橡胶成分及分类常识资料

合集下载

橡胶橡胶分类天然橡胶合成橡胶通用合成橡胶特种合成橡胶一

橡胶橡胶分类天然橡胶合成橡胶通用合成橡胶特种合成橡胶一
于制作减震零件、在汽车刹车油、乙 醇等带氢氧根的液体中使用的制品。
2、天然橡胶的规格划分
标准胶 (又称颗粒胶) 烟胶片 浓缩胶 白绉胶片 浅色胶片 胶清橡胶 风干胶片等
(1)标准胶划分:
• 5号胶为一级胶,是最好的胶,其所含杂质为0.05%;
一级 SCR5
• 用途:5号胶一般用于制作轮胎内胎;
硅橡胶的应用:
航空、尖端技术、军事技术部门的特种材料使 用,而且也用于国民经济各部门,其应用范围 已扩到:建筑、电子电气、纺织、汽车、机械 、皮革造纸、化工轻工、金属和油漆、医药医 疗等。
6、氟橡胶:
来源:主链或侧链的碳原子上含有氟原子的合成 高分子弹性体。
特质:氟橡胶耐高温、耐油、耐化学腐蚀。是现 代航空、导弹、火箭、宇宙航行等尖端科 学技术不可缺少的材料。
(2)、国内丁苯橡胶主要生产企业与常用牌号:
简称 SBR
规格型号 1500 1502 1712
生产企业 齐鲁石化 吉林石化 兰州石化 南京扬金 南通申华 浙江浙晨
SBR-1500 是通用污染型软丁苯橡胶的最典型品种,生胶的粘着性和加工性能均优, 硫化胶的耐磨性能、拉伸强度、撕裂强度和耐老化性能较好。
来源:由氯丁橡胶聚合而生产的合成橡胶。
特质:溶于氯仿、苯等有机溶剂,在植物油和 矿物油中溶胀而不溶解。有良好的物理 机械性能,耐油,耐热,耐燃,耐日光 ,耐臭氧,耐酸碱,耐化学试剂,缺点 是耐寒性和贮存稳定性较差。
氯丁橡胶的应用:
CR122型:传动带、运输带、电线电缆、耐油胶板、耐 油胶管、密封材料等橡胶制品。
二、通用合成橡胶
1、丁苯橡胶: (1)丁苯橡胶的基础知识:
来源:丁二烯与苯乙烯之共聚合物; 优点:低成本的非抗油性材质,良好的抗水性,硬度 70 以

橡胶元素成分

橡胶元素成分

橡胶元素成分
1、天然橡胶(NR)
成分:以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。

2、丁苯橡胶(SBR)
成分:丁二烯和苯乙烯的共聚体。

性能接近天然橡胶,是目前产量最大的通用合成橡胶。

3、顺丁橡胶(BR)
成分:由丁二烯聚合而成的顺式结构橡胶。

4、异戊橡胶(IR)
成分:由异戊二烯单体聚合而成的一种顺式结构橡胶。

化学组成、立体结构与天然橡胶相似,性能也非常接近天然橡胶,故有合成天然橡胶之称。

5、氯丁橡胶(CR)
成分:由氯丁二烯做单体乳液聚合而成的聚合体。

这种橡胶分子中含有氯原子,所以与其他通用橡胶相比有其自身特点。

6、丁基橡胶(IIR)
成分:异丁烯和少量异戊二烯或丁二烯的共聚体。

7、丁晴橡胶(NBR)
成分:丁二烯和丙烯晴的共聚体。

8、氢化丁晴橡胶(HNBR)
成分:丁二烯和丙烯晴的共聚体。

它是通过全部或部分氢化NBR
的丁二烯中的双键而得到的。

9、乙丙橡胶(EPM\\EPDM)
成分:乙烯和丙烯的共聚体,一般分为二元乙丙橡胶和三元乙丙橡胶。

橡胶基本知识介绍

橡胶基本知识介绍

• ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨
2、顺丁橡胶

• ①

③ ④
Hale Waihona Puke 顺丁橡胶是以丁二烯为单体,在定向聚合催化剂的作用下,采 用溶液聚合 方法而制得的弹性聚合物。 顺丁橡胶具有如下性能: 顺丁橡胶由于其分子的顺式结构,分子排列规整,所以具有很高的弹 性,比天然橡胶还好,是所有橡胶中弹性最大的一种橡胶。 顺丁橡胶是不饱和橡胶,具有与天然橡胶类似的化学性质,可与硫磺 及氧等反应。与天然橡胶比较,其硫化速度较慢,耐老化和耐热性能 好。 顺丁橡胶是非极性橡胶,能溶于烃类溶剂中,不耐油。 顺丁橡胶加工性能较差,粘着性不好,对加工温度的变化较为敏感。 顺丁橡胶在湿滑地面上易打滑,且生胶的冷流性大。

丙烯酸酯橡胶是由丙烯酸酯单体聚合而成,由于丙烯酸酯橡胶结 构的饱和性以及带有极性酯基侧链,因此耐热性能、耐油性能很好, 耐天候老化性能和耐臭氧老化性能良好;但耐水性和耐水蒸汽性能比 较差。
12、氯醇橡胶 • 氯醇橡胶是以环氧氯丙烷为单体制得的一类聚醚型橡胶。它兼具了饱 和橡胶和极性橡胶的通性,分为均聚氯醇胶和共氯醇胶两大类,它们共同 的特性是:

• • •
• •

① ② ③
7、丁腈橡胶

• • • • • • • • 弹性,耐寒性较差 • 电绝缘性差 • 丁腈橡胶的缺点 • 耐臭氧性能不好 • 耐酸性差
丁腈橡胶是由丁二烯和丙烯腈聚合的弹性共聚物。 耐油性能优良 气密性好 丁腈橡胶性能 耐热、耐老化、耐磨等性能优于天然胶 丁腈橡胶能与其他各种橡胶并用
• 通过-50℃到-100℃温度下,通过高速喷射的精细弹丸粒子,高效 地处理包括精密O型圈制品的高精尖产品。
7、二次硫化 • 通过一定温度和时间后加热处理,使氟橡胶、氟硅橡胶和氢化 丁腈等橡胶制品的性能达到最佳状态。 • 用明显的说明时刻提醒和标识产品后处理的状态。

橡胶配方的组成和作用及其分类

橡胶配方的组成和作用及其分类

橡胶配方由什么组成及其作用是什么?橡胶实际上就是通过提取橡胶树、橡胶草等植物的胶乳,经由生产加工后制作而成的具备弹性、绝缘性、不透水和空气的材料。

高弹性的高分子化合物。

可分为天然橡胶与合成橡胶两种。

天然橡胶是在橡胶树、橡胶草等植物中提取胶质后生产加工制作而成;合成橡胶则由各类单体经聚合反应而得。

现今橡胶制品已广泛应用于工业或生活的各方面。

那么,橡胶具体是如何制作而成的配方中都有哪些组成成分呢?下面小弗就给大家简单介绍一下橡胶配方的组成成分都有哪些。

一、橡胶配方的组成橡胶配方中含有很多种成份,这类成份也称之为配合剂。

每一种成份在胶料中起到着不同的效果。

就是因为很多种配合剂的共同反应才使胶料有着相应的物理机械性能和生产加工特性,胶料配方由下述几部份构成(1)生胶为配方的关键材料,可是单一胶种,也可以是2种或2种以上的胶种并用,或为橡塑共混料。

生胶的品类和在配方中的含量决定了胶料最基础的特性,比如配方中生胶为天然橡胶,则此配方胶料有着优质的拉伸强度、伸长率、撕裂强度及优良的弹性;生胶为丁腈橡胶,则该配方胶料有着优质的耐油性能等.(2)硫化体系包含硫化剂、促进剂和活性剂。

硫化剂如硫黄、过氧化物、硫黃给子体等,在配方中的作用是使橡胶大分子间形成交联,形成网状三维结构,使橡胶有着较高的强度、弹性等物理机械性能;促进剂在配方中的效果是促进硫化速率、减少硫化时长,其品类有噻唑类、次磺酰胺类、秋兰姆类、胍类和硫脲类等;活性剂的效果是增强促进剂的活性,也称之为助促进剂。

关键品类是金属氧化物如氧化锌和有机酸如硬脂酸等。

硫化剂、促进剂、活性剂这三类共同反应使胶料达到充足硫化面有着一定的物理机械性能.(3)防护体系在配方中的关键作用是防止橡胶制品在储在储存、应用环节中受光、热、空气中氧气效果形成降解,或更进一步交联、硬化等老化问题。

其关键品类有各类胺类和取代酚。

(4)补强填充体系补强剂包含各种类型的炭黑、白炭黑,在胶料中起补强效果。

16种橡胶的化学组成性能特点及主要用途

16种橡胶的化学组成性能特点及主要用途

16种橡胶的化学组成性能特点及主要用途1. 天然橡胶(Natural Rubber,NR)化学组成:主要成分是聚异戊二烯。

性能特点:具有良好的弹性、耐磨性、电绝缘性和耐候性,在常温下具有较大的形变能力,耐热性能较差。

主要用途:轮胎、带、输送带、软管、胶板等。

2. 顺丁橡胶(Polybutadiene Rubber,BR)化学组成:主要成分是聚丁二烯。

性能特点:具有良好的耐磨性、抗老化性和高弹性,但耐腐蚀性较差。

主要用途:轮胎、橡胶鞋底、密封件等。

3. 丁苯橡胶(Styrene Butadiene Rubber,SBR)化学组成:主要成分是丁二烯和苯乙烯。

性能特点:具有优良的耐磨性、强度和耐候性,但耐油性较差。

主要用途:轮胎、橡胶板、橡胶管、地板材料等。

4. 丁酮橡胶(Polyisoprene Rubber,IR)化学组成:主要成分是聚顺丁二烯。

性能特点:具有较好的耐磨性、拉伸强度和弹性,耐腐蚀性较差。

主要用途:医疗手套、弹簧、运动器材等。

5. 丁腈橡胶(Nitrile Rubber,NBR)化学组成:主要成分是丁二烯和丙烯腈。

性能特点:具有优良的耐油性、耐磨性和耐腐蚀性,但耐热性较差。

主要用途:燃油管、密封圈、工业橡胶制品等。

6. 硅橡胶(Silicone Rubber)化学组成:主要成分是聚二甲基硅氧烷。

性能特点:具有优良的热稳定性、耐高低温性、电绝缘性和耐老化性。

主要用途:电子产品、医疗器械、高温密封件等。

7. 丁基橡胶(Butyl Rubber, IIR)化学组成:主要成分是异戊烯和少量的异戊烯和丙烯。

性能特点:具有优良的气密性、耐老化性和耐热性,但耐磨性较差。

主要用途:内胎、胶带、密封圈等。

8. 克鲁橡胶(Chloroprene Rubber,CR)化学组成:主要成分是氯丁二烯。

性能特点:具有良好的耐候性、耐热性和耐老化性,但耐油性较差。

主要用途:防水材料、电缆护套、电子元件等。

9. 氟橡胶(Fluororubber,FKM)化学组成:主要成分是氟化烃。

橡胶的分类及介绍分解

橡胶的分类及介绍分解

橡胶的分类及介绍分解
橡胶,又称橡胶,是由自然界中的具有可延伸性的液体粘合物组成的
合成树脂,主要由橡胶聚合物,辅酶剂,填料,添加剂,助剂组成。

其具
有非常优异的耐磨性,耐高温,耐油,耐酸,耐碱,耐气候性,密封性,
拉伸性等极高特性。

橡胶分类:
一、根据自然与合成分类:
1.天然橡胶:也称为天然胶乳,是从木质针叶树实质中抽汁取得的,
性能稳定,耐酸碱,耐油,抗氧化,但价格较贵,使用广泛。

2.合成橡胶:合成橡胶是由石化材料经化学反应,加入化学改性剂,
调节耐油,抗氧化等性能而生产的,有两大类:硫丁橡胶和无硫橡胶。

二、根据硫化特性分类:
1.硫丁橡胶:也称为硫丁醇橡胶,是经常用于制造橡胶制品的硫化橡
胶型号,是由丙烯酸丁酯,硫丁醇,尿素勃兰及助剂等按一定比例混合经
加热硫化后而得到的。

它有优异的抗氧化性,耐磨性,耐油性,耐酸碱性,但其价格较贵,使用面积有限。

2.无硫橡胶:是由丙烯酸酯与其他热塑性高分子经加热熔融等物理方
法制成的,其分子结构不含硫键,抗拉伸,耐热,机械强度高,硬度高,
但易老化,价格较低,广泛应用。

橡胶知识简介

橡胶知识简介
元链节,以共价键结合而成的长链分子,其化 学结构式为:
天然橡胶为非极性大分子,具有优良的介电性 能,同时也使它的耐油耐溶剂性差。因天然橡 胶分子结构中含有不饱和双键,易进行氧化、 加成等反应,耐老化性能不佳。
第7页
(2)合成橡胶 合成橡胶可分为通用合成橡胶与特种合 成橡胶两类。 通用合成橡胶一般认为是丁苯橡胶、顺 丁橡胶、异戊橡胶; 特种合成橡胶是丁基橡胶、丁腈橡胶、 乙丙橡胶、硅橡胶、氯醇橡胶、聚氨酯橡 胶、丙烯酸橡胶、聚硫橡胶、氯磺化聚乙 烯及醇烯橡胶等。
第8页
(3)再生胶 再生橡胶是指废旧硫化橡胶经过粉碎、加热、 机械处理等物理化学过程,使其从弹性状态变 成具有塑性和粘性的能够再硫化的橡胶,简称 再生胶。 再生胶生产的主要反应过程是“脱硫“。指从 硫化橡胶中把结合硫磺取出而成为未硫化状态, 也即是一个与硫化相反的解聚作用,实际上并 不能使硫化橡胶中结合的硫磺与橡胶大分子分 离,也不能使硫化胶复原到生胶的结构状态。 所以现在认为硫化胶塑性的恢复,需要破坏 空间交联的结构,其能量的来源是热、机械作 用和化学助剂的塑解作用。
第11页
(四)防老剂 在使用或贮存过程中,由于热、氧、臭氧、阳光 等作用而导致分子链释解、支化或进一步交联等化学 变化,从而使材料原有的性质变坏,这种现象称为老 化。凡能抑制橡胶老化现象的物质叫做防老剂。
第12页
(五)防焦剂 橡胶加工过程中,要经过混炼、压延、压出、 硫化等一系列工序,胶料或半成品要经受不同温 度和时间的处理。 在硫化以前的各个加工操作及贮存过程中,由 于机械作用产生热量或者是高温条件,都有可能 使胶料在成型之前产生早期硫化,导致塑性降低, 从而使其后的操作难以进行,这种现象就称作焦 烧或早期硫化。防止橡胶早期硫化的添加剂,称 为防焦剂。

橡胶原材料分类及相关知识

橡胶原材料分类及相关知识

橡胶原材料分类及相关知识
引言
橡胶是一种常见的材料,广泛应用于制造业中的许多领域。

橡胶原材料的分类
和相关知识对于生产制造过程具有重要意义。

本文将介绍橡胶原材料的分类以及相关知识。

橡胶原材料的分类
根据来源和性质的不同,橡胶原料可以分为天然橡胶和合成橡胶两大类。

天然橡胶
天然橡胶是从橡胶树中提取的橡胶乳,经过干燥、硫化等加工工艺得到的原材料。

天然橡胶具有优良的弹性和耐磨性,广泛用于轮胎、橡胶制品等领域。

合成橡胶
合成橡胶是通过化学合成方法合成的橡胶材料,种类繁多。

合成橡胶可以根据
合成方法、用途等不同进行分类,常见的有丁腈橡胶、丙烯橡胶、氯丁橡胶等。

橡胶原材料的性能
橡胶材料具有许多优良的性能,如弹性、耐磨、耐化学腐蚀等,这些性能使橡
胶成为许多领域不可或缺的材料。

橡胶的性能受到原材料来源、生产工艺等因素的影响,合理选择和处理橡胶原料可以提高制品的品质和性能。

橡胶原材料的应用领域
橡胶原材料广泛应用于各个领域,主要包括汽车制造、建筑工程、医疗器械等。

橡胶制品种类繁多,如轮胎、密封件、橡胶管等,在各个领域都有重要的用途。

结论
橡胶原材料的分类和相关知识对于生产制造过程至关重要。

合理选择和处理橡
胶原材料可以提高制品的品质和性能,促进生产效率的提升。

希望本文对您了解橡胶原材料有所帮助。

以上就是本文关于橡胶原材料分类及相关知识的概述,希望能为您带来新的认
识与启发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SVENSK STANDARDSS-ISO 4650:2005Fastställd 2005-10-07Utgåva 2ICS 83.060Språk: engelskaPublicerad: november 2005Gummi – Identifikation – IR-spektrometermetod(ISO 4650:2005, IDT)Rubber – Identification – Infrared spectrometricmethod (ISO 4650:2005, IDT)Den internationella standarden ISO 4650:2005 gäller som svensk standard. Detta dokument innehåller den officiella engelska versionen av ISO 4650:2005.Denna standard ersätter SS-ISO 4650, utgåva 1.The International Standard ISO 4650:2005 has the status of a Swedish Standard. This document contains the official English version of ISO 4650:2005.This standard supersedes the Swedish Standard SS-ISO 4650, edition 1.Upplysningar om sakinnehållet i standarden lämnas av SIS, Swedish Standards Institute,telefon 08 - 555 520 00.Standarder kan beställas hos SIS Förlag AB som även lämnar allmänna upplysningar om svensk ochutländsk standard.Postadress: SIS Förlag AB, 118 80 STOCKHOLMTelefon: 08 - 555 523 10. Telefax: 08 - 555 523 11SS-ISO 4650:2005Contents PageForeword (v)1Scope (1)2Normative references (1)3Principle (1)4Types of rubber (1)4.1General (1)4.2Exceptions for blends (3)4.3Reference spectra (3)5Reagents (3)6Apparatus (4)7Procedure (5)7.1Procedure for raw rubber films moulded or cast from solution (5)7.2Procedure for raw rubbers, vulcanizates and films obtained from pyrolysate (5)7.3Procedure for vulcanized rubber film obtained after evaporation of the solution solvent (6)8Interpretation of spectra (7)8.1Reference spectra (7)8.2Tables of diagnostic absorptions (8)9Test report (8)Annex A (informative) Absorption characteristics and reference spectra (9)Table A.1 — Types of rubber and corresponding reference spectra (10)Table A.2 — Acrylic rubber (ACM) (11)Table A.3 — Chloropolyethylene (CM) (12)Table A.4 — Chlorosulfonylpolyethylene (CSM) (13)Table A.6 — Fluorocarbon rubber (FKM) (15)Table A.7 — Polychloromethyloxirane (CO) (16)Table A.8 — Copolymer of ethylene oxide and chloromethyloxirane (ECO) (17)Table A.9 — Polydimethylsiloxane (MQ) (18)Table A.10 — Butadiene rubber (BR) (19)Table A.11 — Chloroprene rubber (CR) (21)Table A.12 — Isobutene-isoprene rubber (IIR) (22)Table A.13 — Bromo-isobutene-isoprene rubber (BIIR) (23)Table A.14 — Natural rubber (NR) (24)Table A.15 — Isoprene rubber (IR) (25)Table A.16 — Acrylonitrile-butadiene rubber (NBR) (27)Table A.17 — Hydrogenated acrylonitrile-butadiene rubber (HNBR) (28)Table A.18 — Carboxylic-acrylonitrile-butadiene rubber (XNBR) (29)Table A.19 — Styrene butadiene rubber (SBR) (30)SS-ISO 4650:2005Table A.21 — Block copolymer of styrene and butadiene (TPS-SBS) (34)Table A.22 — Polystyrene-poly(ethylene-butylene)-polystyrene (TPS-SEBS) (35)Table A.23 — Block copolymer of styrene and isoprene (TPS-SIS) (36)Table A.24 — Polystyrene-poly(ethylene-propylene)-polystyrene (TPS-SEPS) (37)Table A.25 — Syndiotactic poly(1,2-butadiene) (TPZ) (38)Table A.26 — Copolyester TPE with a soft segment with ester and ether linkages (TPC-EE) (39)Bibliography (40)ForewordISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.ISO 4650 was prepared by Technical Committee ISO/TC 45, Rubber and rubber products, Subcommittee SC 2, Testing and analysis.This second edition cancels and replaces the first edition (ISO 4650:1984), which has been technically revised.Rubber — Identification — Infrared spectrometric method1 ScopeThis International Standard specifies a method for the identification of rubbers, including thermoplastic elastomers, either in the raw state or in the form of vulcanized or unvulcanized mixes. The method is based on infrared spectrometric examination using the transmission technique.The method comprises examination of polymers by their pyrolysis products (pyrolysates), or by films cast from solution or obtained by moulding (for raw rubbers only).Typical spectra are given in Annex A.The principle of the method implies that sample preparation and analysis of the infrared spectra are carried out by experienced personnel and that the equipment used for the production of spectra is operated in accordance with the manufacturer's instructions for optimum performance. Details of the operation of infrared spectrometers are not included in this International Standard.The method specified is a qualitative method only.2 Normative referencesThe following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.ISO 1407, Rubber — Determination of solvent extractISO 18064, Thermoplastic elastomers — Nomenclature and abbreviated terms3 PrincipleThe extractable material is first extracted from a test sample of the rubber and the rubber then prepared under precise conditions for spectroscopy in the form of raw polymer film, vulcanizate pyrolysate or vulcanizate film. The IR spectrum is recorded and then interpreted by comparison with a set of typical reference spectra. 4 Types of rubber4.1 GeneralThe method is applicable to rubbers in the raw state and, if compounded, in both the vulcanized and unvulcanized states. It is applicable to the following types of rubber occurring either alone or in a binary mixture when the proportion of the minor component is, in general, not less than 10 % to 20 % by mass of the mixture (see, however, exceptions in 4.2).4.1.1 M group4.1.1.1 Acrylic rubber (ACM): Copolymer of ethyl acrylate (or other acrylates) and a small amount of a monomer which facilitates vulcanization.4.1.1.2 Chloropolyethylene (CM) and chlorosulfonylpolyethylene (CSM): The method will not differentiate CM from CSM, and it will not differentiate between different types of CSM.4.1.1.3Ethylene-propylene copolymer (EP M) and ethylene-propylene-diene terpolymer (EP DM):The method will not differentiate between the two types of polymer. However, examination of the spectrum gives some information about the ethylene-to-propylene ratio.4.1.1.4Fluorocarbon rubber (FKM): Examination of the pyrolysate may give some information about the different grades of fluorocarbon rubber present.4.1.2 O group4.1.2.1P olychloromethyloxirane (CO): Copolymer of ethylene oxide and chloromethyloxirane (ECO) and terpolymers. Examination of the pyrolysate will not differentiate between different types of CO.4.1.3 Q group 4.1.3.1 P olydimethylsiloxane (MQ), polymethylphenylsiloxane (PMQ) and polymethyl-fluorosiloxane (FMQ): Examination of the pyrolysate will differentiate PMQ from MQ.4.1.4 R group4.1.4.1 Butadiene rubber (BR): Examination of the pyrolysate will not differentiate between butadiene rubbers having different isomer ratios. However, examination of a raw rubber film gives some information about the isomer ratio.4.1.4.2 Chloroprene rubber (CR): The method will not differentiate between the different types of CR.4.1.4.3 Isobutene-isoprene rubber (IIR) and halogenated isobutene-isoprene rubbers (BIIR and CIIR): Under the conditions used for the method, it is not possible to differentiate between IIR, BIIR, CIIR and polyisobutene.4.1.4.4 Natural rubber (NR) and synthetic isoprene rubber (IR): Natural rubber (1,4-cis -polyisoprene), gutta percha, balata (1,4-trans -polyisoprene) and synthetic isoprene rubber, whatever their microstructure, (1,4-cis , 1,4-trans or 3,4-) are included.4.1.4.4.1 Examination of a rubber film will differentiate between 1,4-cis , 1,4-trans and 3,4-polyisoprenes; for non-extracted rubbers, it will differentiate natural rubber from 1,4-cis synthetic isoprene rubber, and 1,4-trans natural polyisoprenes from their synthetic counterparts. Examination of the pyrolysate film obtained from a vulcanizate provides no information on the microstructure of the polyisoprene or its origin, whether natural or synthetic.4.1.4.5 Acrylonitrile-butadiene rubber (NBR): The method will differentiate carboxylic acrylonitrile-butadiene rubbers (XNBRs) from hydrogenated acrylonitrile-butadiene rubbers (HNBRs). Associations of butadiene copolymers and PVC are included. Examination of the pyrolysate film gives some information about the acrylonitrile content.4.1.4.6 Styrene-butadiene rubber (SBR): The method will differentiate D -methylstyrene-butadiene rubbers from styrene-butadiene rubbers. Copolymers of styrene and butadiene, as well as of their substituted derivatives (e.g. D -methylstyrene), are included. Examination of a pyrolysate will not differentiate emulsion-polymerized rubbers from solution-polymerized rubbers. However, examination of a spectrum gives some information about the monomer ratio.SS-ISO 4650:20054.1.4.7P olynorbornene.4.1.5 T group4.1.5.1P olysulfiderubbers.4.1.6 U group4.1.6.1 P olyester urethane (AU) and polyether urethane (EU): The method covers only millable polyurethanes.4.1.7 TP E group4.1.7.1 As defined in ISO 18064.4.2 Exceptions for blends4.2.1 Analysis of a blend of ethylene-propylene rubber with other rubbers presents difficulties when its ethylene-propylene content is below 40 %.4.2.2 The method will not differentiate between blends of ethylene-propylene rubber with chlorinated polyethylene and/or chloro-sulfonated polyethylene.4.2.3 Analysis of a blend of natural and/or synthetic polyisoprene and chloroprene rubber may present difficulties, and identification of the minor component may only be possible when the content is equal to or greater than 30 % in the blend.4.2.4 The method will not differentiate NBR from NBR/BR blends or NBR blends, nor will it differentiate SBR from SBR/BR blends or SBR blends.4.2.5 The presence of high quantities of sulfur in a vulcanizate may affect some characteristic bands.4.2.6 The method will not differentiate NBR/PVC blends from blends of NBR with other halogenated polymers or additives.4.3 Reference spectraTables of absorption characteristics and reference spectra from 4 000 cm–1 to 600 cm–1 for typical rubbers are given in Annex A.5 Reagents5.1 Nitrogen, in pressurized cylinders.5.2 Extraction solvents, chosen to achieve maximum extraction (alternative solvents may be used on condition that it can be shown that they do not interfere with the interpretation of the infrared spectrum):5.2.1 Methanol.5.2.2 Acetone.5.3 Solvents for rubber dissolution and film preparation, water-free and free from residues (see ISO 1407):5.3.1 Chloroform.SS-ISO 4650:20055.3.2 1,2-dichlorobenzene.5.4 Sodiumsulfate, anhydrous.5.5 Universal pH-indicator paper.6 Apparatus6.1 Extractionapparatus.The apparatus specified in ISO 1407 is satisfactory.6.2P yrolysis apparatus (see Figure 1), comprising a glass tube A having inward projections to preventthe sample from falling to the bottom of the tube, and a lateral condenser tube. The tube A has a standard ground-glass joint B that carries a small glass adductor tube. A collecting tube C is placed under the condenser tube. A thermoregulated electric furnace D accommodates an aluminium block E with holes for oneor more tubes A.KeyA glass tube for sampleB ground-glassjointC collectingtubeD thermoregulated electric furnaceE aluminium block, bored to hold tubesF thermocoupleFigure 1 — Temperature-controlled pyrolysis apparatusSS-ISO 4650:20056.3 Capillarypipettes.6.4 Oven, capable of being maintained at 200 °C r 5 °C.6.5 Waterbath.6.6 Polished potassium bromide salt plates.6.7 Filteraid, e.g. diatomaceous earth or similar.6.8 Infrared spectrometer, of either the Fourier transform or dispersive type, with a wavenumber range of 4 000 cm–1 to 600 cm 1 and a spectral resolution of 4 cm–1 or higher.7P rocedure7.1 Procedure for raw rubber films moulded or cast from solution7.1.1 Using a suitable solvent (see 5.2), extract the extractable material from a test sample of 2 g to 5 g in accordance with the procedure given in ISO 1407.7.1.2 Dissolve a sufficient amount of the extracted rubber in a suitable solvent (see 5.3), at room temperature or under reflux, to give a concentrated solution.7.1.3 Place a few drops of the concentrated solution on a potassium bromide salt plate (6.6) and allow the solvent to evaporate.7.1.4 Films of raw rubber of a suitable thickness may also be obtained by moulding.7.1.5 Record the spectrum from 4 000 cm–1 to 600 cm–1 using the infrared spectrometer (6.8).7.1.6 After recording the spectrum, verify that no solvent absorption bands are present and check that the bands of the spectrum are neither off-scale nor too low. If these conditions are not met, repeat the preparation procedure on a fresh test sample and record a new spectrum.7.1.7 A test for halogens may be carried out as described in 7.2.1.4.7.2 Procedure for raw rubbers, vulcanizates and films obtained from pyrolysateNOTE The methods described in 7.2.1 and 7.2.2 may give different relative absorbances for the polymers in a given blend.7.2.1 Preferred method: Temperature-controlled pyrolysis in a stream of nitrogen7.2.1.1 Extract a 2 g to 5 g test sample in accordance with the procedure given in ISO 1407.7.2.1.2 Depending on the nature of the composition of the unknown vulcanizate and of the type of apparatus used, place 0,5 g to 2 g of the extracted, dried test sample in the pyrolysis tube A (see Figure 1).7.2.1.3 Introduce a small quantity of sodium sulfate in the collector tube C to absorb water formed in the pyrolysis.7.2.1.4 Carry out a test for halogen, for instance by placing a strip of moistened indicator paper (5.5) across the mouth of the collecting tube. An acid colour, pH 1 to pH 2, indicates the presence of halogen. Residues of halogenated additives present in the vulcanizate may cause interference. Other suitable halogen-detection methods may also be used.SS-ISO 4650:20057.2.1.5 Bring the electric furnace D to 525 °C r50 °C and hold within this temperature range. This temperature range is recommended to obtain rapid pyrolysis without excessive degradation or carbonization.A temperature of 475 °C is advised, however, to obtain the maximum quantity of pyrolysate for NR, IR, BR, SBR, IIR, BIIR and CIIR.7.2.1.6 Pass a slow stream of nitrogen (5.1) through the pyrolysis tube A and introduce the tube containing the prepared test sample into a hole in the aluminium block E. Nitrogen serves to displace air, prevent oxidation and facilitate transfer of the pyrolysis products into the collecting tube C. Maintain the nitrogen flow at 10 cm3/min r 2 cm3/min.7.2.1.7 Continue the heating to complete distillation, i.e. for about 15 min.7.2.1.8 Place a few drops of the homogenized pyrolysate between two potassium bromide salt plates and mount the cell in the infrared spectrometer. Run the spectrum immediately after pyrolysis to avoid oxidation. 7.2.1.9 Record the infrared spectrum from 4 000 cm–1 to 600 cm–1, performing the same checks as described in 7.1.6.7.2.2 Alternative method: Gas flame pyrolysis7.2.2.1 Rapid pyrolysis may be performed in a test tube in place of the procedures described in 7.2.1.2, 7.2.1.3, 7.2.1.5, 7.2.1.6 and 7.2.1.7.7.3 Procedure for vulcanized rubber film obtained after evaporation of the solution solvent NOTE The methods described in 7.3.1 and 7.3.2 may give different relative absorbances for the polymers in a given blend. The films obtained by the method described in 7.3.2 may contain a higher proportion of the thermally less stable polymer.7.3.1 Dissolution of vulcanizate7.3.1.1 Prepare a test sample of about 2 g (or 6 g if the presence of chloroprene rubber is suspected) (see 7.3.1.2 and 7.3.1.3) and proceed with the extraction as described in ISO 1407.7.3.1.2 Pyrolyse approximately 1 g of the prepared test sample and carry out a halogen test as described in 7.2.1.4.7.3.1.3 If no chloroprene rubber is present, place 1 g of the test sample prepared in 7.3.1.1 and 50 cm3 ofa solvent appropriate to the rubber type (see 5.3) (1,2-dichlorobenzene is suggested) in a 100 cm3 flask fitted with a reflux condenser. If chloroprene rubber is present, place approximately 5 g of the test sample prepared in 7.3.1.1 with 200 cm3 of solvent in a 500 cm3 flask fitted with a reflux condenser.Heat the contents until the test sample has dissolved.The time required for adequate dissolution varies depending on the rubber, e.g. 3 h to 4 h for NR; 12 h for CR. To reduce the risk of altering the molecular structure of the rubber, do not exceed 12 h heating.7.3.1.4 If the rubber does not contain carbon black, centrifuge to eliminate mineral fillers.7.3.1.5 If the rubber contains carbon black, add 10 g to 20 g of filter aid (6.7) and filter through filter paper. Should the filtrate contain carbon black, repeat the filtration with more filter aid.NOTE Acrylonitrile-butadiene rubber (NBR) may be retained on the filter paper.7.3.1.6 Concentrate the centrifuged or filtered solution to a small volume under a stream of nitrogen (5.1) or reduced pressure.7.3.1.7 Evaporate a few drops of the concentrated solution on a potassium bromide salt plate.7.3.1.8 Record the infrared spectrum from 4 000 cm–1 to 600 cm–1, performing the same checks as described in 7.1.6.7.3.2 Mild thermal degradation of vulcanizates7.3.2.1 This technique shall not be used on blends which may contain chloroprene rubber.7.3.2.2 Prepare a test sample of 2 g as described in 7.2.1.17.3.2.3 Place the prepared test sample in a test tube capped with glass wool and heat for about 10 min in an oven (6.4) regulated at 200 °C r 5 °C (a temperature of 180 °C is advised for NR, IR, BR, SBR, IIR, BIIR and CIIR rubbers).7.3.2.4 Allow the test sample to cool, transfer to a 100 cm3 flask fitted with a reflux condenser and add 50 cm3 of chloroform (5.3.1) to the flask. Place the flask in a hot water bath.7.3.2.5 Allow the flask and contents to remain for about 30 min in the water bath, with the solvent refluxing, to dissolve the degraded rubber.7.3.2.6 Filter the mixture obtained in 7.3.2.5 through filter paper to remove any undissolved vulcanizate and fillers. Should carbon black be released from the vulcanizate, add a small amount of filter aid (6.7) to the solution before filtering.7.3.2.7 When it is suspected that the filtrate obtained in 7.3.2.6 contains material other than rubber which might interfere in the interpretation of the final spectrum, precipitate the polymer from the filtrate obtained in 7.3.2.6 using methanol. Filter off the recovered polymer and redissolve it in chloroform (5.3.1).7.3.2.8 Evaporate a few drops of the chloroform solution on a potassium bromide salt plate (6.6) to give a film thickness suitable for the production of an analytical spectrum.7.3.2.9 Record the spectrum from 4 000 cm–1 to 600 cm–1, performing the same checks as described in7.1.6.8 Interpretation of spectra8.1 Reference spectra8.1.1 Due to the existence of different spectral presentation modes, it may be necessary to prepare a set of reference spectra on the same infrared spectrometer as is used to analyse the unknown samples.8.1.2 Reference spectra shall be produced from test samples of known composition, following the procedure used for unknown samples.8.1.3 Spectra of mixtures are not given in Annex A because of the multiplicity of polymer combinations and proportions. Each laboratory should prepare its own set from test samples of known composition.8.1.4 Small, but unavoidable, variations in experimental conditions and instrument characteristics may give rise to slight differences in spectra. Spectra produced at different times may not be identical in terms of peak height and absorbance.8.1.5 In all cases, spectra shall be interpreted bearing in mind the result of the test for halogen.8.1.6 The comparison between test spectra and reference spectra shall take into account the wavenumbers of the bands, how many bands are present, their relative intensity and their form. Any unexpected bands shall also be interpreted. It is essential that all the bands be examined, irrespective of their number.8.2 Tables of diagnostic absorptions8.2.1 The tables of diagnostic absorption bands given in Annex A shall be used only in conjunction with reference spectra. Their purpose is to indicate the principal absorption bands.8.2.2 The tables complement the reference spectra by drawing attention to absorption bands which are absent, permitting the elimination of certain rubbers when ambiguity could otherwise arise.8.2.3 Diagnostic absorption bands are classified by increasing wavenumber. A diagnostic absorption band is one whose features are recognized by an experienced analyst as being of significance in rubber identification. These features, associated with certain compositional or structural characteristics of the pyrolysates and films, are reproducible in the sense that they are not seriously influenced by moderate variations in the conditions of pyrolysis or of dissolution.9 Test reportThe test report shall include the following particulars:a) a reference to this International Standard;b) all details required for the complete identification of the sample;c) the method used;d) identification of the rubber(s) in the sample;e) the date of the test.Annex A(informative)Absorption characteristics and reference spectraA.1 GeneralA.1.1This annex provides tables of absorption characteristics and figures showing reference spectra for pyrolysates and films.A.1.2 Comparisons between sample spectra and reference spectra will have to take into account the position of the bands, how many there are, their relative intensity and their shape.A.1.3 It is essential that all the bands in a spectrum be examined, with no restrictions on the zone which is searched for characteristic bands.A.2 Tables of absorption characteristics and figures showing reference spectraA.2.1 In order to ease the task of the user of this International Standard, the scale chosen for the presentation of the spectra is designed to show clearly the specific absorption bands.A.2.2 Table A.1 indicates which figures correspond to the reference spectra for which types of rubber.Table A.1 — Types of rubber and corresponding reference spectraFigure numberTable number Symbol for rubberType of rubberRaw polymer film VulcanizatepyrolysateM groupA.2A.3A.4A.5A.6ACM CM CSM EPDM FKMAcrylic rubber Chloropolyethylene ChlorosulfonylpolyethyleneEthylene-propylene-diene terpolymer Fluorocarbon rubberA.1A.3A.5A.7A.9A.2A.4A.6A.8A.10O groupA.7A.8CO ECOPolychloromethyloxiraneCopolymer of ethylene oxide and chloromethyloxiraneA.11A.13A.12Q groupA.9 MQ Polydimethylsiloxane A.14 A.15R groupA.10A.11A.12A.13A.14A.15A.16A.17A.18A.19A.20BRCR IIR BIIR NR IRNBR HNBR XNBR SBR E-SBRS-SBRHSBRButadiene rubber high-cis BR high-trans BR low-cis BRChloroprene rubber Isobutene-isoprene rubber Bromo-isobutene-isoprene rubber Natural rubberSynthetic isoprene rubber high-cis IR high-trans IRAcrylonitrile-butadiene rubberHydrogenated acrylonitrile-butadiene rubber Carboxylic-acrylonitrile-butadiene rubber Styrene-butadiene rubber Emulsion-polymerized SBR23,5 % styrene E-SBEhigh-styrene E-SBE Solution-polymerized SBR high-vinyl S-SBR high-styrene S-SBRHydrogenated styrene-butadiene rubberA.16A.18A.19A.20A.22A.24A.26A.28A.30A.32A.34A.36A.37A.39A.40A.41A.42A.17A.21A.23A.25A.27A.29A.31A.33A.35A.38TFE groupA.21A.22A.23A.24A.25A.26TPS-SBS TPS-SEBS TPS-SIS TPS-SEPS TPZ TPC-EEBlock copolymer of styrene and butadiene Polystyrene-poly(ethylene-butylene)-polystyrene Block copolymer of styrene and isoprene Polystyrene-poly(ethylene-propylene)-polystyrene Syndiotactic poly(1,2-butadiene)Copolyester TPE with a soft segment with ester and etherlinkagesA.43A.44A.45A.46A.47A.48Table A.2 — Acrylic rubber (ACM)Figure A.1 — Acrylic rubber — Raw polymerFigure A.2 — Acrylic rubber — VulcanizateTable A.3 — Chloropolyethylene (CM)Figure A.3 — Chloropolyethylene — Raw polymerFigure A.4 — Chloropolyethylene — VulcanizateTable A.4 — Chlorosulfonylpolyethylene (CSM)Film (raw polymer) Pyrolysate (vulcanizate)Wave numbercm–1Functional groupWave numbercm–1Functional group720— CH2—720— CH2 — 1 160 — SO2Cl 700 to 800 Unsaturation 1 260 800 to 1 000 Unsaturation 1 370 — SO2Cl1 460 — CH2 —Figure A.5 — Chlorosulfonylpolyethylene — Raw polymerFigure A.6 — Chlorosulfonylpolyethylene — VulcanizateTable A.5 — Ethylene-propylene-diene terpolymer (EPDM)Film (raw polymer) Pyrolysate (vulcanizate)Wave numbercm–1Functional groupWave numbercm–1Functional group720— CH2 — 720— CH2 —800 to 1 000 Unsaturation 1 370 — CH3 1 370 — CH31 460 — CH2 — 1 460 — CH2 —Figure A.7 — Ethylene-propylene-diene terpolymer — Raw polymerFigure A.8 — Ethylene-propylene-diene terpolymer — VulcanizateTable A.6 — Fluorocarbon rubber (FKM)Figure A.9 — Fluorocarbon rubber — Raw polymerFigure A.10 — Fluorocarbon rubber — VulcanizateTable A.7 — Polychloromethyloxirane (CO)Figure A.11 — Polychloromethyloxirane — Raw polymerFigure A.12 — Polychloromethyloxirane — VulcanizateTable A.8 — Copolymer of ethylene oxide and chloromethyloxirane (ECO)Figure A.13 — Copolymer of ethylene oxide and chloromethyloxirane — Raw polymerTable A.9 — Polydimethylsiloxane (MQ)Figure A.14 — Polydimethylsiloxane — Raw polymerFigure A.15 — Polydimethylsiloxane — VulcanizateTable A.10 — Butadiene rubber (BR)Film (raw polymer) Pyrolysate (vulcanizate)Wave numbercm–1Functional groupWave numbercm–1Functional group700Aromatic740 — CH = CH — (cis) 740 — CH = CH — (cis) 910 — CH = CH2 (vinyl) 910 — CH = CH2 (vinyl) 970 — CH = CH — (trans) 970 — CH = CH — (trans) 1 000 — CH = CH — (cis) 990 — CH = CH2CH2 = CH — 1 370 — CH31 650 ! C = C3 010 = CH —Figure A.16 — Butadiene rubber (high-cis BR) — Raw polymerFigure A.17 — Butadiene rubber (high-cis BR) — Vulcanizate。

相关文档
最新文档