠AOC即为二面角A﹣BD﹣C的平面角∴∠AOC=120°,且AO=1,∴d=1×sin60°=故答案为:【点评】根据二面角的大小解三角形,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AOC为二面角A﹣BD﹣C的平面角,通过解∠AOC所在的三角形求得∠AOC.其解题过程为:作∠AOC→证∠AOC是二面角的平面角→利用∠AOC解三角形AOC,简记为“作、证、算”.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.【考点】HR:余弦定理.【专题】11:计算题.【分析】(I)由图及已知作CD垂直于AB,在直角三角形BDC中求BC的长.(II)由面积公式解出边长c,再由余弦定理解出边长b,求三边的和即周长.【解答】解:(I)过C作CD⊥AB于D,则由CD=bsinA=4,BD=acosB=3∴在Rt△BCD中,a=BC==5(II)由面积公式得S=×AB×CD=×AB×4=10得AB=5又acosB=3,得cosB=由余弦定理得:b===2△ABC的周长l=5+5+2=10+2答:(I)a=5;(II)l=10+2【点评】本题主要考查了射影定理及余弦定理.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)在数列{an}中,a1=1,an+1=2an+2n.(Ⅰ)设bn=.证明:数列{bn}是等差数列;(Ⅱ)求数列{an}的前n项和Sn.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;14:证明题.【分析】(1)由an+1=2an+2n构造可得即数列{bn}为等差数列(2)由(1)可求=n,从而可得an=n•2n﹣1 利用错位相减求数列{an}的和【解答】解:由an+1=2an+2n.两边同除以2n得∴,即bn+1﹣bn=1∴{bn}以1为首项,1为公差的等差数列(2)由(1)得∴an=n•2n﹣1Sn=20+2×21+3×22+…+n•2n﹣12Sn=21+2×22+…+(n﹣1)•2n﹣1+n•2n∴﹣Sn=20+21+22+…+2n﹣1﹣n•2n=∴Sn=(n﹣1)•2n+1【点评】本题考查利用构造法构造特殊的等差等比数列及错位相减求数列的和,构造法求数列的通项及错位相减求数列的和是数列部分的重点及热点,要注意该方法的掌握.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.【考点】C5:互斥事件的概率加法公式.【专题】11:计算题;35:转化思想.【分析】(解法一)主要依乙所验的次数分类,并求出每种情况下被验中的概率,再求甲种方案的次数不少于乙种次数的概率;(解法二)先求所求事件的对立事件即甲的次数小于乙的次数,再求出它包含的两个事件“甲进行的一次即验出了和甲进行了两次,乙进行了3次”的概率,再代入对立事件的概率公式求解.【解答】解:(解法一):主要依乙所验的次数分类:若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:(也可以用)②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次验中没有,均可以在第二次结束)()∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为:∴在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(解法二):设A为甲的次数不小于乙的次数,则表示甲的次数小于乙的次数,则只有两种情况,甲进行的一次即验出了和甲进行了两次,乙进行了3次.则设A1,A2分别表示甲在第一次、二次验出,并设乙在三次验出为B∴∴【点评】本题考查了用计数原理来求事件的概率,并且所求的事件遇过于复杂的,要主动去分析和应用对立事件来处理.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.22.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot (∠AOB)=﹣2,∴AB的直线方程为 y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

高考数学高三模拟试卷试题压轴押题第一学期期末练习文科

高考数学高三模拟试卷试题压轴押题第一学期期末练习文科

高考数学高三模拟试卷试题压轴押题第一学期期末练习(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.函数0.5()log (1)f x x =-的定义域为(A )(1,)-+∞(B )(1,)+∞(C )(0,)+∞(D )(,0)-∞ 2.在复平面内,复数(1i)(2i)z =+-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.“1x =”是“210x -=”的(A )充分必要条件 (B )必要而不充分条件 (C )充分而不必要条件 (D )既不充分也不必要条件 4.已知向量(3,-4)a =,(,)b x y =,若a //b ,则(A )340x y -=(B )340x y +=(C )430x y +=(D )430x y -=5.已知圆O :221x y +=,直线l 过点(2,0),若直线l 上任意一点到圆心距离的最小值等于圆的半径,则直线l 的斜率为 (A)±B )3±(C)(D )1± 6. 函数()=sin2cos 2f x x x -的一个单调递增区间是 (A )3[,]44ππ-(B )3[,]44ππ-(C )3[,]88ππ-(D )3[,]88ππ- 7.如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是椭圆,那么这个椭圆的离心率是(A )12(B )14(C)2(D)28. 某地实行阶梯电价,以日历年(每年1月1日至12月31日)为周期执行居民阶梯电价,即:一户居民用户全年不超过2880度(1度=千瓦时)的电量,执行第一档电价标准,每度电0.4883元;全年超过2880度至4800度之间的电量,执行第二档电价标准,每度电0.5383元;全年超过4800度以上的电量,执行第三档电价标准,每度电0.7883元.下面是关于阶梯电价的图形表示,其中正确的有① ②③参考数据:0.4883元/度⨯2880度=1406.30元,0.5383元/度⨯(48002880)度+1406.30元=2439.84元.(A) ①② (B) ②③ (C) ①③ (D)①②③第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

高考数学高三模拟试卷试题压轴押题高三第一次统一练习数学试卷文科

高考数学高三模拟试卷试题压轴押题高三第一次统一练习数学试卷文科

高考数学高三模拟试卷试题压轴押题高三第一次统一练习数学试卷(文科) 一、选择题.(共8小题,每小题5分,共40分.在每小题所列出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}{}2320,2,1,1,2A x x x B =-+==--,则=⋂B A A.{}2,1--B.{}1,2-C.{}1,2D.{}2,1,1,2--2.下列函数中,既是奇函数又在区间()0,+∞上单调递减的是A.22y x =-+B.1y x =C.2x y -=D.ln y x =3.在复平面内,复数()212i +对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限 4.当5n =时,执行如图所示的程序框图,输出的S 的值等于 A.2 B.4 C.75.若441x y +=,则x y +的取值范围是 A.[]0,1 B.[]1,0- C.[)1,-+∞ D.(],1-∞-6.函数()sin y x ϕ=+的图像关于y 轴对称的 充分必要条件是 A.2πϕ=B.ϕπ=C.,2k k πϕπ=+∈Z D.2,2k k πϕπ=+∈Z7.已知无穷数列{}n a 是等差数列,公差为d ,前n 项和为n S ,则A.当首项10,0a d ><时,数列{}n a 是递减数列且n S 有最大值B.当首项10,0a d <<时,数列{}n a 是递减数列且n S 有最小值C.当首项10,0a d >>时,数列{}n a 是递增数列且n S 有最大值D.当首项10,0a d <>时,数列{}n a 是递减数列且n S 有最大值8.某桶装水运营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5设在进价基础上增加x 元后,日均销售利润为y 元,且0y ax bx c a =++≠.该经营部要想获得最大利润,每桶水在进价的基础上应增加 A.3元 B.4元 C.5元 D.6元二、填空题(本大题共6小题,每小题5分,共30分)9.双曲线2214x y m-=的离心率为2,则m =,其渐近线方程为.10.不等式组0,20,30x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩所表示平面区域的面积为.11.设向量()()3,1,2,2a b ==-,若()()a b a b λλ+⊥-,则实数λ=.12.已知函数()3269f x x x x =-+,则()f x 在闭区间[]1,5-上的最小值为,最大值为. 13.已知直线:l y =,点(),P x y 是圆()2221x y -+=上的动点,则点P 到直线l 的距离的最小值为.14.已知函数()()2sin 0,6f x x x πωω⎛⎫=+>∈ ⎪⎝⎭R .又()()122,0f x f x =-=且12x x -的最小值等于π,则ω的值为. 三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分13分)设数列{}n a 满足:111,3,*n n a a a n +==+∈N . (I)求{}n a 的通项公式及前n 项和n S ;(II)已知{}n b 是等比数列,且12468,b a b a S ==+.求数列{}n b 的前n 项和. 16.(本小题满分13分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos 3b B A ===, B 为钝角.. (I)求a 的值; (II)求cos C 的值. 17.(本小题满分14分)如图(1),在Rt ABC ∆中,90,3,6,,C BC AC D E ∠===分别是,AC AB 上的点,且//,2DE BC DE =.将ADE ∆沿DE 折起到A DE '∆的位置,使A C CD '⊥,如图(2).(I)求证://DE 平面A BC '; (II)求证:A C BE '⊥;(III)线段A D '上是否存在点F ,使平面CFE A DE '⊥平面.若存在,求出DF 的长;若不存在,请说明理由. 18.(本小题满分13分)某市调研机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:(I)若所抽调的50名市民中,收入在[)35,45的有15名,求,,a b c 的值,并完成频率分布直方图;(II)若从收入(单位:百元)在[)55,65的被调查者中随机选取两人进行追踪调查,求选中的2人至少有1人不赞成“楼市限购令”的概率.19.(本小题满分14分) 已知椭圆22:416C x y +=. (I)求椭圆C 的离心率;(II)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y+=的位置关系. 20.(本小题满分13分)已知函数()22ln f x a x ax x =+-. (I)当0a >时,求函数()f x 的单调区间;(II)设()()22g x a x f x =-,且函数()g x 在点1x =处的切线为l ,直线//l l ',且l '在y 轴上的截距为1,求证:无论a 取任何实数,函数()g x 的图像恒在直线l '的下方;(III)已知点()()()()001,1,,A g Q x g x ,且当01x >时,直线QA 的斜率恒小于2,求实数a 的取值范围.顺义区高三第一次统一练习 数学试卷答案(文科)一、CBBDDCAD 二、9.11,2y x =± 10.3211.(百元)12.16,20-1 14.12三、15.解:(I)因为13,*n n a a n +=+∈N ,所以13,*n n a a n +-=∈N ,所以数列{}n a 是以11a =为首项,公差3d =的等差数列, 所以()()1111332n a a n d n n =+-=+-⨯=-,............... ...........................................4分()()12132312222n n n a a n n S n n ++-===-................ ...........................................6分 (II)由(I)可知32n a n =-,所以()()128881224,9222n a a a S ++====, 所以4681692108b a S =+=+= ................ ...........................................9分设等比数列{}n b 的公比为q , 则341108274b q b ===, 所以3q =, ............... ...........................................11分所以数列{}n b 的前n 项和()41323213n n n B -==⨯--................ ...........................................12分16.解:(I)在ABC ∆中,因为cos A =,所以sin 3A ===. ...........................................3分 由正弦定理,sin sin a b A B =得sin 3sin b A a B ===. ............... ...........................................6分 (II)因为B 为钝角,所以,cos 3B ===-. ...........................................8分由(I)可知,sin A =,又sin cos B A == 所以()()cos cos cos C A B A B π=-+=-+⎡⎤⎣⎦ ...........................................10分............... ...........................................13分17.(I)证明:因为,D E 分别为,AC AB 上的点,且//DE BC ,又因为DE A BC '⊄平面,所以//DE 平面A BC '................ ...........................................3分 (II)证明:因为90,//C DE BC ∠=,所以,DE CD DE AD ⊥⊥,由题意可知,DE A D '⊥, ............... ...........................................4分 又A D CD D '⋂=,所以DE A CD '⊥平面, ............... ...........................................5分 所以BC A CD '⊥平面, ............... ...........................................6分 所以BC A C '⊥, ............... ...........................................7分 又A C CD '⊥,且CD BC C ⋂=,所以A C BCDE '⊥平面, ............... ...........................................8分 又BE BCDE ⊂平面,所以A C BE '⊥. ............... ...........................................9分 (III)解:线段A D '上存在点F ,使平面平面CFE A DE '⊥.理由如下:因为A C CD '⊥,所以,在Rt A CD '∆中,过点C 作CF A D '⊥于F , 由(II)可知,平面DE A CD '⊥,又平面CF A CD '⊂ 所以DE CF ⊥,又A D DE D '⋂=, 所以平面CF A DE '⊥,... ...........................................12分因为CF CEF ⊂平面,所以平面平面CFE A DE '⊥,故线段A D '上存在点F ,使平面平面CFE A DE '⊥. ................................13分 如图(1),因为DE BC ,所以,DE AD BC AC =,即236AD=, 所以,4,2AD CD ==.所以,如图(2),在'Rt ACD ∆中, 所以,'060A DC ∠=,在Rt CFD ∆中,1DF =............... ...........................................14分 18.解:(I)由频率分布表得0.10.20.10.11a b +++++=,即0.5a b +=.因为所抽调的50名市民中,收入(单位:百元)在[)35,45的有15名,所以150.350b ==, 所以0.2,0.25010a c ==⨯=, 所以0.2,0.3,10a b c ===, 且频率分布直方图如下:............... ...........................................4分(II)设收入(单位:百元)在[)55,65的被调查者中赞成的分别是123,,A A A ,不赞成的C分别是12,B B ,事件M :选中的2人中至少有1人不赞成“楼市限购令”,则从收入(单位:百元)在[)55,65的被调查者中,任选2名的基本事件共有10个:()()()()12131112,,,,,,,A A A A A B A B , ()()()232122,,,,,A A A B A B ,()()3132,,,A B A B ,()12,B B , ............... ...........................................10分事件M 包含的结果是()()1112,,,A B A B ,()()2122,,,A B A B ,()()3132,,,A B A B ,()12,B B 共7个, ............... ...........................................11分所以()710P M =, ............... ...........................................12分 故所求概率为710. ............... ...........................................13分19.解:(I)由题意,椭圆C 的标准方程为221164x y +=, 所以2222216,4,12从而a b c a b ===-=,因此4,a c ==故椭圆C 的离心率c e a ==. ............... ...........................................4分 (II)由221,416y kx x y =+⎧⎨+=⎩得()22148120k x kx ++-=, 由题意可知0∆>. ............... ...........................................5分设点,E F 的坐标分别为()()1122,,,x y x y ,EF 的中点M 的坐标为(),M M x y , 则1224214M x x k x k +==-+,1221214My y y k +==+................ .....................................7分 因为BEF ∆是以EF 为底边,B 为顶点的等腰三角形, 所以BM EF ⊥,因此BM 的斜率1BM k k=-. ............... ...........................................8分又点B 的坐标为()0,2-,所以222122381440414M BM M y k k k k x k k ++++===---+,............... ....................................10分 即()238104k k k k+-=-≠, 亦即218k =,所以4k =±, ............... ...........................................12分故EF的方程为440y -+=. ............... ...........................................13分又圆2212x y +=的圆心()0,0O 到直线EF的距离为32d ==>, 所以直线EF 与圆相离................ ...........................................14分 20.(I)解:()22ln f x a x ax x =+-,()()()()22212112120ax ax a x ax f x a x a x x x x+-+-'=+-==>, ............... ...........................................2 分 所以,0a >时,()f x 与()f x '的变化情况如下:因此,函数()f x 的单调递增区间为1,2a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为10,2a ⎛⎫⎪⎝⎭................ ...........................................4分 (II)证明:()()22ln g x a x f x x ax =-=-,()1g x a x'=-, 所以()11g a '=-, 所以l 的斜率1l k a =-.因为//l l ',且l '在y 轴上的截距为1,所以直线l '的方程为()11y a x =-+................ ...........................................6分令()()()()11ln 10h x g x a x x x x =--+=-->⎡⎤⎣⎦,则无论a 取任何实数,函数()g x 的图像恒在直线l '的下方,等价于()()0,0h x a x <∀∈∀>R , ............... ...........................................7分而()111xh x x x-'=-=.当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<, 所以函数()h x 的()0,1上单调递增,在()1,+∞上单调递减, 从而当1x =时,()h x 取得极大值()12h =-,即在()0,+∞上,()h x 取得最大值()12h =-,.....................................................8分 所以()()20,0h x a x ≤-<∀∈∀>R ,因此,无论a 取任何实数,函数()g x 的图像恒在直线l '的下方. ............... ...........................................9分 (III)因为()()0001,,,ln A a Q x x ax --,所以00000ln ln 11QA x ax a x k a x x -+==---,所以当01x >时,0ln 21x a x -<-, 即()()00ln 210x a x -+-<恒成立................ ...........................................10分 令()()()()ln 211r x x a x x =-+->,则()()12r x a x'=-+, 因为1x >,所以101x<<.(i)当2a ≤-时,20a +≤,此时()0r x '>,所以()r x 在()1,+∞上单调递增,有()()10r x r >=不满足题意; (ii)当21a -<<-时,021a <+<,所以当11,2x a ⎛⎫∈ ⎪+⎝⎭时,()0r x '>,当1,2x a ⎛⎫∈+∞⎪+⎝⎭时,()0r x '<, 所以至少存在11,2t a ⎛⎫∈ ⎪+⎝⎭,使得()()10r t r >=不满足题意;(iii)当1a ≥-时,21a +≥,此时()0r x '<,所以()r x 在()1,+∞上单调递减,()()10r x r <=,满足题意. 综上可得1a ≥-,故所求实数a 的取值范围是[)1,-+∞. ............... (13)分高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试一文科数学

高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试一文科数学

高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试(一)文科数学【题型】选择题 【题文】 函数()f x =A .1+∞(,)B .[1+∞,)C .0+∞(,)D .-1∞(,)【答案】A 【解析】 【题文】已知i 为虚数单位,复数1i 1z =-的模为A .12B .2CD .2【答案】B 【解析】 【题文】设x R ∈,则“220x x +->”是“1x >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B 【解析】 【题文】已知向量(1,2)a =,(1,0)b =,(3,4)c =.若λ为实数,()//a b c λ+,则λ等于A .14B .12 C .1D .2【答案】B 【解析】 【题文】某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积A .20π3B .6π C .16π3D .10π3【答案】D 【解析】 【题文】执行如图所示的程序框图,输出的S 值为A .2B .4C .8D .16【答案】C 【解析】 【题文】ABC ∆的内角,,A B C 所对的边分别为,,a b c .若2B A =,1a =,b =则c 等于A ..2C .D .1【答案】B 【解析】 【题文】设点O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若=4PF ,则POF ∆的面积为A .1BC .2【答案】C 【解析】 【题文】 在长为12cm 的线段AB 上任取一点C .现作一矩形,其邻边长分别等于线段,AC BC 的长,则该矩形面积大于220cm 的概率为 A .16B .13C .23D .45【答案】C 【解析】 【题文】已知()g x 为三次函数cx ax x a x f ++=233)(的导函数,则函数()f x 与()g x 的图象可能是 【答案】D 【解析】 【结束】 【题型】填空题 【题文】在等差数列{}n a 中,已知1694=+a a ,则12S =**** .【答案】96 【解析】 【题文】(25PCB ∠=︒设实数,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则23z x y =-的最小值是**** .【答案】6 【解析】 【题文】函数)(x f 的定义域为R ,已知)1(+x f 为奇函数,当1x <时,12)(2+-=x x x f ,那么当1x >时,)(x f 的递减区间是**** .【答案】7,4⎛⎫+∞⎪⎝⎭【解析】 【题文】(坐标系与参数方程选做题)直角坐标系中,已知曲线C 的参数方程为cos 1sin x y θθ=+⎧⎨=⎩(θ为参数), 则点()4,4P 与曲线C 上的点的最远距离是**** . 【答案】6 【解析】【题文】(几何证明选讲选做题)如图所示,AB 是半圆O 的直径,C 、D 是半圆上不同的两点,半圆O 的切线PC 交AB 的延长线于点P ,若,则=∠ADC **** . 【答案】0115【解析】 【结束】 【题型】解答题 【题文】已知函数()sin cos f x a x b x =+的图象经过点,03π⎛⎫ ⎪⎝⎭和,12π⎛⎫⎪⎝⎭. 【小题1】求实数a 和b 的值; 【小题2】设,0,2παβ⎡⎤∈⎢⎥⎣⎦,56()65f πα+=,410()313f πβ+=-.求sin()αβ-的值. 【答案】【小题1】由题可列的:1021b a +=⎪=⎩解得:1,a b ==【小题2】由题可得()sin 2sin()3f x x x x π==-又412,0,,sin ,cos 2513παβαβ⎡⎤∈∴==⎢⎥⎣⎦【解析】 【小题1】 【小题2】 【题文】某学校高二年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生. 【小题1】【小题2】在喜欢运动的女生中调查她们的运动时间,发现她们的运动 时间介于30分钟到90分钟之间, 右图是测量结果的频率分布直 方图,若从区间段)50,40[和)70,60[的所有女生中随机抽取两名女生,求她们的运动时 间在同一区间段的概率.【答案】【小题1】根据分层抽样的定义,知抽取男生130人,女生70人, 【小题2】由直方图知在[)70,60内的人数为4人,设为,,,a b c d . 在[)50,40的人数为2人,设为,A B .从这6人中任选2人有AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd 共15种情况 若[)70,60,∈y x 时,有,,,,,ab ac ad bc bd cd 共六种情况. 若[)50,40,∈y x 时,有AB 一种情况.事件A:“她们在同一区间段”所包含的基本事件个数有617+=种, 故157)P(A =答:两名女生的运动时间在同一区间段的概率为157. 【解析】 【小题1】 【小题2】【题文】在直角梯形ABCD 中(如图1),90ADC∠=︒,AB CD //,122AD CD AB ===, 点E为AC 的中点,将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -(如图2).【小题1】在CD 上找一点F ,使//AD 平面EFB ,并说明理由; 【小题2】求证:DA BC ⊥;【小题3】求几何体D ABC -的体积.【答案】【小题1】 取CD 的中点F ,连结EF ,BF 在ACD ∆中,E ,F 分别为AC ,DC 的中点∴EF 为ACD ∆的中位线EF ⊆平面EFBAD ⊄平面EFB∴//AD 平面EFB【小题2】在图1中,可得ACBC ==,从而222AC BC AB +=,∴AC BC ⊥……6分∵平面ADC ⊥平面ABC ,面ADC面ABCAC =,BC ⊂面ABC∴ BC ⊥平面ADC∴又AD ⊂面ADC ∴BC⊥DAACDEFACD图2EBACD图1E【小题3】090ADC ∠=AD DC ∴⊥由(2)知BC ⊥平面ADC ,所以点B 到平面ADC 的距离为BC =【解析】 【小题1】 【小题2】 【小题3】 【题文】已知各项都不相等的等差数列{}n a 的前六项和为60,且6a 为1a 和21a 的等比中项.【小题1】求数列{}n a 的通项公式n a ;【小题2】若数列{}n b 满足1n n n b b a +-=*()n N ∈,且13b =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】【小题1】设等差数列}{n a 的首项为1a ,公差为d ,则660S =,即,601561=+d a ①26121a a a =,即2111(5)(20)a d a a d +=+②①②联立,解得2,51==d a32+=∴n a n .【小题2】由n n n a b b =-+1).,2(11*--∈≥=-∴N n n a b b n n n【解析】【小题1】 【小题2】 【题文】已知椭圆1C :22221x y a b +=(0)a b >>的离心率为2e =,且与双曲线2C :22221+1x y b b -=有共同焦点.【小题1】求椭圆1C 的方程;【小题2】若直线l 为椭圆1C 的切线,它与坐标轴围成的三角形的面积为S ,求S 的最小值以及此时l 的方程;【答案】【小题1】由e =c a =2234c a =22234a b a -∴=224a b ∴=①又2221c b =+即22221a b b -=+②联立①②解得:224,1a b ==∴椭圆1C 的方程为:2214x y +=【小题2】l 与椭圆相切且与两坐标轴相交,∴l 的斜率必存在,且0K ≠设l 的直线方程为:y kx m =+联立2214y kx mx y =+⎧⎪⎨+=⎪⎩ ,消去y 整理得:2221()2104k x kmx m +++-=2221(2)4()(1)04km k m ∆=-+-=,即2241m k =+④又直线l 与两坐标轴的交点分别为-,0)mk(,(0,)m∴直线l 与坐标轴围成的三角形的面积21-22m m S m k k ==⑤ 联立④、⑤得 2241122222m k S k k k k+===+≥当且仅当112,22k k k =∴=时取等号 ∴直线l 的方程为:12y x =12y x =, 12y x =-12y x =--【解析】【小题1】 【小题2】 【题文】已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ 【小题1】若2a =,求函数()f x 的图像在点1x =处的切线方程; 【小题2】若在[]1,e (e 2.71...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围. 【答案】【小题1】当2a =时,()2ln f x x x =-,2()1f x x'=-, 切点(1,1),斜率'(1)1kf ==-∴ 切线为 1(1)(1)y x -=--即 20x y +-=【小题2】在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即在[]1,e 上存在一点0x ,使得000()()()0h x f x g x =-<,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ①当1e a +≥,即e 1a ≥-时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0e ah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ②当11a +≤,即0a ≤时,()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+<故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立.综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-.【解析】 【小题1】 【小题2】 【结束】高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学高三模拟试卷试题压轴押题试卷文科001

高考数学高三模拟试卷试题压轴押题试卷文科001

高考数学高三模拟试卷试题压轴押题试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x2+2x=0,x∈R},T={x|x2﹣2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{﹣2,0} D.{﹣2,0,2}2.(5分)函数f(x)=的定义域为()A.(﹣1,+∞)B.[﹣1,+∞) C.(﹣1,1)∪(1,+∞)D.[﹣1,1)∪(1,+∞)3.(5分)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2 B.3 C.4 D.54.(5分)已知sin(+α)=,cosα=()A. B. C.D.5.(5分)执行如图所示的程序框图,若输入n的值为3,则输出s的值是()A.1 B.2 C.4 D.76.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.D.17.(5分)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A. B.x+y+1=0 C.x+y﹣1=0 D.8.(5分)设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β9.(5分)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A. B.C. D.10.(5分)设是已知的平面向量且,关于向量的分解,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数λ和μ,使;③给定单位向量和正数μ,总存在单位向量和实数λ,使;④给定正数λ和μ,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共3小题.每小题5分,满分15分.(一)必做题(11~13题)11.(5分)设数列{an}是首项为1,公比为﹣2的等比数列,则a1+|a2|+a3+|a4|=.12.(5分)若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.13.(5分)已知变量x,y 满足约束条件,则z=x+y的最大值是.选做题(14、15题,考生只能从中选做一题)14.(5分)(坐标系与参数方程选做题)已知曲线C的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为.15.(几何证明选讲选做题)如图,在矩形ABCD 中,,BC=3,BE⊥AC,垂足为E,则ED=.四、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数.(1)求的值;(2)若,求.17.(13分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重[80,85)[85,90)[90,95)[95,100)量)频数(个) 5 10 20 15(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.18.(13分)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=.(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=时,求三棱锥F﹣DEG的体积VF﹣DEG.19.(14分)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=an+12﹣4n﹣1,n∈N*,且a2,a5,a14构成等比数列.(1)证明:a2=;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.20.(14分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.21.(14分)设函数f(x)=x3﹣kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,﹣k]上的最小值m和最大值M.高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x2+2x=0,x∈R},T={x|x2﹣2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{﹣2,0} D.{﹣2,0,2}【分析】根据题意,分析可得,S、T分别表示二次方程的解集,化简S、T,进而求其交集可得答案.【解答】解:分析可得,S为方程x2+2x=0的解集,则S={x|x2+2x=0}={0,﹣2},T为方程x2﹣2x=0的解集,则T={x|x2﹣2x=0}={0,2},故集合S∩T={0},故选:A.【点评】本题考查集合的交集运算,首先分析集合的元素,可得集合的意义,再求集合的交集.2.(5分)函数f(x)=的定义域为()A.(﹣1,+∞)B.[﹣1,+∞) C.(﹣1,1)∪(1,+∞)D.[﹣1,1)∪(1,+∞)【分析】依题意可知要使函数有意义需要x+1>0且x﹣1≠0,进而可求得x的范围.【解答】解:要使函数有意义需,解得x>﹣1且x≠1.∴函数的定义域是(﹣1,1)∪(1,+∞).故选:C.【点评】本题主要考查对数函数的定义域及其求法,熟练解不等式组是基础,属于基础题.3.(5分)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2 B.3 C.4 D.5【分析】利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.【解答】解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选:D.【点评】熟练掌握复数的运算法则和模的计算公式是解题的关键.4.(5分)已知sin(+α)=,cosα=()A. B. C.D.【分析】已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.【解答】解:sin(+α)=sin(2π++α)=sin(+α)=cosα=.故选:C.【点评】此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.5.(5分)执行如图所示的程序框图,若输入n的值为3,则输出s的值是()A.1 B.2 C.4 D.7【分析】由已知中的程序框图及已知中输入3,可得:进入循环的条件为i≤3,即i=1,2,3.模拟程序的运行结果,即可得到输出的S值.【解答】解:当i=1时,S=1+1﹣1=1;当i=2时,S=1+2﹣1=2;当i=3时,S=2+3﹣1=4;当i=4时,退出循环,输出S=4;故选:C.【点评】本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.D.1【分析】由三视图可知:该几何体是一个三棱锥,其中PA⊥底面ABC,PA=2,AB⊥BC,AB=BC=1.据此即可得到体积.【解答】解:由三视图可知:该几何体是一个三棱锥,其中PA⊥底面ABC,PA=2,AB⊥BC,AB=BC=1.∴.因此V===.故选:B.【点评】由三视图正确恢复原几何体是解题的关键.7.(5分)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A. B.x+y+1=0 C.x+y﹣1=0 D.【分析】设所求的直线为l,根据直线l垂直于y=x+1,设l方程为y=﹣x+b,即x+y+b=0.根据直线l与圆x2+y2=1相切,得圆心0到直线l的距离等于1,由点到直线的距离公式建立关于b的方程,解之可得b=±,最后根据切点在第一象限即可得到满足题意直线的方程.【解答】解:设所求的直线为l,∵直线l垂直于直线y=x+1,可得直线l的斜率为k=﹣1∴设直线l方程为y=﹣x+b,即x+y﹣b=0∵直线l与圆x2+y2=1相切,∴圆心到直线的距离d=,解之得b=±当b=﹣时,可得切点坐标(﹣,﹣),切点在第三象限;当b=时,可得切点坐标(,),切点在第一象限;∵直线l与圆x2+y2=1的切点在第一象限,∴b=﹣不符合题意,可得b=,直线方程为x+y﹣=0故选:A.【点评】本题给出直线l垂直于已知直线且与单位圆相切于第一象限,求直线l的方程.着重考查了直线的方程、直线与直线位置关系和直线与圆的位置关系等知识,属于基础题.8.(5分)设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β【分析】根据线面平行的几何特征及面面平行的判定方法,可判断A;根据面面平行的判定方法及线面垂直的几何特征,可判断B;根据线面平行的性质定理,线面垂直及面面垂直的判定定理,可判断C;根据面面垂直及线面平行的几何特征,可判断D.【解答】解:若l∥α,l∥β,则平面α,β可能相交,此时交线与l平行,故A错误;若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得B正确;若l⊥α,l∥β,则存在直线m⊂β,使l∥m,则m⊥α,故此时α⊥β,故C错误;若α⊥β,l∥α,则l与β可能相交,可能平行,也可能线在面内,故D错误;故选:B.【点评】本题考查的知识点是空间中直线与直线的位置关系,直线与平面的位置关系及平面与平面之间的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.9.(5分)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A. B.C. D.【分析】由已知可知椭圆的焦点在x轴上,由焦点坐标得到c,再由离心率求出a,由b2=a2﹣c2求出b2,则椭圆的方程可求.【解答】解:由题意设椭圆的方程为.因为椭圆C的右焦点为F(1,0),所以c=1,又离心率等于,即,所以a=2,则b2=a2﹣c2=3.所以椭圆的方程为.故选:D.【点评】本题考查了椭圆的标准方程,考查了椭圆的简单性质,属中档题.10.(5分)设是已知的平面向量且,关于向量的分解,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数λ和μ,使;③给定单位向量和正数μ,总存在单位向量和实数λ,使;④给定正数λ和μ,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是()A.1 B.2 C.3 D.4【分析】选项①由向量加减的几何意义可得;选项②③均可由平面向量基本定理判断其正确性;选项④λ和μ为正数,这就使得向量不一定能用两个单位向量的组合表示出来.【解答】解:选项①,给定向量和,只需求得其向量差即为所求的向量,故总存在向量,使,故①正确;选项②,当向量,和在同一平面内且两两不共线时,向量,可作基底,由平面向量基本定理可知结论成立,故可知②正确;选项③,取=(4,4),μ=2,=(1,0),无论λ取何值,向量λ都平行于x轴,而向量μ的模恒等于2,要使成立,根据平行四边形法则,向量μ的纵坐标一定为4,故找不到这样的单位向量使等式成立,故③错误;选项④,因为λ和μ为正数,所以和代表与原向量同向的且有固定长度的向量,这就使得向量不一定能用两个单位向量的组合表示出来,故不一定能使成立,故④错误.故选:B.【点评】本题考查命题真假的判断与应用,涉及平面向量基本定理及其意义,属基础题.二、填空题:本大题共3小题.每小题5分,满分15分.(一)必做题(11~13题)11.(5分)设数列{an}是首项为1,公比为﹣2的等比数列,则a1+|a2|+a3+|a4|= 15.【分析】根据条件求得等比数列的通项公式,从而求得a1+|a2|+a3+|a4|的值.【解答】解:∵数列{an}是首项为1,公比为﹣2的等比数列,∴an=a1•qn﹣1=(﹣2)n﹣1,∴a1=1,a2=﹣2,a3=4,a4=﹣8,∴则a1+|a2|+a3+|a4|=1+2+4+8=15,故答案为15.【点评】本题主要考查等比数列的定义、通项公式,属于基础题.12.(5分)若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.【分析】先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k的值.【解答】解:由题意得,∵在点(1,a)处的切线平行于x轴,∴2a﹣1=0,得a=,故答案为:.【点评】本题考查了函数导数的几何意义应用,难度不大.13.(5分)已知变量x,y满足约束条件,则z=x+y的最大值是5.【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.【解答】解:画出可行域如图阴影部分,由得A(1,4)目标函数z=x+y可看做斜率为﹣1的动直线,其纵截距越大z越大,由图数形结合可得当动直线过点A(1,4)时,z最大=1+4=5.故答案为:5.【点评】本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题.选做题(14、15题,考生只能从中选做一题)14.(5分)(坐标系与参数方程选做题)已知曲线C的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为(θ为参数).【分析】首先把曲线的极坐标方程化为直角坐标方程,然后化直角坐标方程为参数方程.【解答】解:由曲线C的极坐标方程为ρ=2cosθ,得ρ2=2ρcosθ,即x2+y2﹣2x=0.化圆的方程为标准式,得(x﹣1)2+y2=1.令,得.所以曲线C的参数方程为.故答案为.【点评】本题考查了圆的参数方程,考查了极坐标与直角坐标的互化,解答此题的关键是熟记互化公式,是中档题.15.(几何证明选讲选做题)如图,在矩形ABCD中,,BC=3,BE⊥AC,垂足为E,则ED=.【分析】由矩形ABCD,得到三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,进而得到AB为AC的一半,利用直角三角形中直角边等于斜边的一半得到∠ACB=30°,且利用射影定理求出EC的长,在三角形ECD中,利用余弦定理即可求出ED 的长.【解答】解:∵矩形ABCD,∴∠ABC=90°,∴在Rt△ABC中,AB=,BC=3,根据勾股定理得:AC=2,∴AB=AC,即∠ACB=30°,EC==,∴∠ECD=60°,在△ECD中,CD=AB=,EC=,根据余弦定理得:ED2=EC2+CD2﹣2EC•CDcos∠ECD=+3﹣=,则ED=.故答案为:【点评】此题考查了余弦定理,勾股定理,直角三角形的性质,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.四、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数.(1)求的值;(2)若,求.【分析】(1)把x=直接代入函数解析式求解.(2)先由同角三角函数的基本关系求出sinθ的值,然后将x=θ﹣代入函数解析式,并利用两角和与差公式求得结果.【解答】解:(1)(2)∵,,∴.【点评】本题主要考查了特殊角的三角函数值的求解,考查了和差角公式的运用,属于知识的简单综合.17.(13分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:[80,85)[85,90)[90,95)[95,100)分组(重量)频数(个) 5 10 20 15(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【分析】(1)用苹果的重量在[90,95)的频数除以样本容量,即为所求.(2)根据重量在[80,85)的频数所占的比例,求得重量在[80,85)的苹果的个数.(3)用列举法求出所有的基本事件的个数,再求出满足条件的事件的个数,即可得到所求事件的概率.【解答】解:(1)苹果的重量在[90,95)的频率为.(2)重量在[80,85)的有个.(3)设这4个苹果中,重量在[80,85)段的有1个,编号为1.重量在[95,100)段的有3个,编号分别为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种.设任取2个,重量在[80,85)和[95,100)中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以.【点评】本题考查古典概型问题,用列举法计算可以列举出基本事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.本题还考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.18.(13分)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=.(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=时,求三棱锥F﹣DEG的体积VF﹣DEG.【分析】(1)在等边三角形ABC中,由AD=AE,可得,在折叠后的三棱锥A﹣BCF中也成立,故有DE∥BC,再根据直线和平面平行的判定定理证得DE∥平面BCF.(2)由条件证得AF⊥CF ①,且.在三棱锥A﹣BCF中,由,可得BC2=BF2+CF2,从而 CF⊥BF②,结合①②,证得CF⊥平面ABF.(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.再由,运算求得结果.【解答】解:(1)在等边三角形ABC中,AD=AE,∴,在折叠后的三棱锥A﹣BCF 中也成立,∴DE∥BC.又∵DE⊄平面BCF,BC⊂平面BCF,∴DE∥平面BCF.(2)在等边三角形ABC中,F是BC的中点,所以AF⊥BC,即AF⊥CF ①,且.∵在三棱锥A﹣BCF中,,∴BC2=BF2+CF2,∴CF⊥BF②.又∵BF∩AF=F,∴CF⊥平面ABF.(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.∴=.【点评】本题主要考查直线和平面平行的判定定理、直线和平面垂直的判定的定理的应用,用等体积法求三棱锥的体积,属于中档题.19.(14分)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=an+12﹣4n﹣1,n∈N*,且a2,a5,a14构成等比数列.(1)证明:a2=;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.【分析】(1)对于,令n=1即可证明;(2)利用,且,(n≥2),两式相减即可求出通项公式.(3)由(2)可得=.利用“裂项求和”即可证明.【解答】解:(1)当n=1时,,∵(2)当n≥2时,满足,且,∴,∴,∵an>0,∴an+1=an+2,∴当n≥2时,{an}是公差d=2的等差数列.∵a2,a5,a14构成等比数列,∴,,解得a2=3,由(1)可知,,∴a1=1∵a2﹣a1=3﹣1=2,∴{an}是首项a1=1,公差d=2的等差数列.∴数列{an}的通项公式an=2n﹣1.(3)由(2)可得式=.∴【点评】熟练掌握等差数列与等比数列的通项公式、“裂项求和”、通项与前n项和的关系an=Sn﹣Sn﹣1(n≥2)是解题的关键.20.(14分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.【分析】(1)利用焦点到直线l:x﹣y﹣2=0的距离建立关于变量c的方程,即可解得c,从而得出抛物线C的方程;(2)先设,,由(1)得到抛物线C的方程求导数,得到切线PA,PB的斜率,最后利用直线AB的斜率的不同表示形式,即可得出直线AB的方程;(3)根据抛物线的定义,有,,从而表示出|AF|•|BF|,再由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,将它表示成关于y0的二次函数的形式,从而即可求出|AF|•|BF|的最小值.【解答】解:(1)焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离,解得c=1,所以抛物线C的方程为x2=4y.(2)设,,由(1)得抛物线C的方程为,,所以切线PA,PB的斜率分别为,,所以PA:①PB:②联立①②可得点P的坐标为,即,,又因为切线PA的斜率为,整理得,直线AB的斜率,所以直线AB的方程为,整理得,即,因为点P(x0,y0)为直线l:x﹣y﹣2=0上的点,所以x0﹣y0﹣2=0,即y0=x0﹣2,所以直线AB的方程为x0x﹣2y﹣2y0=0.(3)根据抛物线的定义,有,,所以=,由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,所以=.所以当时,|AF|•|BF|的最小值为.【点评】本题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算能力,有一定的综合性.21.(14分)设函数f(x)=x3﹣kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,﹣k]上的最小值m和最大值M.【分析】(1)当k=1时,求出f′(x)=3x2﹣2x+1,判断△即可得到单调区间;(2)解法一:当k<0时,f′(x)=3x2﹣2kx+1,其开口向上,对称轴,且过(0,1).分△≤0和△>0即可得出其单调性,进而得到其最值.解法二:利用“作差法”比较:当k<0时,对∀x∈[k,﹣k],f(x)﹣f(k)及f(x)﹣f (﹣k).【解答】解:f′(x)=3x2﹣2kx+1(1)当k=1时f′(x)=3x2﹣2x+1,∵△=4﹣12=﹣8<0,∴f′(x)>0,f(x)在R上单调递增.(2)当k<0时,f′(x)=3x2﹣2kx+1,其开口向上,对称轴,且过(0,1)(i)当,即时,f′(x)≥0,f(x)在[k,﹣k]上单调递增,从而当x=k时,f(x)取得最小值m=f(k)=k,当x=﹣k时,f(x)取得最大值M=f(﹣k)=﹣k3﹣k3﹣k=﹣2k3﹣k.(ii)当,即时,令f′(x)=3x2﹣2kx+1=0解得:,注意到k<x2<x1<0,∴m=min{f(k),f(x1)},M=max{f(﹣k),f(x2)},∵,∴f(x)的最小值m=f(k)=k,∵,∴f(x)的最大值M=f(﹣k)=﹣2k3﹣k.综上所述,当k<0时,f(x)的最小值m=f(k)=k,最大值M=f(﹣k)=﹣2k3﹣k解法2:(2)当k<0时,对∀x∈[k,﹣k],都有f(x)﹣f(k)=x3﹣kx2+x﹣k3+k3﹣k=(x2+1)(x﹣k)≥0,故f(x)≥f(k).f(x)﹣f(﹣k)=x3﹣kx2+x+k3+k3+k=(x+k)(x2﹣2kx+2k2+1)=(x+k)[(x﹣k)2+k2+1]≤0,故f(x)≤f(﹣k),而 f(k)=k<0,f(﹣k)=﹣2k3﹣k>0.所以,f(x)min=f(k)=k.【点评】熟练掌握利用导数研究函数的单调性、二次函数的单调性、分类讨论思想方法、作差法比较两个数的大小等是解题的关键.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学高三模拟考试试卷压轴题高考数学模拟试卷(文科)一、选择题(每小题5分,共40分)1.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x﹣1)2+(y﹣1)2=22.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}3.(5分)下列函数中为偶函数的是()A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=2﹣x4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.(5分)执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.66.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.C.D.28.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)5月1日12 350005月15日48 35600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升二、填空题9.(5分)复数i(1+i)的实部为.10.(5分)2﹣3,,log25三个数中最大数的是.11.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.16.(13分)已知等差数列{an}满足a1+a2=10,a4﹣a3=2(1)求{an}的通项公式;(2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √× √√217 × √× √200 √√√×300 √× √×85 √× × ×98 × √× ×(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C 交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.高考数学模拟试卷(文科) (2)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x﹣1)2+(y﹣1)2=2【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.2.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.【点评】本题考查集合的交集的运算法则,考查计算能力.3.(5分)下列函数中为偶函数的是()A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=2﹣x【分析】首先从定义域上排除选项C,然后在其他选项中判断﹣x与x的函数值关系,相等的就是偶函数.【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sinx;是奇函数;对于B,(﹣x)2cos(﹣x)=x2cosx;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣x)=2x≠2﹣x,2x≠﹣2﹣x;是非奇非偶的函数;故选:B.【点评】本题考查了函数奇偶性的判断;首先判断定义域是否关于原点对称;如果不对称,函数是非奇非偶的函数;如果对称,再判断f(﹣x)与f(x)关系,相等是偶函数,相反是奇函数.4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.300【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.【点评】本题考查分层抽样,考查学生的计算能力,比较基础.5.(5分)执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a <,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由便可得到夹角为0,从而得到∥,而∥并不能得到夹角为0,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.【解答】解:(1);∴时,cos=1;∴;∴∥;∴“”是“∥”的充分条件;(2)∥时,的夹角为0或π;∴,或﹣;即∥得不到;∴“”不是“∥”的必要条件;∴总上可得“”是“∥”的充分不必要条件.故选:A.【点评】考查充分条件,必要条件,及充分不必要条件的概念,以及判断方法与过程,数量积的计算公式,向量共线的定义,向量夹角的定义.7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.C.D.2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC═该几何体最长棱的棱长为:故选:C.【点评】本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键8.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)5月1日12 350005月15日48 35600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升【分析】由表格信息,得到该车加了48升的汽油,跑了600千米,由此得到该车每100千米平均耗油量.【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.【点评】本题考查了学生对表格的理解以及对数据信息的处理能力.二、填空题9.(5分)复数i(1+i)的实部为﹣1.【分析】直接利用复数的乘法运算法则,求解即可.【解答】解:复数i(1+i)=﹣1+i,所求复数的实部为:﹣1.故答案为:﹣1.【点评】本题考查复数的基本运算,复数的基本概念,考查计算能力.10.(5分)2﹣3,,log25三个数中最大数的是log25.【分析】运用指数函数和对数函数的单调性,可得0<2﹣3<1,1<<2,log25>log24=2,即可得到最大数.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.【点评】本题考查数的大小比较,主要考查指数函数和对数函数的单调性的运用,属于基础题.11.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.【分析】由正弦定理可得sinB,再由三角形的边角关系,即可得到角B.【解答】解:由正弦定理可得,=,即有sinB===,由b<a,则B<A,可得B=.故答案为:.【点评】本题考查正弦定理的运用,同时考查三角形的边角关系,属于基础题.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.【分析】求得双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),可得b的方程,即可得到b的值.【解答】解:双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),由题意可得=2,解得b=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点的求法,属于基础题.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.【分析】利用线性规划的知识,通过平移即可求z的最大值.【解答】解:由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.即A(2,1).此时z的最大值为z=2×2+3×1=7,故答案为:7.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.【分析】(1)根据散点图1分析甲乙两人所在的位置的纵坐标确定总成绩名次;(2)根据散点图2,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成绩名次大于数学成绩名次,反之小于.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知,两个图中,同一个人的总成绩是不会变的.从第二个图看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在左边的图中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.【点评】本题考查了对散点图的认识;属于基础题.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.【分析】(1)由三角函数恒等变换化简函数解析式可得f(x)=2sin(x+)﹣,由三角函数的周期性及其求法即可得解;(2)由x∈[0,],可求范围x+∈[,π],即可求得f(x)的取值范围,即可得解.【解答】解:(1)∵f(x)=sinx﹣2sin2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.16.(13分)已知等差数列{an}满足a1+a2=10,a4﹣a3=2(1)求{an}的通项公式;(2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?【分析】(I)由a4﹣a3=2,可求公差d,然后由a1+a2=10,可求a1,结合等差数列的通项公式可求(II)由b2=a3=8,b3=a7=16,可求等比数列的首项及公比,代入等比数列的通项公式可求b6,结合(I)可求【解答】解:(I)设等差数列{an}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴an=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{bn}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴=128,而128=2n+2∴n=63∴b6与数列{an}中的第63项相等【点评】本题主要考查了等差数列与等比数列通项公式的简单应用,属于对基本公式应用的考查,试题比较容易.17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √× √√217 × √× √200 √√√×300 √× √×85 √× × ×98 × √× ×(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.【点评】本题主要考查古典概率、互斥事件的概率加法公式的应用,属于基础题.18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【分析】(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,∴S△VAB=,∵OC⊥平面VAB,∴VC﹣VAB=•S△VAB=,∴VV﹣ABC=VC﹣VAB=.【点评】本题考查线面平行的判定,考查平面与平面垂直的判定,考查体积的计算,正确运用线面平行、平面与平面垂直的判定定理是关键.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【分析】(1)利用f'(x)≥0或f'(x)≤0求得函数的单调区间并能求出极值;(2)利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.【解答】解:(1)由f(x)=f'(x)=x﹣由f'(x)=0解得x=f(x)与f'(x)在区间(0,+∞)上的情况如下:X (0,)() f'(x)﹣ 0 +f(x)↓↑所以,f(x)的单调递增区间为(),单调递减区间为(0,);f(x)在x=处的极小值为f()=,无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x=是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【点评】本题考查利用函数的导数求单调区间和导数的综合应用,在高考中属于常见题型.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C 交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【分析】(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.【解答】解:(1)∵椭圆C:x2+3y2=3,∴椭圆C的标准方程为:+y2=1,∴a=,b=1,c=,∴椭圆C的离心率e==;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y1),B(1,﹣y1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y1)(x﹣2),令x=3,得M(3,2﹣y1),∴直线BM的斜率kBM==1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知kBM=1,又∵直线DE的斜率kDE==1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x1,y1),B(x2,y2),则直线AE的方程为y﹣1=(x﹣2),令x=3,则点M(3,),∴直线BM的斜率kBM=,联立,得(1+3k2)x2﹣6k2x+3k2﹣3=0,由韦达定理,得x1+x2=,x1x2=,∵kBM﹣1====0,∴kBM=1=kDE,即BM∥DE;综上所述,直线BM与直线DE平行.【点评】本题是一道直线与椭圆的综合题,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(8)一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣14.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣15.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.14.(5分)观察分析下表中的数据:多面体面数(F)顶点数棱数(E)(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m +n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (8)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣1【分析】根据微积分基本定理计算即可.【解答】解:(2x+ex)dx=(x2+ex)|=(1+e)﹣(0+e0)=e.故选:C.【点评】本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式. 【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f (x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选:D.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.【解答】解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.【点评】本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】解:方法1:∵yi=xi+a,∴E(yi)=E(xi)+E(a)=1+a,方差D(yi)=D(xi)+E(a)=4.方法2:由题意知yi=xi+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.【点评】本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x【分析】分别求出四个选项中的导数,验证在x=±5处的导数为0成立与否,即可得出函数的解析式.【解答】解:由题意可得出,此三次函数在x=±5处的导数为0,依次特征寻找正确选项:A选项,导数为,令其为0,解得x=±5,故A正确;B选项,导数为,令其为0,x=±5不成立,故B错误;C选项,导数为,令其为0,x=±5不成立,故C错误;D选项,导数为,令其为0,x=±5不成立,故D错误.故选:A.【点评】本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为 x2+(y﹣1)2=1 .【分析】利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.【解答】解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等。

相关文档
最新文档