芬顿COD深度处理技术

合集下载

废水中COD深度处理中催化氧化芬顿法的应用分析

废水中COD深度处理中催化氧化芬顿法的应用分析

废水中COD深度处理中催化氧化芬顿法的应用分析摘要:芬顿氧化法是近些年来在废水处理方面逐渐兴起的一种氧化技术,本文对芬顿氧化法进行了简要阐述,而后分析了催化氧化芬顿法在废水处理中的各项影响因素,最后围绕催化氧化芬顿法在废水处理应用进行深度解析。

关键词:废水处理;COD清除;芬顿氧化法;应用技术;影响因素前言:水生态保护是当前的重点工作,而芬顿氧化法在废水处理方面有着极佳的效果,在政府管控力度持续增加背景下,芬顿氧化法开始广泛应用。

1.废水处理方法废水处理[WU1]有物化处理、生化处理两种方式。

物化处理:这种方法中内容较少,且操作简单,向废水中添加一定量的混凝剂,便可有效净化废水,若是条件允许,还使用内电解法,两者获得的废水净化效果都可满足预期设想。

物化处理中常用的有光氧化处理、吸附处理、离子交换处理等。

生化处理步骤:一,预处理废水,在处理现场制造沉淀池,清除废水中包含的有机物等物质,尽可能缩减污染物浓度。

二,生物处理废水,废水中含有的有机物等各类杂质参差不齐,采用生物杂质一般都可获取较为理想的净化效果[1]。

但这些方法随着时代的发展,开始呈现出部分的不足,即在处理废水中COD时,难以再收获理想的效果,因此氧化芬顿法走入市场,并得到了广泛应用。

2.氧化芬顿法概述使用芬顿法是目前废水净化的主要方式,与常规的物化方法相比较[WU2],它更具有优势,为充分发挥芬顿法的价值,需要了解它的作用机理。

它借助双氧水、二价铁间存在的链反应,以催化的方式得到羟基自由基,氧化电位一般在氟之后,值确定为2.8v。

在反应中,有机化合物受二价铁、双氧水作用,变为无机物。

并且,羟基自由基有着电负性突出、亲电性等诸多优点,在废水净化中可轻松获取事半功倍的应用效果。

在芬顿法净化废水中,以需要降解的废水为原水,通过合理投加芬顿试剂的浓度和比例,并调整好原水的pH值[WU3]。

把废水集中在氧化塔中,使用芬顿试剂展开氧化作用,之后将一次处理的废水集中于中和池内,添加液碱,废水液碱值约[WU4]10,之后将废水集中在脱气池,利用鼓风搅拌,去除废水中的气泡。

芬顿COD深度处理技术

芬顿COD深度处理技术

芬顿反应器随着工业持续的发展,各种有机溶剂及化学合成有机物被大量使用,也因此严重的污染了自然环境,因此如何有效去除这些污染物是现今废水处理技术的一大课题。

工业废水处理后所排放的COD几乎是所有工业污染排放水的管控指标。

随着工业持续的发展,各种有机溶剂及化学合成有机物被大量使用,也因此严重的污染了自然环境,因此如何有效去除这些污染物是现今废水处理技术的一大课题。

芬顿Fenton高级氧化法1.Fenton法的原理Fenton化学氧化法是应用双氧水(H2O2)与亚铁(Fe2+)反应产生氢氧自由基的原理,进行氧化有机污染反应,将废水中有机物污染氧化成二氧化碳和水的一种高级氧化处理技术。

其化学反应机制如下:H2O2+Fe2+→OH+OH-+Fe3+→Fe(OH)3↓影响Fenton法氧化反应效果与速率因子:反应物本身的特性,H2O2的剂量,Fe2+的浓度,pH 值,反应时间,温度2.Fenton法的优点①对环境友善:处理后不像其它的化学药品,如漂白水(次氯酸钠),易产生氯化有机物等毒性物质,对环境造成伤害。

②占地空间小:有机物氧化的速度相当快,所需的停留时间短,约0.5~2小时即可,不像一般的生物处理约需12~24小时,因时间短,相对反应槽容积不需太大,可节省空间。

③操作弹性大:可依进流水水质的好坏来改变操作条件,提高处理量。

而一般的生物处理难以弹性操作。

针对较高的污染量只需提高亚铁及H2O2加药量及适当的pH控制即可。

④初设成本低:与一般的生物处理系统相较,约只须其投资成本的1/3~1/4。

⑤氧化能力强:所产生的氢氧自由基(OH)氧化能力相当强。

可处理多种毒性物质,如氯乙烯、BTEX、氯苯、1,4Dioxane,酚、多氯联苯、TCE、DCE、PCE等,另EDTA和酮类MTBE、MEK等亦有效。

3.传统Fenton法缺点①瓶颈1:Fe2+为催化剂,使H2O2产生成OH及OH-,但同时也伴随着大量污泥,Fe(OH)3的产生成为应用中的一大缺点。

芬顿氧化处理废水工艺

芬顿氧化处理废水工艺

芬顿氧化处理废水工艺氧化处理是一种有效的方法,可以减少废水中的污染物。

污染物特别是有机物,可以通过氧化反应彻底降解。

其中,芬顿氧化处理技术是一种实现深度处理的重要手段。

芬顿氧化处理的工艺主要有三步:预处理、活性氧投加和终止处理。

预处理是将废水中的杂质粗选出来,以减少活性氧对有机物、金属离子及其它物质的消耗。

活性氧投加是把氧作为氧化剂投入到废水中,实现氧化处理作用。

最后,终止处理是在满足废水排放标准的情况下,停止活性氧的投加。

在芬顿氧化处理技术中,活性氧的投加主要是采用空气催化器来实现。

空气催化器可以利用空气中氧气,通过高原格栅加热以实现氧投加,从而实现氧化处理。

芬顿氧化处理技术具有优越的处理效果,可以有效降解有机物、金属离子及其他物质,有效削减废水污染物。

同时,由于采用空气催化器投加活性氧,投加效率高,投加成本低,且对环境无污染。

芬顿氧化处理技术的应用还在不断拓展,并在各行各业得到广泛的应用。

其中,在石油化工中,可以用芬顿氧化处理工艺将废水中的有机物、金属离子及其他污染物深度降解,以满足行业污染排放标准。

同时,在污水处理中,芬顿氧化处理技术也得到了广泛的应用,对有机物、金属离子及其他物质有很好的处理效果,能有效抑制废水污染,满足排放标准要求。

芬顿氧化处理技术不仅在石油化工行业和污水处理中得到了广泛应用,而且在其他行业中也有着更多的应用,如纺织、染料、食品饮料等等。

芬顿氧化处理技术可以有效的降低废水中的污染物,为环保做出贡献。

总之,芬顿氧化处理技术是一种实现深度处理的重要手段,它能有效地降低废水中的污染物,降低废水排放标准,节约能源,减少环境污染,有着广泛的应用前景。

COD深度处理技术——芬顿(Fenton)高级氧化法

COD深度处理技术——芬顿(Fenton)高级氧化法

COD深度处理技术——芬顿(Fenton)⾼级氧化法芬顿反应塔芬顿法(Fenton),从⼴义上说是利⽤催化剂或光辐射、或电化学作⽤,通过H2O2产⽣羟基⾃由基(·OH)处理有机物的技术。

1. 传统芬顿法芬顿试剂的实质是⼆价铁离⼦(Fe2+)和过氧化氢之间的链反应催化⽣成OH⾃由基,具有较强的氧化能⼒,其氧化电位仅次于氟,⾼达2.80eV。

另外, 羟基⾃由基具有很⾼的电负性或亲电性 ,其电⼦亲和能⼒达 569.3kJ ,具有很强的加成反应特性,因⽽芬顿试剂可⽆选择氧化⽔中的⼤多数有机物,特别适⽤于⽣物难降解或⼀般化学氧化难以凑效的有机废⽔的氧化处理,芬顿试剂在处理有机废⽔时会发⽣反应产⽣铁⽔络合物,主要反应式如下:[Fe(H2O)6]3++H2O→[Fe(H2O)5OH]2++H3O+[Fe(H2O)5OH]2++H2O→[Fe(H2O)4(OH)2]+ H3O+当pH为3~7时,上述络合物变成:2[Fe(H2O)5OH]2+→[Fe(H2O)8(OH)2]4++2H2O[Fe(H2O)8(OH)2]4++H2O→[Fe2(H2O)7(OH)3]3++H3O+[Fe2(H2O)7(OH)3]3++[Fe(H2O)5OH]2+→[Fe3(H2O)7(OH)4]5++5H2O以上反应⽅程式表达了芬顿试剂所具有的絮凝功能。

芬顿试剂所具有的这种絮凝/沉淀功能是芬顿试剂降解CODcr的重要组成部分,可以看出利⽤芬顿试剂处理废⽔所取得的处理效果,并不是单纯的因为羟基⾃由基的作⽤,这种絮凝/沉降功能同样起到了重要的作⽤。

传统芬顿法在⿊暗中就能⼒破坏有机物,具有设备投资省的优点,但其存在两个致命的缺点:⼀是不能充分矿化有机物,初始物质部分转化为某些中间产物,这些中间产或与Fe3+形成络合物,或与·OH的⽣成路线发⽣竞争,并可能对环境造成的更⼤危害;⼆是H2O2的利⽤率不⾼,致使处理成本很⾼。

利⽤Fe(Ⅲ)盐溶液,可溶性铁,铁的氧化矿物(如⾚铁矿,针铁矿等),⽯墨,铁锰的氧化矿物同样可使H2O2催化分解产⽣·OH,达到降解有机物⽬的,以这类催化剂组成的芬顿体系,成为类芬顿体系,如⽤Fe3+代替Fe2+,由于Fe2+是即时产⽣的,减少了·OH被Fe2+还原的机会,可提⾼·OH的利⽤效率。

污水深度处理中的膜芬顿技术

污水深度处理中的膜芬顿技术

污水深度处理中的膜芬顿技术摘要:膜芬顿是通过将传统芬顿加以改进,与超滤膜过滤有机结合而产生的一种新型污水处理技术,已证明能有效去除污水中的COD、悬浮物、总磷、氟化物等污染物组分。

通过一系列实验室研究、中试和商业规模示范工程的运行,初步证实了膜芬顿技术的适用性和高效率,表明它集成了高级氧化、混凝、化学沉淀、吸附、膜过滤等多种水处理机理。

生产性示范工程长期运行结果表明,该工艺用于处理精细化工废水时,膜芬顿出水平均COD、总磷可达到《地表水环境质量标准》(GB 3838-2002)的Ⅲ类水标准,运营成本约为1.89元/m³。

针对印染行业因水回用而产生的RO浓水的中试结果显示,膜芬顿出水COD、悬浮物可达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准,总磷可达到地表水环境Ⅲ类水标准。

1 膜芬顿技术膜芬顿工艺流程见图1。

膜芬顿技术是通过改进传统高级氧化-芬顿技术,并与膜过滤相结合产生的新型工艺。

膜芬顿利用超滤膜代替传统的芬顿沉淀池,通过膜的截留作用及创新的平行内回流设计,维持系统的高污泥浓度,集成了高级氧化、混凝、化学沉淀、吸附、膜过滤等多种水处理机理,具有去除效果好、占地面积小、运行成本低、运行维护简单、自动化程度高等优势。

①调酸池。

污水首先进入调酸池,与投加的无机酸(如硫酸)和亚铁盐(如硫酸亚铁)相混合。

投加的无机酸(如硫酸)主要用于调酸池的pH值调控,一般控制在4~6之间,投加的亚铁盐(如硫酸亚铁)作为芬顿反应的催化剂。

调酸池一般采用钢筋混凝土或钢结构,主要设备及仪表包括调酸泵、硫酸亚铁投加泵、在线pH仪及搅拌器等。

②芬顿反应池。

芬顿反应池为发生高级氧化的主要场所。

经过调酸池调质后的污水流入芬顿反应池,在此投加过氧化氢溶液。

以亚铁为催化剂,与过氧化氢发生一系列的反应,产生强氧化性的羟基自由基矿化降解污染物,达到降低COD 的效果。

与此同时,接受自膜池回流的高浓度铁泥(MLSS为4000~6000 mg/L),一方面增强了三价铁参与芬顿反应的几率,提高了反应速度,同时有可能在不溶性的铁氧体表面发生异相芬顿反应;另一方面,高浓度的铁泥强化了混凝和吸附效果,进一步提升了水质。

芬顿氧化在印染废水深度处理中的应用

芬顿氧化在印染废水深度处理中的应用

芬顿氧化在印染废水深度处理中的应用【摘要】芬顿氧化法是一种高级的氧化技术,具有较高的去除难降解有机污染物的能力。

概述了芬顿试剂的作用机理及芬顿试剂在印染废水深度处理中的应用。

实际证明芬顿氧化法在印染废水的深度处理中效果显著,能降解生化过程不能削减的CODCr,并对色度进行一定程度的去除。

关键词:芬顿、印染废水1 引言纺织印染行业是我国用水量大、排放废水量也大的工业部门之一。

印染废水具有成分复杂、难降解有机污染物含量高、碱性大、色度高、水质变化大等特点,加之染料中的硝基和胺基化合物又具有较大的生物毒性,难于处理。

近年来,由于化学纤维织物的发展、仿真丝的兴起和印染后整理技术的进步,使人造丝皂化物、新型助剂等难生化降解的有机物大量进入印染废水,增加了废水处理的难度。

另外,为了进一步优化印染行业产业结构和区域布局,提升工艺设备、污染防治和清洁生产水平,切实保障群众享有良好生活环境的权益,维护生态环境安全,促进行业健康、规范和可持续发展,2012年浙江省环保厅下发了《关于印发浙江省印染造纸制革化工等行业整治提升方案的通知》,提出《浙江省印染行业淘汰落后整治提升方案》,针对太湖流域、钱塘江流域未纳管印染企业制定了严格的废水排放水质标准,规定排入环境的废水CODCr≤60 mg/L,氨氮≤ 10 mg/L,总氮≤12 mg/L和总磷≤0.5 mg/L。

新标准的提出使部分印染企业面临巨大的生存压力。

所以传统的废水处理工艺出水水质难以达到排放标准,所以在印染废水的深度处理中氧化工艺被不断应用。

与其他的化学氧化法相比,Fenton(芬顿)试剂氧化法具有设备简单、反应条件温和、操作简便、效率高等优点,适用于印染废水的后处理。

2 芬顿氧化机理Fenton试剂是过氧化氢与亚铁离子结合形成的一种具有极强氧化能力的氧化剂,它对多种有机物而言都是一种有效的氧化剂。

由于过氧化氢在催化剂铁盐存在时,能生成羟基自由基(·OH),该羟基自由基比其他一些常用的强氧化剂具有更高的氧化电极电位(·OH+H++e-=H2O,E=2.8V),其氧化性大约是氯的2倍,位于原子氧和氟之间。

Fenton化学氧化法深度处理精细化工废水

Fenton化学氧化法深度处理精细化工废水

Fenton化学氧化法深度处理精细化工废水摘要:根据某精细化工厂的废水经过长时间的厌氧-好氧生化处理,难以进一步生物降解的特点,采用Fenton试剂进行高级氧化处理。

通过实验探讨了不同的H2O2和Fe2+浓度、反应时间、pH等因素对二级生化出水COD去除率的影响。

在H2O2投加量为18mmol/L,FeSO4·7H2O投加量为12mmol/L,反应时间1.5h,废水的pH=4的条件下,二级生化出水的COD去除率达到82.61%,降到100mg/L以内,达到国家一级排放标准。

关键词:精细化工废水;Fenton试剂;深度处理;难生物降解精细化工废水成分复杂,除了含有表面活性剂和其乳化所携带的胶体污染物外,还含有助剂、漂白剂和油类物质等。

该类废水经过常规的厌氧-好氧生物处理以后,出水仍然无法达标排放,而且二级生化出水所含的污染物大都为难以生物降解的有机物,因此采用Fenton试剂对其进行高级氧化处理。

Fenton试剂法具有处理效果好、反应物易得、无需复杂设备、对后续的处理无毒害作用且对环境友好等优点,特别适用于提高难降解有机物的可生化性[1]。

目前Fenton试剂法已经逐渐应用于染料、制浆造纸、日化、农药等废水处理工程中,具有很好的应用前景[2-5]。

Fenton试剂催化分解产生·OH具有极强的氧化能力,进攻有机分子并使其矿化为CO2、H2O和无机分子[6],特别适用于难生物降解有机物的深度处理。

本试验对Fenton试剂深度处理该日化废水进行初步研究,取得了较好的效果,使难降解有机物得到了进一步氧化处理,废水最终达标排放。

本研究为开发一种精细化工废水深度处理技术提供了实验和应用基础,对其他含有难生物降解有机物的废水深度处理具有一定的借鉴意义。

1试验部分1.1试剂和废水双氧水(30%)、绿矾(七水硫酸亚铁)、氢氧化钠、浓硫酸均为分析纯;废水水样为广州某精细化工厂二级生化出水:COD约为230mg/L,pH值为7.6。

Fenton工艺法深度处理造纸废水介绍

Fenton工艺法深度处理造纸废水介绍

Fenton工艺法深度处理造纸废水介绍摘要:Fenton氧化法是一种有效处理难降解有机废水的新型工艺,主要原理是投加的H2O2氧化剂与Fe2+催化剂,产生氢氧自由基,进而氧化降低废水中生物难分解的COD。

在造纸废水深度处理中取得了良好的处理效果,得到了极大的推广,该工艺流程简便可行,是一项经济有效的方法。

关键词:Fenton;造纸废水;深度处理Abstract: Fenton oxidation is an effective treatment of refractory organic wastewater by new technology, the main principle is that adding H2O2oxidant and catalyst Fe2+, to produce hydroxyl radicals, and the oxidation of reduced waste water biological hard decomposition COD. In advanced treatment of paper mill wastewater and achieved good treatment effect, has been greatly promoted, the process is simple and feasible, is an economic and effective method.Key words: Fenton; papermaking wastewater; advanced treatment引言随着国民经济的高速发展,环保对废水水质排放要求也越来越严格,为控制和减轻造纸废水对周围水域环境容量的影响,国家环境保护局于2008年颁布了《制浆造纸工业水污染排放标准》(GB3544-2008),对污染物排放指标有了更高的要求。

制浆造纸废水包括化学法制浆产生的蒸煮废液,洗浆、漂白过程中产生的中段水及抄纸工序中产生的白水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

COD深度处理技术——芬顿(Fenton)高级氧化法
芬顿反应器
随着工业持续的发展,各种有机溶剂及化学合成有机物被大量使用,也因此严重的污染了自然环境,因此如何有效去除这些污染物是现今废水处理技术的一大课题。

工业废水处理后所排放的COD几乎是所有工业污染排放水的管控指标。

随着工业持续的发展,各种有机溶剂及化学合成有机物被大量使用,也因此严重的污染了自然环境,因此如何有效去除这些污染物是现今废水处理技术的一大课题。

芬顿Fenton高级氧化法
法的原理
Fenton化学氧化法是应用双氧水(H2O2)与亚铁(Fe2+)反应产生氢氧自由基的原理,进行氧化有机污染反应,将废水中有机物污染氧化成二氧化碳和水的一种高级氧化处理技术。

其化学反应机制如下:
H2O2+Fe2+→OH+OH-+Fe3+→Fe(OH)3↓
影响Fenton法氧化反应效果与速率因子:反应物本身的特性,H2O2的剂量,Fe2+的浓度,pH值,反应时间,温度
法的优点
①对环境友善:处理后不像其它的化学药品,如漂白水(次氯酸钠),易产生氯化有机物等毒性物质,对环境造成伤害。

②占地空间小:有机物氧化的速度相当快,所需的停留时间短,约~2小时即可,不像一般的生物处理约需12~24小时,因时间短,相对反应槽容积不需太大,可节省空间。

③操作弹性大:可依进流水水质的好坏来改变操作条件,提高处理量。

而一般的生物处理难以弹性操作。

针对较高的污染量只需提高亚铁及H2O2加药量及适当的pH控制即可。

④初设成本低:与一般的生物处理系统相较,约只须其投资成本的1/3~1/4。

⑤氧化能力强:所产生的氢氧自由基(OH)氧化能力相当强。

可处理多种毒性物质,如氯乙烯、BTEX、氯苯、1,4Dioxane,酚、多氯联苯、TCE、DCE、PCE等,另EDTA和酮类MTBE、MEK等亦有效。

3.传统Fenton法缺点
①瓶颈1:Fe2+为催化剂,使H2O2产生成OH及OH-,但同时也伴随着大量污泥,Fe(OH)3的产生成为应用中的一大缺点。

②瓶颈2:COD达一定的去除率后,无法再继续去除有机物,易造成H2O2用药的消耗。

4.传统Fenton法改良
针对污泥含量高的缺点,台湾工研院陆续开发了改良式低污泥的废水高级氧化处理技术,其中之一就是流体化床-Fenton法。

(一)流体化床-Fenton法
原理:利用~硅砂担体在结晶槽中作为结晶核种,将要处理的废水及添加药剂由反应池底部进入并向上流动。

而反应槽外接有一回流水回路,用以调整进流水过饱和度及达到担体上流速度,使待处理的无机离子于硅砂担体表面形成稳态结晶
体,当晶体粒径达1~2mm后,排出槽外进行回收再利用或达到废弃物减排的目的。

反应机制:H2O2+Fe2+→OH+Fe(OH)2+→……FeOOH,H2O2+FeOOH→……
技术特点:同相及异相的催化反应,污泥减少70%。

减少H2O2用药的浪费。

适用废水COD浓度:50~1000mg/l。

(二)深度处理规划构想
A.现有工厂的废水处理系统,一般为二沉池后直接排放。

因此拟规划一套流体化床系统直接将现在放流水排至FBR进流暂存池,接续后段FBR-Fenton反应。

FBR-Fenton系统包含进流水调节池,FBR反应槽,脱气池,中和池,慢混池,快沉池,泡药系统与加药系统。

经FBR-Fenton处理后的水排回原来排放口排放。

流体化床系统须新设一套FeSO4泡置系统供应系统所须的亚铁,一套H2O2储存与加药系统,一套Ca(OH)2加药系统。

C.考虑现场用地,为节省空间采用机器式快沉槽作为污泥沉降用。

D.预估各阶段水质:
项目化学反应系统出水
(即FBR-Fenton进水)FBR-Fenton出水
(mg/l)<30<30
COD(mg/l)80~110<50。

相关文档
最新文档