数字图像处理上机实验三

合集下载

《数字图像处理》实验指导书1

《数字图像处理》实验指导书1

《数字图像处理》实验指导书前言本实验指导书可作为电子信息工程、通信工程、生物医学工程等专业《数字图像处理》课程的实验指导书。

实验指导书共提供了6个实验,要求在VB环境下实现。

实验名称与学时安排详见下表。

实验名称与学时安排表实验教学基本要求:1、在实验前,认真准备,熟悉和掌握相关实验内容的基本算法和程序设计技术。

2、根据实验目的和要求,按时认真完成各实验的上机操作。

3、实验结束后,要及时提交经调试正确的程序源代码、生成的可执行文件、实验报告书等文档。

实验一图象的读取保存及图像的二值化处理一、实验目的1、熟悉《数字图像处理》的实验平台。

2、了解VB对图像进行处理的基本方法。

3、熟悉彩色图像变成灰度图象以及灰度图像转换成二值图像的基本原理及处理过程。

二、实验准备1、复习彩色图像变成灰度图象以及灰度图像的二值化处理的基本原理。

2、阅读下列内容,了解VB对图像进行处理的基本方法。

(1)读取图像通过扫描仪、摄像机等输入计算机以.bmp、.ico或.wmf存储的图像文件,可用LoadPicture函数把图像文件装入窗体、图片框或图像框中,例如:picture1.picture=loadpicture(“c:\image\flower.bmp”)可以把路径为c:\image\flower.bmp的图像文件装入图片框picture1中。

为了使图片框的大小与图像相匹配,应将图片框的autosize属性设置为True。

(2)用Point方法获取彩色图像的颜色值Point方法的功能是获取图像上指定像素的颜色值。

格式为:Object.Point(x,y)其中,Object表示获取颜色的对象名,(x,y)为取得颜色的坐标位置。

Point 方法将指定位置的像素的颜色值返回一个长整形数。

例如,求图片框picture 1中图像在位置(x,y)的像素颜色值(col)时,可写为:dim col as longcol=picture1.Point(x,y)(3)用Pset方法画点Pset方法的功能是在指定的位置画一个指定颜色的点。

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202班一、实验目的:1)熟悉均值滤波、中值滤波处理的理论基础;2)掌握均值滤波、中值滤波的计算机实现方法;3)学习VC++ 6。

0 的编程方法;4)验证均值滤波、中值滤波处理理论;5)观察均值滤波、中值滤波处理的结果。

二、实验的软、硬件平台:硬件:微型图像处理系统,包括:主机,PC机;摄像机;软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++ 6.0三、实验内容:1)握高级语言编程技术;2)编制均值滤波、中值滤波处理程序的方法;3)编译并生成可执行文件;4)考察处理结果。

四、实验要求:1)学习VC++确6。

0 编程的步骤及流程;2)编写均值滤波、中值滤波的程序;3)编译并改错;4)把该程序嵌入试验二给出的界面中(作适当修改);5)提交程序及文档;6)写出本次实验的体会。

五、实验结果截图实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。

边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。

六、实验体会本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。

本次实验更加增加了对数字图像处理的了解与学习。

七、实验程序代码注释及分析// HistDemoADlg.h : 头文件//#include "ImageWnd.h"#pragma once// CHistDemoADlg 对话框class CHistDemoADlg : public CDialogEx{// 构造public:CHistDemoADlg(CWnd* pParent = NULL); // 标准构造函数int nWidth;int nHeight;int nLen;int nByteWidth;BYTE *lpBackup;BYTE *lpBitmap;BYTE *lpBits;CString FileName;CImageWnd source,dest;// 对话框数据enum { IDD = IDD_HISTDEMOA_DIALOG };protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持// 实现protected:HICON m_hIcon;// 生成的消息映射函数virtual BOOL OnInitDialog();afx_msg void OnSysCommand(UINT nID, LPARAM lParam);afx_msg void OnPaint();afx_msg HCURSOR OnQueryDragIcon();DECLARE_MESSAGE_MAP()public:void LoadBitmap(void);afx_msg void OnOpen();afx_msg void OnHist();void HistogramEq(void);void NoColor(void);void HistogramEq1(int nWidth,int nHeight,BYTE *lpInput,BYTE *lpOutput);void MeanFilter(int nWidth,int nHeight,BYTE *lpInput,BYTE *lpOutput);void MedianFilter(int nWidth,int nHeight,BYTE *lpInput,BYTE *lpOutput);afx_msg void OnBnClickedClose();afx_msg void OnBnClickedMeanfilter();afx_msg void OnBnClickedMedianfilter();};HistDemoADlg.cpp对HistDemoADlg.h进行具体的实现,OnOpen()函数响应ID为IDC_OPEN的按钮事件,而且会调取文件选择对话框,选取文件之后,会显示在原始图像区域显示对应的位图图像,OnHist()函数会响应ID为IDC_HIST的按钮事件,调用HistogramEq()进行直方图均衡化的处理,HistogramEq()会调用HistogramEq1()进行直方图均衡化的处理,并用dst.setImage()显示处理之后的图像,以及NoColor()函数,对原始图像转化为灰度图像之后再显示。

数字图像处理上机实验三学习资料

数字图像处理上机实验三学习资料

数字图像处理上机实验三医学图像处理实验三1、计算图像的梯度,梯度值和梯度角。

I=imread('C:\Users\Administrator\Desktop\cat.jpg'); B=rgb2gray(I);C=double(B);e=1e-6;%10^-6[dx,dy]=gradient(C);%计算梯度G=sqrt(dx.*dx+dy.*dy);%梯度幅值figure,imshow(uint8(G)),title('梯度图像');pha=atan(dy./(dx+e))figure,imshow(pha,[])图 1图 2 梯度角图2、计算图像边缘检测,用滤波器方式实现各种算子。

(1)Roberts算子clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);[m,n]=size(B);nB=B;robertsnum=0;%经roberts算子计算得到的每一个像素的值robertsthreshold=0.6;%设定阈值for j=1:m-1;%进行边界提取for k=1:n-1robertsnum=abs(B(j,k)-B(j+1,k+1))+abs(B(j+1,k)-B(j,k+1)); if(robertsnum>robertsthreshold)nB(j,k)=255;elsenB(j,k)=0;endendendsubplot(1,2,1);imshow(B);title('原图');subplot(1,2,2);imshow(nB,[]);title('Robert算子处理后的图像');图 3(2)Sobel算子clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);[m,n]=size(B);f=double(B);u=double(B);usobel=B;for i=2:m-1%sobel边缘检测for j=2:n-1;gx=(u(i+1,j-1)+2*u(i+1,j)+f(i+1,j+1)-(u(i-1,j-1)+2*u(i-1,j)+f(i-1,j+1))); gy=(u(i-1,j+1)+2*u(i,j+1)+f(i+1,j+1)-(u(i-1,j-1)+2*u(i,j-1)+f(i+1,j-1))); usobel(i,j)=sqrt(gx^2+gy^2);endendsubplot(1,2,1);imshow(B);title('原图');subplot(1,2,2);imshow(im2uint8(usobel));title('Sobel边缘检测后的图像');图 4(3)Prewitt算子clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);[m,n]=size(B);nB=B;prewittnum=0;%经prewitt算子计算得到的每一个像素的值prewittthreshold=0.6;%设定阈值for j=2:m-1;%进行边界提取for k=2:n-1prewittnum=abs(B(j-1,k+1)-B(j+1,k+1))+B(j-1,k)-B(j+1,k)+B(j-1,k-1)-B(j+1,k-1)+abs(B(j-1,k+1)+B(j,k+1)+B(j+1,k+1)-B(j-1,k-1)-B(j,k-1)-B(j+1,k-1));if(prewittnum>prewittthreshold)nB(j,k)=255;elsenB(j,k)=0;endendendsubplot(1,2,1);imshow(B);title('原图');subplot(1,2,2);imshow(nB,[]);title('Prewitt算子处理后的图像');图 5(4)Laplace边缘检测function flapEdge=LaplaceEdge(pic,Moldtype,thresh)[m,n]=size(pic);flapEdge=zeros(m,n);%四邻域拉普拉斯边缘检测算子if 4==Moldtypefor i=2:m-1for j=2:n-1temp=-4*pic(i,j)+pic(i-1,j)+pic(i+1,j)+pic(i,j-1)+pic(i,j+1);if temp>threshflapEdge(i,j)=255;elseflapEdge(i,j)=0;endendendend%八邻域拉普拉斯边缘检测算子if 8==Moldtypefor i=2:m-1for j=2:n-1temp=-8*pic(i,j)+pic(i-1,j)+pic(i+1,j)+pic(i,j-1)+pic(i,j+1)+pic(i-1,j-1)+pic(i+1,j+1)+pic(i+1,j-1)+pic(i-1,j+1); if temp>threshflapEdge(i,j)=255;elseflapEdge(i,j)=0;endendendend主函数:clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);C=double(B);t=60;Lapmodtype=8;%设置模板方式flapEdge=LaplaceEdge(C,Lapmodtype,t);fgrayLapedge=uint8(flapEdge);figure()imshow(fgrayLapedge),title('laplace边缘检测图像');图 6(4)Kirsch算子clearclcclose allI=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);figure(1)imshow(B,[])title('原始图象')%对图象进行均值滤波bw2=filter2(fspecial('average',3),B);%对图象进行高斯滤波bw3=filter2(fspecial('gaussian'),bw2);%利用小波变换对图象进行降噪处理[thr,sorh,keepapp]=ddencmp('den','wv',bw3); %获得除噪的缺省参数bw4=wdencmp('gbl',bw3,'sym4',2,thr,sorh,keepapp);%图象进行降噪处理%---------------------------------------------------------------------%提取图象边缘t=3000; %设定阈值bw5=double(bw4);[m,n]=size(bw5);g=zeros(m,n);d=zeros(1,8);%利用Kirsch算子进行边缘提取for i=2:m-1for j=2:n-1d(1) =(5*bw5(i-1,j-1)+5*bw5(i-1,j)+5*bw5(i-1,j+1)-3*bw5(i,j-1)-3*bw5(i,j+1)-3*bw5(i+1,j-1)-3*bw5(i+1,j)-3*bw5(i+1,j+1))^2;d(2) =((-3)*bw5(i-1,j-1)+5*bw5(i-1,j)+5*bw5(i-1,j+1)-3*bw5(i,j-1)+5*bw5(i,j+1)-3*bw5(i+1,j-1)-3*bw5(i+1,j)-3*bw5(i+1,j+1))^2;d(3) =((-3)*bw5(i-1,j-1)-3*bw5(i-1,j)+5*bw5(i-1,j+1)-3*bw5(i,j-1)+5*bw5(i,j+1)-3*bw5(i+1,j-1)-3*bw5(i+1,j)+5*bw5(i+1,j+1))^2;d(4) =((-3)*bw5(i-1,j-1)-3*bw5(i-1,j)-3*bw5(i-1,j+1)-3*bw5(i,j-1)+5*bw5(i,j+1)-3*bw5(i+1,j-1)+5*bw5(i+1,j)+5*bw5(i+1,j+1))^2;d(5) =((-3)*bw5(i-1,j-1)-3*bw5(i-1,j)-3*bw5(i-1,j+1)-3*bw5(i,j-1)-3*bw5(i,j+1)+5*bw5(i+1,j-1)+5*bw5(i+1,j)+5*bw5(i+1,j+1))^2;d(6) =((-3)*bw5(i-1,j-1)-3*bw5(i-1,j)-3*bw5(i-1,j+1)+5*bw5(i,j-1)-3*bw5(i,j+1)+5*bw5(i+1,j-1)+5*bw5(i+1,j)-3*bw5(i+1,j+1))^2;d(7) =(5*bw5(i-1,j-1)-3*bw5(i-1,j)-3*bw5(i-1,j+1)+5*bw5(i,j-1)-3*bw5(i,j+1)+5*bw5(i+1,j-1)-3*bw5(i+1,j)-3*bw5(i+1,j+1))^2;d(8) =(5*bw5(i-1,j-1)+5*bw5(i-1,j)-3*bw5(i-1,j+1)+5*bw5(i,j-1)-3*bw5(i,j+1)-3*bw5(i+1,j-1)-3*bw5(i+1,j)-3*bw5(i+1,j+1))^2; g(i,j) = max(d);endend%显示边缘提取后的图象for i=1:mfor j=1:nif g(i,j)>tbw5(i,j)=255;elsebw5(i,j)=0;endendendfigure(2)imshow(bw5,[])title('Kirsch ')图 7(5)LoG和canny算子clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);bw1=edge(B,'log',0.01);bw3=edge(B,'canny',0.1);figure;subplot(1,2,1);imshow(bw1,[]);title('loG边缘检测'); subplot(1,2,2);imshow(bw3,[]);title('canny边缘检测');图 83、大津法实现图像分割clear;I=imread('C:\Users\admin\Desktop\cat.jpg');B=rgb2gray(I);T = graythresh(B);%求阈值BW = im2bw(B,T);%二值化imshow(BW,[])图 9。

实验三_数字图像处理空域滤波

实验三_数字图像处理空域滤波

实验三空域滤波一实验目的1了解空域滤波的方法。

2掌握几种模板的基本原理。

二实验条件PC微机一台和MATLAB软件。

三实验内容1使用函数fspecial( ) 生成几种特定的模板。

2使用函数imfilter( ) 配合模板对图象数据进行二维卷积。

3比较各种滤波器的效果。

四实验步骤空域滤波一般分为线性滤波和非线性滤波。

空域滤波器根据功能分为平滑滤波器和锐化滤波器。

1)平滑空间滤波:平滑的目的有两种:一是模糊,即在提取较大的目标前去除太小的细节或将目标内的小间断连接起来;另一种是消除噪声。

线性平滑(低通)滤波器:线性平滑空域滤波器的输出是包含在滤波掩膜邻域内像素的简单平均值。

线性平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3*3的模板来说,最简单的是取所有系数为1,为了保持输出图像仍然在原来图像的灰度值范围内,模板与像素邻域的乘积都要除以9。

a用h=fspecial(‘average’) 得到的h 为3×3的邻域平均模板,然后用h来对图象lenna.gif进行平滑处理。

>> x=imread('lenna.gif');h=fspecial('average');y=imfilter(x,h);imshow(x);title('原始图像');subplot(1,2,2);imshow(y);title('均值滤波后图像')实验结果如图:b 把模板大小依次改为7×7,9×9和11×11,观察其效果有什么不同?>>x=imread('lenna.gif');subplot(1,4,1);imshow(x);title('原始图像');h=fspecial('average',7);y=imfilter(x,h);subplot(1,4,2);imshow(y);title('模板大小7*7的图像');h1=fspecial('average',9);y1=imfilter(x,h1);subplot(1,4,3);imshow(y1);title('模板大小9*9的图像');h2=fspecial('average',11);y2=imfilter(x,h2);subplot(1,4,4);title('模板大小11*11的图像')比较效果:造成图像的模糊,n选取的越大,模糊越严重。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告光信13-2班2013210191韩照夏数字图像处理实验报告实验一数字图像空间域平滑一、实验目的掌握图像空间域平滑的原理和程序设计;观察对图像进行平滑增强的效果。

二、实验设备计算机,Matlab程序平台。

三、实验原理图像平滑处理的目的是改善图像质量和抽出对象特征。

任何一幅未经处理的原始图像,都存在着一定程度的噪声干扰。

噪声恶化了图像质量,使图像模糊,甚至淹没特征,给分析带来困难。

消除图像噪声的工作称为图像平滑或滤波。

针对不同噪声源(如光栅扫描、底片颗粒、机械元件、信道传输等)引起的不同种类噪声(如加性噪声、乘性噪声、量化噪声等),平滑方法也不同。

平滑可以在空间域进行,也可以在频率域进行。

1.局部平均法局部平滑法是一种直接在空间域上进行平滑处理的技术。

假设图像由许多灰度恒定的小块组成,相邻象素间存在很高的空间相关性,而噪声则是统计独立的。

因此,可用邻域内各象素的灰度平均值代替该象素原来的灰度值,实现图像的平滑。

对图像采用3×3的邻域平均法,其作用相当于用以下模板与图像进行卷积运算。

2. 超限象素平滑法 对邻域平均法稍加改进,可导出超限象素平滑法。

其原理是将f(x,y)和邻域平均g(x,y)差的绝对值与选定的阈值进行比较,根据比较结果决定点(x,y )的最后灰度g ´(x,y)。

其表达式为3. 二维中值滤波中值滤波就是用一个奇数点的移动窗口, 将窗口中心点的值用窗口内各点的中值代替。

二维中值滤波可由下式表示常用的窗口有:四、实验步骤1.实验准备:打开计算机,进入Matlab 程序界面。

2.输入图像空间域平滑处理程序,程序如下:⎩⎨⎧>-= ),(),(),( ),,(),('其他,当y x f T y x g y x f y x g y x g )},({),(y x f Med y x g A=程序1.1 图像平滑处理clear;clc;I=imread('lena.jpg');subplot(3,2,1);imshow(I);title('原图像');I1=imnoise(I,'salt & pepper',0.02);subplot(3,2,2);imshow(I1);title('对I加椒盐噪声的图像');h2=fspecial('average',[3 3]);I2=imfilter(I1,h2,'replicate');subplot(3,2,3);imshow(I2);title('3×3邻域平滑');h3=fspecial('average',[5 5]);I3=imfilter(I1,h3,'replicate');subplot(3,2,4);imshow(I3);title('5×5邻域平滑');I4=I1;I4((abs(I1-I2))>64)=I2((abs(I1-I2))>64);subplot(3,2,5);imshow(I4);title('3×3超限象素平滑(T=64)'); I5=I1;I5((abs(I1-I3))>48)=I3((abs(I1-I3))>48);subplot(3,2,6);imshow(I5);title('5×5超限象素平滑(T=48)');程序1.2 图像平均平滑与中值滤波clear;clc;I=imread('lena.jpg');subplot(3,3,1);imshow(I);title('原图像');I1=imnoise(I,'gaussian',0.02);subplot(3,3,2);imshow(I1);title('高斯噪声');I2=imnoise(I,'salt & pepper',0.02);subplot(3,3,3);imshow(I1);title('椒盐噪声');h1=fspecial('average',[3 3]);I3=imfilter(I1,h1,'replicate');subplot(3,3,4);imshow(I3);title('对I1 3×3邻域平滑');h2=fspecial('average',[3 3]);I4=imfilter(I2,h2,'replicate');subplot(3,3,5);imshow(I4);title('对I2 3×3邻域平滑');I5=medfilt2(I1,[5 5]);subplot(3,3,6);imshow(I5);title('对I1 5×5中值滤波');I6=medfilt2(I2,[5 5]);subplot(3,3,7);imshow(I6);title('对I2 5×5中值滤波');3.运行图像处理程序,并保存处理结果图像。

数字图像处理第三次实验(西南交大)

数字图像处理第三次实验(西南交大)

数字图像处理第二次实验注意提交实验报告的文件名格式(姓名+学号+实验报告二.doc)实验三灰度变换增强一、实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.了解灰度变换增强的Matlab实现方法3.掌握直方图灰度变换方法4.理解和掌握直方图原理和方法;二、实验内容1.线段上像素灰度分布读入灰度图像'',采用交互式操作,用improfile绘制一条线段的灰度值。

imshow(rgb2gray(imread('')))improfile读入RGB图像‘’,显示所选线段上红、绿、蓝颜色分量的分布imshow('')improfile2.直方图变换A)直方图显示在matlab环境中,程序首先读取图像'',然后调用直方图函数,设置相关参数,再输出处理后的图像。

I=imread(''); %读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题读入图像‘’,在一个窗口中显示灰度级n=64,128和256的图像直方图。

I=imread('');imshow(I)figure,imhist(I,64)figure,imhist(I,128)figure,imhist(I,256)B)直方图灰度调节利用函数imadjust调解图像灰度范围,观察变换后的图像及其直方图的变化。

I=imread('');imshow(I)figure,imhist(I)J=imadjust(I,[ ],[0 1]);figure,imhist(J)figure,imshow(J)I=imread(''); imshow(I)figure,imhist(I)J=imadjust(I,[0 ],[ 1]); figure,imhist(J) figure,imshow(J)C)直方图均衡化在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。

数字图像处理实验报告(三四五)

数字图像处理实验报告(三四五)

实验三图像的几何变换一.实验目的及要求掌握图像几何变换的基本原理,熟练掌握数字图像的缩放、旋转、平移、镜像和转置的基本原理及其MATLAB编程实现方法。

二、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。

熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。

1. 图像缩放clear all, close allI = imread('cameraman.tif');Scale = 1.35; % 将图像放大1.35倍J1 = imresize(I, Scale, 'nearest'); %using the nearest neighbor interpolationJ2 = imresize(I, Scale, 'bilinear'); %using the bilinear interpolationimshow(I), title('Original Image');figure, imshow(J1), title('Resized Image-- using the nearest neighbor interpolation ');figure, imshow(J2), title('Resized Image-- using the bilinear interpolation ');% 查看imresize使用帮助help imresizeCommand窗口显示如下:IMRESIZE Resize image.B = IMRESIZE(A, SCALE) returns an image that is SCALE times thesize of A, which is a grayscale, RGB, or binary image.B = IMRESIZE(A, [NUMROWS NUMCOLS]) resizes the image so that it hasthe specified number of rows and columns. Either NUMROWS or NUMCOLS may be NaN, in which case IMRESIZE computes the number of rows orcolumns automatically in order to preserve the image aspect ratio.[Y, NEWMAP] = IMRESIZE(X, MAP, SCALE) resizes an indexed image.[Y, NEWMAP] = IMRESIZE(X, MAP, [NUMROWS NUMCOLS]) resizes an indexed image.T o control the interpolation method used by IMRESIZE, add a METHODargument to any of the syntaxes above, like this:IMRESIZE(A, SCALE, METHOD)IMRESIZE(A, [NUMROWS NUMCOLS], METHOD),IMRESIZE(X, MAP, M, METHOD)IMRESIZE(X, MAP, [NUMROWS NUMCOLS], METHOD) METHOD can be a string naming a general interpolation method: 'nearest' - nearest-neighbor interpolation'bilinear' - bilinear interpolation'bicubic' - cubic interpolation; the default method METHOD can also be a string naming an interpolation kernel: 'box' - interpolation with a box-shaped kernel'triangle' - interpolation with a triangular kernel(equivalent to 'bilinear')'cubic' - interpolation with a cubic kernel(equivalent to 'bicubic')'lanczos2' - interpolation with a Lanczos-2 kernel'lanczos3' - interpolation with a Lanczos-3 kernelFinally, METHOD can be a two-element cell array of the form {f,w}, where f is the function handle for a custom interpolation kernel, andw is the custom kernel's width. f(x) must be zero outside the interval -w/2 <= x < w/2. Your function handle f may be called with a scalar or a vector input.You can achieve additional control over IMRESIZE by using parameter/value pairs following any of the syntaxes above. For example:B = IMRESIZE(A, SCALE, PARAM1, VALUE1, PARAM2, VALUE2, ...)Parameters include:'Antialiasing' - true or false; specifies whether to performantialiasing when shrinking an image. Thedefault value depends on the interpolationmethod you choose. For the 'nearest' method,the default is false; for all other methods,the default is true.'Colormap' - (only relevant for indexed images) 'original'or 'optimized'; if 'original', then theoutput newmap is the same as the input map.If it is 'optimized', then a new optimizedcolormap is created. The default value is'optimized'.'Dither' - (only for indexed images) true or false;specifies whether to perform colordithering. The default value is true.'Method' - As described above'OutputSize' - A two-element vector, [MROWS NCOLS],specifying the output size. One element maybe NaN, in which case the other value iscomputed automatically to preserve the aspectratio of the image.'Scale' - A scalar or two-element vector specifying theresize scale factors. If it is a scalar, thesame scale factor is applied to eachdimension. If it is a vector, it containsthe scale factors for the row and columndimensions, respectively.Examples--------Shrink by factor of two using the defaults of bicubic interpolation and antialiasing.I = imread('rice.png');J = imresize(I, 0.5);figure, imshow(I), figure, imshow(J)Shrink by factor of two using nearest-neighbor interpolation. (This is the fastest method, but it has the lowest quality.)J2 = imresize(I, 0.5, 'nearest');Resize an indexed image.[X, map] = imread('trees.tif');[Y, newmap] = imresize(X, map, 0.5);imshow(Y, newmap)Resize an RGB image to have 64 rows. The number of columns is computed automatically.RGB = imread('peppers.png');RGB2 = imresize(RGB, [64 NaN]);Note----The function IMRESIZE in previous versions of the Image ProcessingT oolbox used a somewhat different algorithm by default. If you need the same results produced by the previous implementation, call the function IMRESIZE_OLD.Class Support-------------The input image A can be numeric or logical and it must be nonsparse. The output image is of the same class as the input image. The inputindexed image X can be uint8, uint16, or double.See also imresize_old, imrotate, imtransform, tformarray.Reference page in Help browserdoc imresize执行程序所得结果如下:改变参数Scale =0.5得到图形结果如下:对以上实验结果,分析如下:通过查看命令窗口查看imresize函数的使用方法。

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)实验⼀ Matlab图像⼯具的使⽤1、读图I=imread('lena.jpg');imshow(I);2、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像。

a=imread('lena.jpg')i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);subplot(3,1,2);imshow(i);subplot(3,1,3);imshow(I);原图像灰度图像⼆值图像实验⼆图像变换1、对⼀幅图像进⾏平移,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与平移后傅⾥叶频谱的对应关系。

s=imread('beauty.jpg');i=rgb2gray(s)i=double(i)j=fft2(i);k=fftshift(j); 原图像原图的傅⾥叶频谱l=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b)b=double(b) 平移后的图像平移后的傅⾥叶频谱c=fft2(b);e=fftshift(c);l=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);subplot(2,2,2);imshow(uint8(b));subplot(2,2,3);imshow(A);subplot(2,2,4);imshow(B);2、对⼀幅图像进⾏旋转,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与旋转后傅⾥叶频谱的对应关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医学图像处理实验三1、计算图像的梯度,梯度值和梯度角。

I=imread('C:\Users\Administrator\Desktop\cat.jpg'); B=rgb2gray(I);C=double(B);e=1e-6;%10^-6[dx,dy]=gradient(C);%计算梯度G=sqrt(dx.*dx+dy.*dy);%梯度幅值figure,imshow(uint8(G)),title('梯度图像');pha=atan(dy./(dx+e))figure,imshow(pha,[])图 1图 2 梯度角图2、计算图像边缘检测,用滤波器方式实现各种算子。

(1)Roberts算子clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);[m,n]=size(B);nB=B;robertsnum=0;%经roberts算子计算得到的每一个像素的值robertsthreshold=0.6;%设定阈值for j=1:m-1;%进行边界提取for k=1:n-1robertsnum=abs(B(j,k)-B(j+1,k+1))+abs(B(j+1,k)-B(j,k+1)); if(robertsnum>robertsthreshold)nB(j,k)=255;elsenB(j,k)=0;endendendsubplot(1,2,1);imshow(B);title('原图');subplot(1,2,2);imshow(nB,[]);title('Robert算子处理后的图像');图 3(2)Sobel算子clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);[m,n]=size(B);f=double(B);u=double(B);usobel=B;for i=2:m-1%sobel边缘检测for j=2:n-1;gx=(u(i+1,j-1)+2*u(i+1,j)+f(i+1,j+1)-(u(i-1,j-1)+2*u(i-1,j)+f(i-1,j+1)));gy=(u(i-1,j+1)+2*u(i,j+1)+f(i+1,j+1)-(u(i-1,j-1)+2*u(i,j-1)+f(i+1,j-1)));usobel(i,j)=sqrt(gx^2+gy^2);endendsubplot(1,2,1);imshow(B);title('原图');subplot(1,2,2);imshow(im2uint8(usobel));title('Sobel边缘检测后的图像');图 4(3)Prewitt算子clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);[m,n]=size(B);nB=B;prewittnum=0;%经prewitt算子计算得到的每一个像素的值prewittthreshold=0.6;%设定阈值for j=2:m-1;%进行边界提取for k=2:n-1prewittnum=abs(B(j-1,k+1)-B(j+1,k+1))+B(j-1,k)-B(j+1,k)+B(j-1,k-1)-B(j+1,k-1)+abs(B(j-1,k +1)+B(j,k+1)+B(j+1,k+1)-B(j-1,k-1)-B(j,k-1)-B(j+1,k-1));if(prewittnum>prewittthreshold)nB(j,k)=255;elsenB(j,k)=0;endendendsubplot(1,2,1);imshow(B);title('原图');subplot(1,2,2);imshow(nB,[]);title('Prewitt算子处理后的图像');图 5(4)Laplace边缘检测function flapEdge=LaplaceEdge(pic,Moldtype,thresh)[m,n]=size(pic);flapEdge=zeros(m,n);%四邻域拉普拉斯边缘检测算子if 4==Moldtypefor i=2:m-1for j=2:n-1temp=-4*pic(i,j)+pic(i-1,j)+pic(i+1,j)+pic(i,j-1)+pic(i,j+1);if temp>threshflapEdge(i,j)=255;elseflapEdge(i,j)=0;endendendend%八邻域拉普拉斯边缘检测算子if 8==Moldtypefor i=2:m-1for j=2:n-1temp=-8*pic(i,j)+pic(i-1,j)+pic(i+1,j)+pic(i,j-1)+pic(i,j+1)+pic(i-1, j-1)+pic(i+1,j+1)+pic(i+1,j-1)+pic(i-1,j+1);if temp>threshflapEdge(i,j)=255;elseflapEdge(i,j)=0;endendendend主函数:clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);C=double(B);t=60;Lapmodtype=8;%设置模板方式flapEdge=LaplaceEdge(C,Lapmodtype,t); fgrayLapedge=uint8(flapEdge);figure()imshow(fgrayLapedge),title('laplace边缘检测图像');图 6(4)Kirsch算子clearclcclose allI=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);figure(1)imshow(B,[])title('原始图象')%对图象进行均值滤波bw2=filter2(fspecial('average',3),B);%对图象进行高斯滤波bw3=filter2(fspecial('gaussian'),bw2);%利用小波变换对图象进行降噪处理[thr,sorh,keepapp]=ddencmp('den','wv',bw3); %获得除噪的缺省参数bw4=wdencmp('gbl',bw3,'sym4',2,thr,sorh,keepapp);%图象进行降噪处理%---------------------------------------------------------------------%提取图象边缘t=3000; %设定阈值bw5=double(bw4);[m,n]=size(bw5);g=zeros(m,n);d=zeros(1,8);%利用Kirsch算子进行边缘提取for i=2:m-1for j=2:n-1d(1)=(5*bw5(i-1,j-1)+5*bw5(i-1,j)+5*bw5(i-1,j+1)-3*bw5(i,j-1)-3*bw5(i,j+1 )-3*bw5(i+1,j-1)-3*bw5(i+1,j)-3*bw5(i+1,j+1))^2;d(2)=((-3)*bw5(i-1,j-1)+5*bw5(i-1,j)+5*bw5(i-1,j+1)-3*bw5(i,j-1)+5*bw5(i, j+1)-3*bw5(i+1,j-1)-3*bw5(i+1,j)-3*bw5(i+1,j+1))^2;d(3)=((-3)*bw5(i-1,j-1)-3*bw5(i-1,j)+5*bw5(i-1,j+1)-3*bw5(i,j-1)+5*bw5(i, j+1)-3*bw5(i+1,j-1)-3*bw5(i+1,j)+5*bw5(i+1,j+1))^2;d(4)=((-3)*bw5(i-1,j-1)-3*bw5(i-1,j)-3*bw5(i-1,j+1)-3*bw5(i,j-1)+5*bw5(i, j+1)-3*bw5(i+1,j-1)+5*bw5(i+1,j)+5*bw5(i+1,j+1))^2;d(5)=((-3)*bw5(i-1,j-1)-3*bw5(i-1,j)-3*bw5(i-1,j+1)-3*bw5(i,j-1)-3*bw5(i, j+1)+5*bw5(i+1,j-1)+5*bw5(i+1,j)+5*bw5(i+1,j+1))^2;d(6)=((-3)*bw5(i-1,j-1)-3*bw5(i-1,j)-3*bw5(i-1,j+1)+5*bw5(i,j-1)-3*bw5(i, j+1)+5*bw5(i+1,j-1)+5*bw5(i+1,j)-3*bw5(i+1,j+1))^2;d(7)=(5*bw5(i-1,j-1)-3*bw5(i-1,j)-3*bw5(i-1,j+1)+5*bw5(i,j-1)-3*bw5(i,j+1 )+5*bw5(i+1,j-1)-3*bw5(i+1,j)-3*bw5(i+1,j+1))^2;d(8)=(5*bw5(i-1,j-1)+5*bw5(i-1,j)-3*bw5(i-1,j+1)+5*bw5(i,j-1)-3*bw5(i,j+1 )-3*bw5(i+1,j-1)-3*bw5(i+1,j)-3*bw5(i+1,j+1))^2;g(i,j) = max(d);endend%显示边缘提取后的图象for i=1:mfor j=1:nif g(i,j)>tbw5(i,j)=255;elsebw5(i,j)=0;endendendfigure(2)imshow(bw5,[])title('Kirsch ')图7(5)LoG和canny算子clear;I=imread('C:\Users\admin\Desktop\mao.jpg');B=rgb2gray(I);bw1=edge(B,'log',0.01);bw3=edge(B,'canny',0.1);figure;subplot(1,2,1);imshow(bw1,[]);title('loG边缘检测'); subplot(1,2,2);imshow(bw3,[]);title('canny边缘检测');图83、大津法实现图像分割clear;I=imread('C:\Users\admin\Desktop\cat.jpg');B=rgb2gray(I);T = graythresh(B);%求阈值BW = im2bw(B,T);%二值化imshow(BW,[])图9。

相关文档
最新文档