结构力学学习要点简介
结构力学最全知识点梳理及学习方法

结构力学最全知识点梳理及学习方法结构力学是工程领域的基础学科之一,主要研究物体在受力作用下的变形和破坏行为。
下面将对结构力学的知识点进行梳理,并提供一些学习方法。
1.静力学知识点:(1)力的分解与合成(2)平衡条件及对应的力矩平衡条件(3)杆件内力分析(4)支座反力的计算(5)重力中心和重力矩计算方法学习方法:静力学是结构力学的基础,要通过大量的练习加深对概念和公式的理解,并注重实际问题的应用。
2.应力学知识点:(1)应力的定义和类型(正应力、剪应力、主应力等)(2)应力的均衡方程(3)材料的本构关系(线性弹性、非线性弹性、塑性等)(4)薄壁压力容器的应力分析学习方法:应力学是结构力学的核心内容,要掌握应力的计算方法和不同材料的应力应变关系,需要多阅读教材和参考书籍,理解背后的物理原理,并进行大量的练习。
3.变形学知识点:(1)应变的定义和类型(线性应变、剪应变、工程应变等)(2)应变-位移关系(3)杆件弹性变形分析(4)杆件的刚度计算学习方法:变形学是结构力学的重要组成部分,要掌握应变的计算方法和杆件的变形规律,可以通过编程模拟杆件的变形过程或进行实验验证。
4.强度计算知识点:(1)材料的强度和安全系数(2)拉压杆件的强度计算(3)梁的强度计算(4)刚结构的强度计算5.破坏学知识点:(1)破坏形态(拉伸、压缩、剪切、扭转等)(2)材料的断裂特性和疲劳破坏(3)结构的失效分析(4)杆件和梁的屈曲分析学习方法:破坏学是结构力学的进一步深入,要了解不同破坏形态的特点和计算方法,并进行典型案例分析,以提高预测和识别破坏的能力。
学习方法总结:(1)理论学习:多阅读教材和参考书籍,并注重理解概念和原理。
(2)练习和实践:进行大量的计算练习和模拟分析,提高解决实际结构问题的能力。
(3)案例分析:通过分析实际案例,学习不同结构的设计和分析方法。
(4)交流和讨论:与同学和老师进行交流和讨论,共同学习和解决问题。
结构力学知识点超全总结

结构力学知识点超全总结结构力学是一门研究物体受力和变形的力学学科,它是很多工程学科的基础,如土木工程、机械工程、航空航天工程等。
以下是结构力学的一些重要知识点的总结:1.载荷:结构承受的外力或外界加载的活动载荷,如重力、风荷载、地震载荷等。
2.支座反力:为了平衡结构受力,在支座处产生的力。
3.静力平衡:结构处于静止状态时,受力分析满足力的平衡条件。
这包括平面力系统的平衡、剪力力系统的平衡和力矩力系统的平衡。
4.杆件的拉力和压力:杆件受力状态分为拉力和压力。
拉力是杆件由两端拉伸的状态,压力是杆件由两端压缩的状态。
5.梁的受力和变形:梁是一种长条形结构,在实际工程中经常使用。
梁的受力分析包括剪力和弯矩的计算,梁的变形包括弯曲和剪切变形。
6.悬臂梁和简支梁:悬臂梁是一种只有一端支座的梁结构,另一端自由悬挂。
简支梁是两端都有支座的梁结构。
7.梁的挠度和渐进程度:梁的挠度是指结构在受力后发生的形变。
梁的渐进程度是指梁的挠度随着距离变化的情况。
8.板和平面受力分析:板是一种平面结构,它的受力和变形分析和梁类似。
平面受力分析是一种在平面框架结构上进行受力分析的方法。
9.斜拉索:斜拉索是一种由杆件和拉索组成的结构,它广泛应用于桥梁、摩天大楼等工程中。
斜拉索的受力分析包括张力和弯矩的计算。
10.刚度:刚度是指物体在受力作用下抵抗变形的能力。
刚度越大,物体的变形越小。
刚度可以通过杆件的弹性模量和几何尺寸进行计算。
11.弹性和塑性:结构的受力状态可以分为弹性和塑性两种情况。
弹性是指结构受力后能够恢复到原始形状的性质,塑性是指结构受力后会产生永久变形的性质。
12.稳定性和失稳:结构的稳定性是指结构在受力作用下保持原始形状的能力。
失稳是指结构在受力过程中无法保持原始形状,产生不稳定状态。
13.矩形截面和圆形截面的力学特性:矩形截面和圆形截面是两种常见的结构截面形状。
矩形截面具有较高的抗弯刚度,而圆形截面具有较高的抗剪强度。
《结构力学》知识点归纳梳理(最祥版本)

《结构力学》知识点归纳梳理(最祥版本)第一章绪论第一节:结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
第二节结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于分析和计算.......。
三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
不存在结点对杆的转动约束,即由于转动在杆端不会产生力矩,也不会传递力矩,只能传递轴力和剪力,一般用小圆圈表示。
(2)刚结点:结点对与之相连的各杆件的转动有约束作用,转动时各杆间的夹角保持不变,杆端除产生轴力和剪力外,还产生弯矩,同时某杆件上的弯矩也可以通过结点传给其它杆件。
(3)组合结点(半铰):刚结点与铰结点的组合体。
4.支座的简化:以理想支座代替结构与其支承物(一般是大地)之间的连结(1)可动铰支座:又称活动铰支座、链杆支座、辊轴支座,允许沿支座链杆垂直方向的微小移动。
结构力学知识点考点归纳与总结

P/2
P/2
P/2
简化
(b)
反对称荷载
四(本大题 9 分)图示结构 B 支座下沉 4 mm,各杆 EI=2.0×105 kN·m2,用力法计算并 作 M 图。
4m 6m
FP
B △=4 mm
2 计算图示结构,并作 M 图。EI=常 数。
FP
l2 l l l l l2
2.1.4 多余约束和非多余约束 不能减少体系自由度的约束叫多余约束。 能够减少体系自由度的约束叫非多余约束。 注意:多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。
2.3.1 二元体法则 约束对象:结点 C 与刚片 约束条件:不共线的两链杆; 瞬变体系
§2-4 构造分析方法与例题 1. 先从地基开始逐步组装
2.4.1 基本分析方法(1) 一. 先找第一个不变单元,逐步组装
1. 先从地基开始逐步组装
2. 先从内部开始,组成几个大刚片后,总组装
二. 去除二元体 2.4.3 约束等效代换
1. 曲(折)链杆等效为直链杆 2. 联结两刚片的两链杆等效代换为瞬铰
①.分析: 1.折链杆 AC 与 DB 用直杆 2、
的转角位移 11x1 1p 0
原结构在B处的
11
x1 1
相对角位移 x1 1
1P
P
A
基本结构在一对力偶x1
基本结构⑶
和荷载P共同作用下在
B处的相对角位移
7-1-2 对称结构在对称荷载作用下(特点:M、N图对称,Q图反对称)
a. 奇数跨 — 取半边结构时,对称轴截面处视为定向支座。
例4
例5
答案要点
例 1d
例 2d
例 3d 例 5d 要点
❤求水平推力 H
结构力学最全知识点梳理及学习方法

第一章绪论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦材料力学——以研究单个杆件为主♦弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构♦结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
...计算..分析和三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
结构力学主要知识点归纳

结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。
常具体划分为常变体系和瞬变体系。
2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。
3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。
A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W<0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。
《结构力学》知识点归纳梳理

《结构力学》知识点归纳梳理《结构力学》是土木工程、建筑工程等专业的重要基础课程之一,它主要研究物体受力作用下的力学性质及其运动规律。
结构力学的知识对于设计和分析各种工程结构具有重要意义。
以下是对《结构力学》中的一些重要知识点进行归纳梳理。
1.静力学基本原理:(1)牛顿第一定律与质点的平衡条件;(2)牛顿第二定律与质点运动方程;(3)牛顿第三定律与作用力对;(4)力的合成与分解。
2.力和力矩的概念和计算:(1)力的点表示和力的向量运算;(2)力矩的点表示和力矩的向量运算;(3)力的矢量和点表示的转换。
3.等效静力系统:(1)强心轴的概念和计算;(2)悬臂梁的等效静力;(3)等效力和等效力矩。
4.支持反力分析:(1)节点平衡法计算支持反力;(2)静力平衡方程计算支持反力。
5.算术运算法:(1)类似向量的加法和减法;(2)类似向量的数量积和向量积。
6.静力平衡条件:(1)法向力平衡条件;(2)切向力平衡条件;(3)力矩平衡条件。
7.杆件受力分析:(1)内力的概念和分类;(2)弹性力的性质和计算方法;(3)强度力的性质和计算方法。
8.杆件内力的作图法:(1)内力的几何关系;(2)内力图的作图方法。
9.杆件内力的计算方法:(1)等效系统的概念和计算方法;(2)推力与拉力的分析与计算。
10.刚性梁的受力分析:(1)刚性梁的受力模式;(2)刚性梁的截面受力分析;(3)刚性梁的等效荷载。
11.弯矩与剪力的计算方法:(1)弯矩和剪力的表达式;(2)弯矩和剪力的计算方法。
12.杆件的弯曲:(1)弯曲梁的受力分析;(2)弯曲梁的弯曲方程。
13.弹性曲线:(1)弹性曲线的概念和性质;(2)弹性曲线的计算方法。
14.梁的挠度:(1)梁的挠度方程;(2)梁的挠度计算方法。
15.梁的受力:(1)梁受力分析的应用;(2)梁的横向剪切力。
以上是对《结构力学》中的一些重要知识点的归纳和梳理。
通过学习和掌握这些知识点,可以帮助我们更好地理解结构力学的基本原理,从而能够进行工程结构的设计和分析。
结构力学知识点

结构力学知识点结构力学是研究结构在外力作用下的受力和变形规律的学科,它涉及到力学、材料科学、数学等多个领域的知识。
以下是结构力学的主要知识点总结:1. 基本概念- 外力:作用在结构上的力,包括重力、风力、地震力等。
- 内力:结构内部由于外力作用而产生的力,如拉力、压力、剪力等。
- 变形:结构在外力作用下形状或尺寸的变化。
- 刚度:结构抵抗变形的能力。
- 强度:结构在外力作用下不发生破坏的能力。
2. 基本假设- 材料均质连续:假设结构材料是均匀且连续分布的。
- 线弹性:材料的应力与应变关系遵循胡克定律,即在弹性范围内应力与应变成正比。
- 小变形:结构的变形量远小于原始尺寸,可以忽略变形对结构受力的影响。
3. 基本方法- 静力平衡:通过静力平衡方程求解结构的内力。
- 虚功原理:利用虚功原理求解结构的位移和应力。
- 能量方法:通过能量守恒原理分析结构的受力和变形。
- 有限元分析:利用数值方法将结构离散化,通过计算机求解结构的受力和变形。
4. 基本构件- 杆件:承受轴向力的构件,如梁、柱。
- 梁:承受弯矩和剪力的构件,通常承受垂直于轴线的载荷。
- 板:承受面内力的构件,如楼板、墙板。
- 壳:承受曲面内力的构件,如屋顶、管道。
5. 基本理论- 材料力学:研究材料在外力作用下的应力、应变和破坏规律。
- 弹性力学:研究材料在弹性范围内的应力、应变和变形规律。
- 塑性力学:研究材料在塑性变形范围内的应力、应变和变形规律。
- 断裂力学:研究材料在外力作用下的裂纹扩展和断裂规律。
6. 分析方法- 刚度法:通过建立结构的刚度矩阵求解结构的位移和内力。
- 柔度法:通过建立结构的柔度矩阵求解结构的位移和内力。
- 弯矩分配法:一种简化的梁结构分析方法,通过分配弯矩来求解结构的内力。
- 影响线法:通过绘制结构的弯矩、剪力等影响线来分析结构的受力。
7. 结构稳定性- 屈曲:结构在外力作用下失去稳定性,发生弯曲变形。
- 振动:结构在外力作用下发生的周期性运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超静定桁架 组合结构
Introduction 特点: 1) 桁架由直杆组成,所有结点都是铰结点,荷载作用于结 点上,各杆只受轴力;
2) 组合结构则是由梁式杆和链杆组成,其中梁式杆以受弯为 主,内力不仅有轴力,还有弯矩和剪力。
5. 悬吊结构(Suspended structures) 索只能承担拉力,不能受压力、剪力和弯矩。
由杆件长度远大于横截面尺 寸的细长杆组成的结构。
2. 薄壁结构(Thin Walled Structures) 厚度远小于其长度和宽度的 结构。亦称板壳结构
Introduction
3. 实体结构(Massive Structures) 长、宽、高三个尺寸相近的结构。
三、结构力学研究的对象和任务
1. 对象(Object) 结构力学研究由细长杆件组成的平面杆系结构,如
2. 按荷载作用位置可分为: 固定荷载(Fixed load)—作用位置不变的荷载,如自重等。
移动荷载(Moving load)—荷载作用在结构上的位置是移动的, 如吊车荷载、桥梁上的汽车和火车荷载。
Introduction
3. 按荷载作用的性质可分为:
静荷载(Static load)——荷载的大小、方向、位置不随时间变 化或变化很缓慢的荷载。恒载都是静荷载。
A
A1
各杆件在连接处不能够发生任意的相对位移 特点 各杆件在刚结点连接处能够承担并传递力矩
3.组合结点(Composite joints)
特点
部分具有铰结点性质,部分具 刚结点性质
Introduction
§1-5 杆件结构的分类
1. 梁(Beam) 1)单跨梁(Single-span beam)
Introduction
Chapter 1 Introduction
§1-1 结构力学的研究对象和任务
§1-2 荷载的分类 §1-3 结构计算简图 §1-4 支座和结点的类型 §1-5 结构的分类
重点: 结构力学的研究对象和任务 结构的计算简图
难点: 结构的计算简图
Introduction
§1-1 结构力学的研究对象和任务
动力分析(Dynamic Analysis)是研究结构的动力特性以及 在动荷载作用下的动力反应。 极限荷载(Ultimate Load)的求解是为了充分发挥结构的 承载能力,由讨论结构的弹性计算转变为塑性计算。
四、基本假设
1.微小连续变形(Small Deformation) 变形与杆件尺寸相比很小,结构变形后几何尺寸无变 化,荷载位置及作用线不变。
Introduction
结构力学
Structural Mechanics
Introduction
几句赠言 本课程中的力学分析,基本上都是基于牛顿定律的。
我想用牛顿的一段话作为开头:
我不知道世人怎样看我,但我自己看来,我不过像是一个在海 边玩耍的小孩,不时发现比寻常更光滑的一块石子,或比寻常 更美丽的一片贝壳而沾沾自喜,对展现在我面前的浩瀚的真理 海洋却全然没有发现。布儒斯特(回忆牛顿1855)
4. 荷载(Load)的简化 集中力、集中力偶、分布荷载
5. 体系(System)的简化 空间结构、平面结构
Introduction
§1-4 支座和结点的类型
一、支座和支座反力(Supports and Reactions)
把结构与基础联结起来的装置称为支座。 1. 固定支座(Fixed support)
强度检算(Strength Validation)在于保证结构物使用中的 安全性,并符合经济要求。
刚度计算(Stiffness Validation)在于保证结构物不会产 生过大的变形从而影响使用。
稳定性验算(Stability Analysis)在于保证结构不会产生 失稳破坏。
Introduction
B
A
模型
工程实例
Introduction
简图:
FxA A
A
MA
特点:
FyA
1) 杆端截面A不产生线位移和角位移;
2) 杆端截面A有反力矩以及沿x、y方向的反力。
2. 固定铰支座(Hinged support)
模型
FxA A
FyA
FxA A
FyA
Introduction 特点:
1) 杆端截面A无线位移,可以自由转动; 2) 杆端截面A产生沿x、y方向的反力。 3. 辊轴支座(Roller support)
意义: 简化计算
没有必要
二、确定计算简图的原则
1.能反映实际结构的主要力学特性 2.分析计算尽可能简便
Introduction
三、计算简图的内容
1. 杆件(Member)的简化 杆件 杆件的轴线 2. 结点(Joint)的简化 刚结点、铰结点、半铰结点 (组合结点) 3. 支座(Support)的简化 固定铰支座、可动较支座、 固定端支座、滑动支座(定向支座)
静定梁
超静定梁
2)多跨梁(Multi-span beam) 静定多跨梁
连续梁
Introduction
梁的特点: 梁的轴线通常为直线,在竖向荷载作用下,截面存在弯矩、 剪力和轴力。 2. 刚架(Frames)
静定刚架
超静定刚架
刚架的特点:
1)刚架通常由梁和柱等直杆组成,杆件与杆件连结的结 点多为刚结点; 2)荷载作用下杆件截面存在弯矩、剪力和轴力。
牛顿 Isaac Newton 1642~1727, 物理、数学和天文学家,建立 牛顿定律,发现万有引力定律,建立经典力学基本理论。
大多数人一心想着都是如何谋生,而你们中的佼佼者关心的 则是更大的事情,比方赚大钱、建立自己的公司、当官走仕 途之路等。作为老师,总还希望有些人追求下述目标:把自 然现象归结为有序的、简单的、牛顿式的解释。
A
A
特点: FyA
1) 杆端A产生垂直于链杆方向的线位移; 2) 杆端A产生的支座反力沿链杆方向作用。
Introduction 4. 滑动支座(Directional support)
A
模型 特点:
A
MA
Fy A
A
MA
Fy A
1)杆端A无转角,不能产生沿链杆方向的线位移,可 以产生垂直于链杆方向的线位移;
:梁、桁架、刚架、拱及组合结构等。
2. 任务(Task) 平面杆件体系的几何构造分析; 讨论结构的强度、刚度、稳定性、动力反应以及结构
极限荷载的计算原理和计算方法等。
Introduction
几何构造分析(Geometric Stability Analysis)主要是讨论 几何不变体系的组成规律,因为只有几何不变体系才能作 为结构来使用。
一、结构(Structures)
建筑物或构筑物中承受、传递荷载而起骨架作用的 部分称为结构。如:房屋中的梁柱体系、桥梁、水坝等 等都是工程结构的例子。
Introduction
Introduction
二、结构分类(Types of Structures)
1. 杆系结构(Framed Structures)
2.材料服从虎克定律(Hooke’s Law)
E
思考:这两条假设有何必要?
Introduction
§1-2 荷载的分类
一、 荷载(Load)
荷载是主动作用在结构上的外力
1. 按荷载作用时间长短可分为:
恒载(Dead load)—长期作用在结构上的不变荷载。
活载(Live load)—暂时作用在结构上可变荷载。如:列车荷 载、楼面活荷载、雪荷载。
Introduction
3. 拱(Arches)
FP
FH FV
三铰拱
FH
FV
拉杆Байду номын сангаас拉杆拱
拱的特点:
1) 拱的轴线为曲线,在竖向荷载作用下支座有水平推力 (见图);
2) 拱轴截面的轴力较大,弯距和剪力较小。
Introduction 4. 桁架和组合结构(Trusses and composite structures)
2)杆端A存在反力矩以及沿链杆方向的反力。
Introduction
二、结点(Joints)
把杆件与杆件联结起来的装置称为结点
1.铰结点(Hinge joints)
特点
各杆件在连接处能够发 生任意的相对转动
各杆在铰结点的端部不 能承担力矩
0
Introduction 2.刚结点(Rigid joints)
动荷载(Dynamic load)——荷载的大小、方向随时间迅速变 化,使结构产生显著振动,结构的质量承受的加速度及惯性 力不能忽略。化爆和核爆炸的冲击波荷载、地震荷载和风荷 载等都是动力荷载。
Introduction
§1-3 结构的计算简图
一、计算简图的概念和意义
计算简图(Computing Model):在结构分析当中用来 代替实际结构的理想化计算模型(图形)。