浅谈电力系统自动化防雷措施

合集下载

电力系统中的防雷保护有哪些基本措施

电力系统中的防雷保护有哪些基本措施

1 电力系统中的防雷保护有哪些基本措施?并简述其原理。

答:输电线路保护:1、架设避雷线,防止雷直击导线,对雷电有分流作用。

2、降低杆塔接地电阻3、架设耦合地线,有一定分流作业和增大导、地线之间的耦合系数。

4、采用不平衡绝缘方式。

5、装设自动重合闸6、采用消弧线圈接地,能使雷电过电压所引起的相对地冲击电流变为稳定的工频电弧。

变电站保护:装设避雷针和避雷器,使所有被保护物体在保护范围内,防止直击雷。

另外变电站还要进行进线端保护,限制侵入波的陡度。

2为什么说与SiC避雷器相比,MOA具有无可比拟的优点?答:氧化锌避雷器简称MOA, 与传统的碳化硅避雷器相比,MOA具有保护特性好,通流能力大,耐污能力强,结构简单,可靠性高等特点,能对输变电设备提供最佳保护。

SiC避雷器存在着一定的缺点:一是只有雷电最大幅值限压保护功能,而无雷电陡波保护功能,防雷保护功能不完全;二是没有连续雷电冲击保护能力;三是动作特性稳定性差可能遭受暂态过电压危害;四是动作负载重使用寿命短等。

MOA避雷器的结构为将若干片ZnO阀片压紧密封在避雷器瓷套内。

ZnO阀片具有非常优异的非线性特性,在较高电压下电阻很小,可以泄放大量雷电流,残压很低,在电网运行电压下电阻很大很大,泄漏电流只有50~150μA,电流很小可视为无工频续流,这就是作成无间隙氧化锌避雷器的原因,其突出优点是它对雷电陡波和雷电幅值同样有限压作用,防雷保护功能完全。

3答:(1)防止雷电直击导线,使作用到线路绝缘子串的过电压幅值降低。

(2)雷击带有避雷线的杆顶时,对雷电有分流作用,可减少流人杆塔的雷电流。

,(3)对导线有耦合作用,降低雷击塔头绝缘上的电压。

(4)对导线有屏蔽作用,降低导线上的感应过电压。

(5)直线杆塔的避雷线对杆塔有支持作用。

(6)避雷线保护范围呈带状,十分适合保护电力线路。

以雷击带有避雷线的杆塔部为例,分析避雷线在提高线路耐雷水平中的作用。

4为什么切除带负载的变压器不会产生过电压,而切除空载变压器会产生过电压?答:变压器空载时励磁电流很小,而断路器中的去游离作用很强切除空载的变压器时,,故当电流不为零时,就发生强制熄弧的截流现象,故电流极速下降为0,电感的电压、电流关系u=L (di/dt),故而产生过电压。

电力系统的安全防雷范文

电力系统的安全防雷范文

电力系统的安全防雷范文雷电是一种强大的自然现象,其产生的电压和电流较大,如果没有有效的防雷措施,极易对电力系统产生影响,导致设备损坏、停电甚至火灾等严重后果。

因此,对电力系统进行安全防雷非常重要。

一、电力系统的雷电威胁分析雷电主要给电力系统带来两个方面的威胁,即直接击中带来的电压和电流冲击以及雷电场效应产生的感应电压和感应电流。

雷电击中电力系统设备,会瞬间产生巨大的电流,导致设备的电气和机械性能失效,严重的甚至引发火灾。

而雷电场效应则主要是通过电磁感应的方式产生电压和电流,对电力系统带来干扰和损伤。

二、电力系统的防雷措施为了保障电力系统的正常运行和设备的安全性,需要采取一系列的防雷措施,具体如下:1.引雷措施引雷措施是为了减小雷电对电力系统的直接威胁,通过提前引导雷电电流,减小击中概率。

在电力系统工程中,一般采用避雷针、避雷带等外部设备进行引雷。

避雷针位于建筑物的顶部,通过避雷针的尖端形状和材质,可以迅速引导雷电的电流,减小建筑物因雷电击中而受到的损害。

避雷带则是安装在电力系统设备周围,通过引导雷电电流,将其导入大地。

2.屏蔽措施屏蔽措施是为了减小雷电对电力系统的感应电压和感应电流带来的干扰。

一般情况下,电力系统的设备周围都会设置金属屏蔽,用来隔绝电磁场的影响。

金属屏蔽可以有效地将电力系统内的电流导入到大地中,减小雷电场效应对设备的干扰。

3.接地措施接地措施是为了减小雷电对电力系统带来的损害,通过将电力系统的金属设备接地,来导出雷电电流。

接地装置一般采用铜排或者金属棒来实现,铜材具有良好的导电性能,可以迅速将电流导入地面,减小设备的损坏。

4.绝缘措施绝缘措施是为了防止雷电击穿设备的绝缘层,造成设备短路或者漏电等故障。

电力系统中的设备都会有一定的绝缘层,用来隔离电力系统内的电压和电流。

为了保证绝缘层的完好性,需要定期检测和维护,确保其没有破损和老化。

5.监测预警措施为了及时了解雷电对电力系统的威胁情况,需要在电力系统中设置监测预警设备。

电力系统的安全防雷

电力系统的安全防雷

电力系统的安全防雷是指在电力系统设计、建设、运行、维护过程中,采取一系列措施,防止雷击对电力设备和供电系统造成的破坏和故障,确保电力系统的稳定运行。

雷击是由大气中产生的雷电放电引起的一种自然灾害,具有高能量和高压力的特点,对电力设备和供电系统造成的危害性非常大。

因此,电力系统的安全防雷措施至关重要,下面就对电力系统的安全防雷进行详细介绍。

电力系统的安全防雷主要包括以下几个方面:1. 合理设计:电力系统的安全防雷首先要从设计阶段开始,合理设计电力系统的结构和布置。

在选址时要避免选择雷电频繁发生的区域,特别是沿海地区和山区;在设计输电线路时要合理选择导线类型和高度,减少雷击可能性;在变电站和配电箱等设备的布置上要考虑雷电传递路径,避免强电磁场的存在。

2. 防雷装置的设置:安全防雷的关键是设置合理的防雷装置。

防雷装置主要包括避雷针、避雷带、避雷网等,它们能够将雷电放电引导到地下或地面,减少对建筑物和设备的损害。

在电力系统中,应根据具体情况设置不同类型的防雷装置,如在变电站和配电箱等设备上设置避雷带,以提高设备的防雷能力;在输电线路上设置避雷针,以增加线路的耐雷能力。

3. 接地系统的建设:接地是电力系统安全防雷的重要环节。

合理建设接地系统能够使电力系统与地之间形成良好的导电通道,将雷电放电引导到地下。

接地系统主要包括接地网、接地体和接地线,它们应具备良好的导电能力和抗雷击能力。

在接地系统的建设过程中,应严格按照相关规范和要求进行设计和施工,确保接地系统的可靠性和安全性。

4. 设备维护和巡检:定期进行设备维护和巡检对于电力系统的安全防雷至关重要。

设备维护包括设备的清洁、绝缘性能测试、连接螺丝的紧固等,以确保设备正常工作;巡检包括定期巡视设备、检查接地体的状态、观察设备周围是否有雷击痕迹等,以及时发现问题并进行处理。

设备维护和巡检的频率和方式应根据设备的重要程度和环境条件确定。

5. 人员培训和宣传教育:电力系统的安全防雷还需要加强人员培训和宣传教育。

浅谈电力系统自动化防雷措施

浅谈电力系统自动化防雷措施

电路损坏。 流产生的 雷电 磁场达0. 07 x 10 < 时可使微电 T 子器件误动,无电磁异蔽时即 使雷电流通道远在 l k m 处, 也可能使微电子 设备误动。为使微电子器件遇雷击时不致损
4 载波机过电 压保护
载波机遇雷击易 损坏的部分通常为电源
盘、用户话路盘及高频电路盘。高频电路盘
B 综合性防雷措施
为避免雷害 ,对电力调度 白 动化系统 , 应采取 “ 整体防御、综合治理、多重保护,
上通常装有放电 管, 具有 一定的耐雷水乎.
电源部分可采用上述电源过电压保护方式 :
坏,有效的办法是选用新型保护器件 一 一
T V S 管b
用户话路盘由干铃流电压与通话电 压不一致
需要在保护装置设计上精心考虑,使之在两 种不同电压下均能有效的地保护用户话路部 分 。最好的办法是将保护器件置于载波机 内,考虑到实际情况,外置保护模块应设计 考 虑得周全一些。
T VS 管的电流达到峰值W冲电流I pp , 其两 极的电压被箱位到预定的最大箱位电压 Uc 以 下; 其后, 随着脉冲电流按指数衰减,T VS
5 接地电阻与屏蔽
5 ,接 地
良好的接地是防雷中至关重要的一环.
接地电阻值越小过电压值越低。因此,在经
济合 理的前提下 应尽可能降低接地电阻。
通信调度综合楼的通信站应与用一楼内 的动力装置共用接地网并尽可能与防雷接地 网直接相连。通信机房内应敷设均压带并围 绕机房敷设环行接地母线。
统采取了一定的防雷措施, 但仍常出现雷害
事故,其原因何在?正确而全面的防雷措施是
另- 端只 将屏蔽层接地。电 缆进入室内前水 平埋地 l0m 以上, 探度 干0.6m; 非 埋地 应大
屏蔽电缆应穿镀锌铁管并水平埋地 l om 以上,

刍议电力自动化防雷技术

刍议电力自动化防雷技术

刍议电力自动化防雷技术摘要:雷电现象对电力工程的破坏相对较大,因此结合电力系统自动化相关设备的技术应对能力进行分析,以及其系统建设中电压保护器的保护程度,防雷接地与屏蔽的相关要求等,从而得出电力系统自动化防雷的技术操作方法,使得电力工程能大幅度减少雷电现象的损失,保持平稳、安全的运行工作状态。

关键词:电力系统;自动化工程;防雷技术;策略分析引言:我国电力系统建设随着人们的需求而实现容量的增加,并开始广泛采用自自动化的技术,从其控制系统、计算机处理、为险资设备等都存在规模化的应用方式,其中部分电子元件对自然灾害的防御能力有限,尤其是在出现雷雨天气时,如果不强调其防雷技术的介入,系统之间的联动工作会因为累积而出现损坏,因此重视电力自动化系统的防雷技术手段实施,减少雷电损害事故是十分必要的。

一、电力自动化系统中感应过电压的产生雷云在对电荷进行聚集的阶段,其附近的附近的导体能够感应相反的电荷,从而使得雷云进行放点时期,其中的电荷迅速释放,从而使得导体中的相反电荷失去原有的电场约束之后随着导体的位置变化或流动借机寻找释放通道。

雷云中的一号的正电荷被吸引到通道导线之上形成束缚性电荷,而到店中的负电荷则会随之释放到两侧或更远的地方,通过这几个条件的工作作用从而流入大地。

另外一种形式就是雷云在释放电荷进行阶段中,同道中的负电荷是经过自下而上的方式被快速的中和完毕,由于雷云活动中的静电场突然消失,这样与大地进行输送的导体通道上的原先被束缚的电荷改变其性质,成为自由电荷这样形成电压波之后想线路的两侧或更远方向进行传播,呈现出一种类似波浪涌动的形式,从而通过经典感应过电压的流动现象。

感应雷过电压在其性质上,电荷极与雷云的电荷相反为正极。

另外导线的平均高度通常是差距不大或四规模性生产所以为统一的,所以感应雷过电压都基本相同不会形成相间过电压的现象。

由于观察感应雷过电压的形成过程可以发现其品行是较为平缓状态,波前是几微秒波长町则是数百微秒。

电力调度自动化系统的防雷保护措施

电力调度自动化系统的防雷保护措施

自动化系统有必要 的防雷措施,但是仍 定 的危 害 ,这 些 危 害 也 被 叫做 二 次 破 第一级保护通常使用三极气体放电 然不 能很 好 的预 防和处理 雷 电事故 。 坏 。当 雷 云 出 现 以后 ,这 种 因 为 电磁 感 管 来 对雷 电 电流 进 行 限 制 ,从 而 使 其在 2 雷 电的成 因与 危 害 应 而产 生 的 电流 不会 向直 击 雷 电场 一 样 电流 数值 上 处 于 设 备 和 系统 能 够 承 受 的
会 使 得 电 源 电压 大 大 增加 ,给 U P S 等 设 备 带 来 了很 大 的威 胁 。 当 雷击 发 生 的时 候 ,即便 是发 生 区域 较 远 ,雷 电产 生 的 电流 和 浪 涌 也会 通 过 电 网系 统 等 线 路快 速 的侵 入 到 各个 设 备 终 端 。虽 然说 有 时
候 雷 击 因为 规模 较 小 ,并 不会 立 即给 的 且 因 为其 用 来 传 递 信 息 的 电 流也 很 小 , 第 二 是 感应 雷 ,其 主要 是 雷 电发 生 设 备 带 来 损 害 ,但 是 其 能 够 给设 备 带 来 非 常容 易 受 到 各 个 方 面 的 干 扰 ,而 雷 电 区域 附 近 的 物体 因为 静 电 感应 而与 其 他 可累计 的损 伤 , 时 间一久 也会发 生事 故 。 因 为其 能 够 产 生 瞬 变 电磁 而 影 响 最 为 显 区域产 生 电位 差 , 从 而发生 放 电的现 象 。 尽管 一 部 分 U P S中有 必要 的压 敏 电 阻来 著 。在 夏 季 的 雷 雨 期 ,雷 电 的 出现 频 率 雷 电在 进 行 放 电 的过 程 中 ,地 面上 的一 提供保护 ,但是其并不能很好的完成其 非 常 高 , 因此 电 力 调度 自动 化 系 统 出 现 些 户 外 电子 设备 和线 路 等 因 为 电磁 感 应 保 护作 用 ,因 此应 该 采 取 必 要 的 四 级保 事故 的几率也很高。虽然部分 电力调度 而使 雷 电侵 入 线 路之 中 ,给设 备带 来 了 护措 施 :

浅谈电力系统自动化防雷措施

浅谈电力系统自动化防雷措施

浅谈电力系统自动化防雷措施摘要:电力系统容量在不断的增加,同时自动化水平也在不断的提高,电力系统普遍使用了一些计算机、RTU 和其他微电子设备来进行工作。

但是在雷雨季节,一些电力局调度大楼和电力局所属自动化显示系统、通信联络系统(Modem、载波机、程控交换机等)等通常会因为受到雷击而受到损坏,直接和间接经济损失都是非常大的。

虽然有些电力调度自动化系统使用了一些防雷措施,但是还是频繁的出现雷害事故,因此笔者针对上述问题进行一个综合的分析。

关键词:电力系统;自动化;防雷;措施1 雷击产生的原因雷击是一种自然现象,它能释放出巨大的能量、具有极强大的破坏能力。

当雷电放电路径不经过防雷保护装置时,放电过程中产生强大的瞬变电磁场在附近的导体中感应到强大的电磁脉冲,称感应雷。

感应雷可通过两种不同的感应方式侵入导体。

一种是在雷云中电荷积聚时,附近导体会感应相反的电荷,当雷击放电时,雷云中电荷迅速释放,而导体中的静电荷在失去雷云电场束缚后也会沿导体流动寻找释放通道,就会在电路中形成静电感应,其次是在雷云放电时,迅速变化的雷电流在其周围产生强大的瞬变电磁场,附近的导体中就会产生很高的感生电动势,在电路中形成电磁感应,感应雷沿导体传播,损坏电路中的设备或设备中的器件。

信息系统中系统接口多,线路长,给感应雷的产生、耦合和传播提供了良好环境,而信息系统设备随着科技的发展,集成度越来越高,抗过电压能力越来越差,极易受感应雷的袭击,并且损害的往往是集成度较高的系统核心器件,所以更不能掉以轻心,感应雷可以来自云中放电,也可以来自对地雷击。

而信息系统与外界连接有各种长距离电缆可在更大范围内产生感应雷,并沿电缆传入信息系统。

所以防感应雷是电力系统特别是微电子技术应用比较广泛的变电站综合自动化系统内,因而信息系统防雷是电力系统保证安全的重点。

2 电力系统雷击防护器的工作原理电力系统目前的防雷器多采用两种工作方式:开路方式与短路方式。

电力设备防雷主要措施

电力设备防雷主要措施

电力设备防雷主要措施电力设备防雷是为了保护电力设备免受雷击损坏的一系列措施。

由于雷击是一种自然灾害,具有突发性和破坏性,因此采取必要的防雷措施是非常重要的。

本文将介绍电力设备防雷的主要措施,以帮助读者更好地了解和应对这个问题。

合理规划设备布局是电力设备防雷的基础。

在设备布局方面,应尽量避免设备暴露在空旷的地方,如山顶、高楼顶层等。

同时,设备之间的间距也要合理设置,避免因雷电放电而产生的相互影响和损害。

安装避雷装置是电力设备防雷的核心措施之一。

避雷装置可以分为外部避雷装置和内部避雷装置。

外部避雷装置主要包括避雷针、避雷网和避雷带等,用于引导和分散雷电放电。

内部避雷装置主要包括避雷器、避雷盒和避雷线等,用于吸收和消除雷电过电压。

安装避雷装置可以有效地将雷电引入地下,减少对电力设备的直接损害。

接地系统也是电力设备防雷的重要组成部分。

接地系统的作用是将雷电引入地下,减少雷电对设备的影响。

接地系统包括接地体和接地线两部分。

接地体通常采用铜杆、铜板或铜网等导电材料制成,埋设在地下,与设备接地线相连接。

接地线则是将设备与接地体相连接,确保设备能够及时导入地下,减少雷电损害。

设备的绝缘保护也是电力设备防雷的重要环节。

绝缘保护主要包括设备的外绝缘和内绝缘两个方面。

外绝缘主要通过绝缘外壳和绝缘罩等措施来实现,防止雷电直接接触设备。

内绝缘主要通过绝缘材料和绝缘结构来实现,防止雷电通过设备内部的电路和元器件造成损坏。

定期检测和维护也是电力设备防雷的重要环节。

定期检测可以及时发现设备的潜在问题和隐患,采取相应的维护和修复措施。

维护工作包括清洁设备表面、检查接地系统和绝缘系统、修复或更换损坏的避雷装置等。

定期检测和维护可以确保设备长期稳定运行,减少雷击风险。

电力设备防雷主要包括合理规划设备布局、安装避雷装置、建立接地系统、实施绝缘保护和定期检测维护等措施。

通过采取这些措施,可以有效地保护电力设备免受雷击损坏,确保电力系统的安全稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈电力系统自动化防雷措施
发表时间:2018-05-14T15:56:18.500Z 来源:《电力设备》2017年第34期作者:李一兵
[导读] 摘要:电力系统容量在不断的增加,同时自动化水平也在不断的提高,电力系统普遍使用了一些计算机、RTU 和其他微电子设备来进行工作。

(国网山东龙口市供电公司山东龙口 265701)
摘要:电力系统容量在不断的增加,同时自动化水平也在不断的提高,电力系统普遍使用了一些计算机、RTU 和其他微电子设备来进行工作。

但是在雷雨季节,一些电力局调度大楼和电力局所属自动化显示系统、通信联络系统(Modem、载波机、程控交换机等)等通常会因为受到雷击而受到损坏,直接和间接经济损失都是非常大的。

虽然有些电力调度自动化系统使用了一些防雷措施,但是还是频繁的出现雷害事故,因此笔者针对上述问题进行一个综合的分析。

关键词:电力系统;自动化;防雷;措施
1 雷击产生的原因
雷击是一种自然现象,它能释放出巨大的能量、具有极强大的破坏能力。

当雷电放电路径不经过防雷保护装置时,放电过程中产生强大的瞬变电磁场在附近的导体中感应到强大的电磁脉冲,称感应雷。

感应雷可通过两种不同的感应方式侵入导体。

一种是在雷云中电荷积聚时,附近导体会感应相反的电荷,当雷击放电时,雷云中电荷迅速释放,而导体中的静电荷在失去雷云电场束缚后也会沿导体流动寻找释放通道,就会在电路中形成静电感应,其次是在雷云放电时,迅速变化的雷电流在其周围产生强大的瞬变电磁场,附近的导体中就会产生很高的感生电动势,在电路中形成电磁感应,感应雷沿导体传播,损坏电路中的设备或设备中的器件。

信息系统中系统接口多,线路长,给感应雷的产生、耦合和传播提供了良好环境,而信息系统设备随着科技的发展,集成度越来越高,抗过电压能力越来越差,极易受感应雷的袭击,并且损害的往往是集成度较高的系统核心器件,所以更不能掉以轻心,感应雷可以来自云中放电,也可以来自对地雷击。

而信息系统与外界连接有各种长距离电缆可在更大范围内产生感应雷,并沿电缆传入信息系统。

所以防感应雷是电力系统特别是微电子技术应用比较广泛的变电站综合自动化系统内,因而信息系统防雷是电力系统保证安全的重点。

2 电力系统雷击防护器的工作原理
电力系统目前的防雷器多采用两种工作方式:开路方式与短路方式。

开路方式是指在防雷器遇到瞬间过电压时开路从而隔离设备,如隔离变压器、电感器、光隔离器类防雷器便是采用此种原理。

短路方式是指在防雷器遇到瞬间过电压时对地短路使雷电流导入大地,从而保护电子设备。

由于短路方式防雷器本身承受反压低,设备经济简单,所以应用比较广泛。

其保护原理,短路方式防雷器多为一个或几个功能模块的组合,由于各个模块对雷击防护性能有一些区别,所以在选择避雷器时最好有所了解。

其中抑制二极管及限流电阻模块可精密控压,但泄流较小;压敏电阻模块启动电压低、启动快,但同样泄流小,过载能力低;气体放电管模块泄流大,但启动电压较高。

此外为防止较大过电压冲击。

3 微电子器件耐冲击水平与TVS管特性
微电子器件中 TTL 数字电路的抗冲击能力最弱,10V、30ns 脉宽的冲击电压可使TTL电路损坏;雷电流产生的磁场达 0.07 × 104T 时可使微电子器件误动,无电磁异蔽时即使雷电流通道远在 1km 处,也可能使微电子设备误动。

为使微电子器件遇雷击时不致损坏,有效的办法是选用新型保护器件——TVS 管。

TVS 管即瞬态电压抑制器。

当其两极受到反向瞬态高能量冲击时,它能以 10-12s 量级的速度,将两级间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值(一般小于 2 倍额定工作电压),有效的保护电子电路中的精密元器件免受各种浪涌脉冲的破坏。

TVS 管的正向特性与普通二级管相同,反向特性为典型的 PN 结雪崩器件。

在瞬态脉冲电流的作用下,流过 TVS 管的电流,由原来的反向漏电流 ID 上升到 IR(25℃下,IR = 1mA )时,其两极呈现的电压由额定反向关断电压Uoff 上升到击穿电压 UBR,TVS管被击穿。

随着峰值脉冲电流的出现,流过TVS 管的电流达到峰值脉冲电流 Ipp,其两极的电压被箝位到预定的最大箝位电压 Uc 以下;其后,随着脉冲电流按指数衰减,TVS管两极电压不断下降,最后恢复到起始状态。

这就是 TVS 管抑制出现的浪涌脉冲功率,保护电子元件的过程。

TVS 管的显著特点为:响应速度快(10-12s 级)、瞬时吸收功率大(数千瓦)、漏电流小(10-9A 级)、击穿电压偏差小(±
5%UBR 与± 10%UBR 两种)、箝位电压较易控制(箝位电压 Uc 与击穿电压 UBR 之比为 1~1.4)、体积小等。

它对保护装置免遭静电、雷电、操作过电压、断路器电弧重燃等各种电磁波干扰十分有效,可有效地抑制共模、差模干扰,是微电子设备过电压保护的首选器件。

4 接地电阻与屏蔽
4.1 接地
良好的接地是防雷中至关重要的一环。

接地电阻值越小过电压值越低。

因此,在经济合理的前提下应尽可能降低接地电阻。

通信调度综合楼的通信站应与用一楼内的动力装置共用接地网并尽可能与防雷接地网直接相连。

通信机房内应敷设均压带并围绕机房敷设环行接地母线。

在电力调度通信综合楼内,需另设接地
网的特殊设备,其接地网与大楼主地网之间可通过击穿保险器或放电器连接,以保证正常时隔离,雷击时均衡电位。

接地的其他方面均应严格按有关规程办理。

4.2 屏蔽
屏蔽是利用各种金属屏蔽体来阻挡和衰减施加在计算机等设备上的电磁干扰或过电压所产生的巨大能量。

对计算机系统来说具体可分为建筑物屏蔽、设备屏蔽和各种线缆包含管道的屏蔽。

建筑物的屏蔽可利用建筑物钢筋、金属构架、金属门窗、地板等均相互焊接或可靠连接在一起,形成一个法拉第笼保护,并通过接地网可靠的电气连结,形成初级屏蔽网。

设备的屏蔽应该对计算机设备耐电压能力进行严格且严密的调查,按IEC划分的防雷区(LPZ)施行多级屏蔽。

在此强调二点注意事项。

其一是屏蔽管线的接地,一般要求入户线采用地下电缆入户,其电缆金属护层,在前后两端做良好接地。

测量结果表明,电线电缆屏蔽层一端接地时可将高频干扰电压降低一个数量级,两端接地时可降低两个数量级。

其二是使用金属丝编制网屏蔽电缆,因其重量轻,使用方便而被广泛应用,但是在电磁波频率较高时,其波
长接近编织层网孔尺寸时,波的透入增加,因此,最好再穿一层金属管。

5 综合性防雷措施
为避免雷害,对电力调度自动化系统,应采取“整体防御、综合治理、多重保护”的方针。

除采用上述保护与接地措施外,配电变压器高低压侧均应装接金属氧化物避雷器,并三点联合接地。

程控交换机室外进出线、Modem 等应装过电压保护器;当 RTU 等装置离显示屏较远时应装信号线过电压保护器。

6 结束语
想要使得电力自动化系统避免雷击,就要采用多重的保护措施、综合的整治以及整体的进行防御,笔者觉得应该采取多种方式,来对电力系统实行综合的治理,并且要严格遵循我国相应防雷接地规程,来实行防雷保护,同时要运用现代新科技来进行防雷保护,使用具有经济适用性,并且合理和有效的防雷系统措施,才能够最大限度的保障电力系统的安全和稳定。

参考文献:
[1] 王晓东. 电力系统自动化监控系统的设计应用[J]. 电源技术应用. 2013(01)
[2] 周小虎. 浅析电力系统自动化的防雷措施[J]. 中国城市经济. 2011(20)。

相关文档
最新文档