新苏科版八年级数学下册《分式的基本性质》题及答案解析.docx

合集下载

苏科版八年级下册第二学期10.2:分式的基本性质 同步测试(含答案)

苏科版八年级下册第二学期10.2:分式的基本性质 同步测试(含答案)
26. a : b : c 1: 2 : 3
x 3
x 3
1
27.(1) 当 x≠3 时,分式
都有意义;(2) 当 x=-3 时,分式
的值为零;(3) .
x3
x3
5
28.M=N,证明略
50
29.
47
1/5
A.
1 a
2 b
a
3
b
B.
2 2a b
a
1
b
C.
a a
b
a
a
b
ab D. ab b2
a ab
3n
3.如果把分式 m2 n2 中的 m 和 n 都扩大 3 倍,那么分式的值(
)
A.不变
B.扩大 3 倍
C.缩小 3 倍
0.5x 1 4.下列分式中,与 0.3x 2 值相等的是( )
D.扩大 9 倍
xy
C.若将分式 x
中,x、y
y
都扩大
3
倍,那么分式的值也扩大
3

D.若 3m 5, 3n 4 则 32mn 5 2
10.已知
x2 x
y
的值为
4
,若分式
x2 x
y
中的
x

y
均扩大
2
倍,则
x2 x
y
的值为(

A. 2
B. 4
C. 8
D. 16
x 4
11.分式
的值为 0,则 x 的值为
x4
A.4
3 (1 x)2
的结果为(

3 A. x 1
3 B. x 1
3 C. (x 1)2

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、化简的结果是()A. B. C. D.2、在函数中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣13、若分式的值为0,则x的值为( )A.±2B.2C.﹣2D.44、分式有意义,则x的取值范围是()A. x ≠ 1;B. x>1;C. x<1;D. x ≠-15、下列计算正确的是()A.a 0=1B.x 2÷x 3=C.(﹣)2=﹣D.a 4÷2 ﹣1= a 46、我校七年级某班的师生到距离8千米的农场学农,出发小时后,小亮同学骑自行车从学校按原路追赶队伍,结果他们同时到达农场.已知小亮骑车的速度比队伍步行的速度每小时快6千米.若设队伍步行的速度为每小时x千米,则可列方程()A. B. C. D.7、化简的结果是()A.-2a-bB.b-2aC.2a-bD.b+2a8、炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A. B. C. D.9、若分式的值等于0,则x的值为()A.±1B.0C.﹣1D.110、化简的结果为()A. B.a﹣1 C.a D.111、在,,,中分式的个数有()A.2个B.3个C.4个D.5个12、分式方程的解是()A. B. C. D.13、把分式方程−=1的两边同时乘以(x-2),约去分母,得()A.1-(1-x)=1B.1+(1-x)=1C.1-(1-x)= x-2D.1+(1-x)= x-214、使分式值为零的的值为()A. B. C. D.15、分式方程=2的解为()A.x=4B.x=3C.x=0D.无解二、填空题(共10题,共计30分)16、若,则的值为________17、已知关于x的分式方程的解为负数,则k的取值范围是________.18、若式子y=﹣有意义,则实数x的取值范围是________.19、若关于x的分式方程+ =3的解为正实数,则实数m的取值范围是________.20、方程的根为________.21、分式,,的最简公分母为________.22、方程的解是x=________.23、与的最简公分母是________.24、某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程________.25、方程的解为________三、解答题(共5题,共计25分)26、先化简,再求值:,其中a= .27、先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+ .28、某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.29、小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.求小明和小张每分钟各打多少个字?30、如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、A5、B7、D8、D9、D10、B11、B12、C13、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

苏科版八年级数学下_10.2分式的基本性质

苏科版八年级数学下_10.2分式的基本性质

别除以它们的公因式,叫做分式的约分.
2. 找公因式的方法
(1)当分子、分母都是单项式时,先找分子、分母系数的最
大公约数,再找相同字母的最低次幂,它们的积就是公
因式;
(2)当分子、分母都是多项式时,先把多项式分解因式,再
按(1)中的方法找公因式.
感悟新知
3. 约分的方法
知2-讲
(1)若分式的分子、分母都是单项式,就直接约去分子、分
(1) 1255xx2yy2=
(
3x 5y
);(2)a+ab22b=(a2a+22ba2b );
(3)
x23-x xy=
3
(x-y
).
知1-讲
解题秘方:观察等号两边已知的分子或分母发生了
什么样的变化,再根据分式的基本性质
用相同的变化确定所要填的式子.
感悟新知
知1-讲
解法提醒: 解决与分式的恒等变形有关的填空题时,一般从分子
常取最简公分母.
感悟新知
3. 通分的一般步骤 (1)确定最简公分母;
知3-讲
(2)用最简公分母分别除以各分母求商;
(3)用所得的商分别乘各分式的分子、分母得出同分母分式.
4. 约分与通分的关系
感悟新知
例 7 把下列各组分式通分:
(1) 6x52yz3和 4x33y2z;
(2)
x-a y,
3x-b 3y,
式,再按照分母都是单项式时求最简公分母的方法,
从系数、相同因式、不同因式三个方面去确定.
感悟新知
知2-讲
解:(1)分母 6x2yz3、4x3y2z 的的最简公分母是 12x3y2z3, 6x52yz3= 6x52·yz32·xy2xy= 1120xx3yy2z3, 4x33y2z= 4x33·y2z3·z23z2= 129xz32y2z3;

苏科版八年级下《10.2分式的基本性质》同步练习含详细答案

苏科版八年级下《10.2分式的基本性质》同步练习含详细答案

10.2 分式的基本性质一.选择题1.化简的结果是()A.﹣1 B.1 C.D.2.下列分式中,最简分式是()A.B.C.D.3.如果把中的x和y都扩大到5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍4.下列分式运算中正确的是()A.B.C.D.5.不改变分式的值,把分子、分母中各项系数化为整数,结果是()A.B.C.D.二.填空题6.若,则=.7.化简=.8.约分=.9.分式,﹣,的最简公分母是.10.若,则的值是.11.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.12.下列4个分式:①;②;③;④,中最简分式有个.三.解答题13.约分:(1);(2);(3)•.14.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.(3)当x满足什么条件时,分式的值①等于0?②小于0?参考答案1.(2016•台州)化简的结果是()A.﹣1 B.1 C.D.【分析】根据完全平方公式把分子进行因式分解,再约分即可.【解答】解:==;故选D.【点评】此题考查了约分,用到的知识点是完全平方公式,关键是把要求的式子进行因式分解.2.(2016•滨州)下列分式中,最简分式是()A.B.C.D.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.3.如果把中的x和y都扩大到5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍【分析】把中的x和y都扩大到5倍,就是用5x代替x,用5y代替y,代入后看所得到的式子与原式有什么关系.【解答】解:,即分式的值不变.故选B.【点评】本题主要考查对分式的基本性质,是考试中经常出现的基础题.4.下列分式运算中正确的是()A.B.C.D.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:∵==,∴A是正确的,B、C、D是错误的.故选:A.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.5.不改变分式的值,把分子、分母中各项系数化为整数,结果是()A.B.C.D.【分析】分式的分子、分母中含有分数系数,不改变分式的值,使分式分子、分母的各项系数化为整数要乘以2与3的最小公倍数6.【解答】解:分式的分子和分母乘以6,原式=.故选D.【点评】易错选A选项,因为在分子和分母都乘以6时,原本系数是整数的项容易漏乘,应特别注意.6.若,则=.【分析】由,得a=,代入所求的式子化简即可.【解答】解:由,得a=,∴=.故答案为:.【点评】解题关键是用到了整体代入的思想.7.化简=.【分析】首先把分子分母分解因式,再约去分子分母的公因式即可.【解答】解:原式==,故答案为:.【点评】此题主要考查了分式的约分,关键是正确把分子分母分解因式,找出公因式.8.约分=.【分析】由系数与系数约分,同底数的幂与同底数的幂约分求解即可.【解答】解:=.故答案为:.【点评】此题考查了约分的知识.题目非常简单,解题时要注意细心.9.分式,﹣,的最简公分母是12x2y3.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,﹣,的分母分别是x、3x2y、12y3,故最简公分母是12x2y3;故答案为12x2y3.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.10.若,则的值是6.【分析】若,可以得到:a﹣b=﹣4ab.代入所求的式子化简就得到所求式子的值.【解答】解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.【点评】正确对式子进行变形,用已知式子把所求的式子表示出来,是代数式求值的基本思考方法.11.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.【分析】(1)依据定义进行判断即可;(2)将原式变形为的形式,然后再进行变形即可;(3)首先将原式变形为2﹣,然后依据x+1能够被3整数列方程求解即可.【解答】解:(1)分式是真分式;(2)假分式=1﹣;(3)==2﹣.所以当x+1=3或﹣3或1或﹣1时,分式的值为整数.解得x=2或x=﹣4或x=0或x=﹣2.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4.【点评】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.12.下列4个分式:①;②;③;④,中最简分式有2个.【分析】根据确定最简分式的标准即分子,分母中不含有公因式,不能再约分,即可得出答案.【解答】解:①是最简分式;②==,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个;故答案为:2.【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.13.约分:(1);(2);(3)•.【分析】(1)把分子与分母进行约分即可;(2)根据平方差公式和完全平方公式先把分子与分母进行因式分解,然后约分即可;(3)先把分母进行因式分解,然后通分,即可得出答案.【解答】解:(1)=﹣;(2)==;(3)•=•=.【点评】此题考查了约分与通分,用到的知识点是平方差公式和完全平方公式,注意先把分母因式分解,再进行约分和通分.14.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.(3)当x满足什么条件时,分式的值①等于0?②小于0?【分析】(1)根据分式的性质:分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案;(2)根据分式的分子、分母、分式改变其中任意两个的符号,分式的值不变,可得答案;(3)根据解分式方程,可得答案;根据解不等式,可得答案.【解答】解:(1)原式=;(2)原式=﹣。

苏科版八年级下册数学第10章 分式含答案

苏科版八年级下册数学第10章 分式含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、下列关于x的方程是分式方程的是()A. B. C. D.2、若表示一个整数,则整数m可取值的个数是()A.9个B.8个C.7个D.无数个3、对于两个不相等的实数a,b,我们规定符号Max(a,b)表示a,b中的较大的值,如Max(2,4)=4,按照这个规定,方程Max( ,)=1- 的解是()A.x=4B.x=5C.x=4或x=5D.无实数解4、计算·÷的结果是( )A.x 5B.-x 5C.D.-5、如果关于x的方程无解,则m等于()A.3B.4C.-3D.56、关于x的不等式组无解,且关于x的分式方程有正整数解,则满足条件的所有整数a的个数为()A.2B.3C.4D.57、化简的结果是()A. B. C. D.a+b8、下列各式﹣3x,,,﹣,,,中,分式的个数为()A.4B.3C.2D.19、若,则的值为()A. B. C. D.10、把分式方程,的两边同时乘以x-2,约去分母,得()A.1-(1-x)=1B.1+(1-x)=1C.1-(1-x)=x-2D.1+(1-x)=x-211、下列分式是最简分式的是()A. B. C. D.12、使分式有意义的的取值范围是()A. B. C. D.13、化简的结果()A.x﹣yB.y﹣xC.x+yD.﹣x﹣y14、若分式有意义,则x的取值范围是()A.x≠﹣3B.x≥﹣3C.x≠﹣3且 x≠2D.x≠215、某次列车平均提速20km/h,用相同的时间,列车提速行驶400km,提速后比提速前多行驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A. =B. =C. =D. =二、填空题(共10题,共计30分)16、同分母的分式相加减,分母________,把分子________,即: ±=________.17、已知a+b=5,ab=3,则+=________ .18、当m=________时,分式的值为0.19、当x=________时,分式的值为0.20、已知﹣=4 则=________ .21、小强在做分式运算与解分式方程的题目时经常出现不符合题意,于是他在整理错题时,将这部分内容进行了梳理,如图所示:请你帮小强在图中的括号里补写出“通分”和“去分母”的依据分别是:________和________22、当x________时,分式有意义.23、分式与的最简公分母是________.24、分式方程= 的解是________.25、分式方程+ =的解为________ .三、解答题(共5题,共计25分)26、先化简,再求值:(1+ )÷,其中a=4.27、计算:.28、已知y=, x取哪些值时:(1)y的值是正数;(2)y的值是负数;(3)y的值是零;(4)分式无意义.29、如果关于x的方程1+ = 的解,也是不等式组的解,求m的取值范围.30、解分式方程:﹣1=.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、B5、A6、B7、A8、A9、B10、D12、A13、C14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、30、。

苏科版数学八年级下《第10章分式》测试题含答案

苏科版数学八年级下《第10章分式》测试题含答案

苏科版数学八年级下《第10章分式》测试题含答案(班级: 姓名: 得分: )一、选择题(每小题3分,共24分)一、选择题(每小题3分,共30分)1.下列各式:51(1 – x ),34-πx,222y x -,x x 25,其中分式有( )A .1个B .2个C .3个D .4个2.如果分式13-x 有意义,则x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >1 3.下列约分正确的是( ) A .313mm m +=+ B .212yx y x -=-+ C .123369+=+a ba bD .yxa b y b a x =--)()(4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .yx 23B . 223yxC .y x 232D .2323y x5.计算xx -++1111的正确结果是( ) A .0B .212x x- C .212x- D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,则他在这段坡路上、下坡的平均速度是( ) A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v v v +千米/时 D .无法确定7.若关于x 的方程xmx m x -+-+333=3的解为正数,则m 的取值范围是( ) A .m <29 B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,则x 满足的方程为( )A .54872048720=-+xB .x +=+48720548720C .572048720=-xD .54872048720=+-x9.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=21a b -,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是( )A .x=4B .x=5C .x=6D .x=7 10.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短”的结论,推导出“式子x +x1(x >0)的最小值是2”.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,则另一边长是x 1,长方形的周长是2(x +x 1);当长方形成为正方形时,就有x =x1(x>0),解得x =1,这时长方形的周长2(x +x 1)= 4最小,因此x +x1(x >0)的最小值是2.模仿张华的推导,你求得式子xx 92+(x >0)的最小值是( )A .1B .2C .6D .10 二、填空题(每小题4分,共32分) 11.分式x 21,221y,xy 51-的最简公分母为____________. 12.约分:①ba ab2205=____________,②96922+--x x x =____________.13.用科学记数法表示:0.000 002 016=____________. 14.要使15-x 与24-x 的值相等,则x =____________. 15.计算:(a 2b )-2(a -1b -2)-3=____________. 16.若关于x 的方程12123++=+-x mx x 无解,则m 的值为____________. 17.已知1424122-+-+=-y y y y x x ,则y 2+ 4y + x 的值为____________. 18.如果记 221x y x =+ = f (x ),并且f (1)表示当x =1时y 的值,即f (1)=2211211=+;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+;那么f (1)+ f (2)+f (12)+f (3)+f (13)+…+ f(n )+f (1n)= ____________.(结果用含n 的式子表示) 三、解答题(共58分)19.(每小题6分,共12分)计算:(1)224816x x x x --+; (2)2m n m nn m m n n m -++---. 20.(每小题6分,共12分)解下列方程: (1)1123x x =-; (2)2124111x x x +=+--.21.(10分)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a ab a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.(10分)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.23.(14分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?附加题(15分,不计入总分) 24.一列按一定顺序和规律排列的数: 第1个数是112⨯; 第2个数是123⨯; 第3个数是134⨯; ……对任何正整数n ,第n 个数与第(n +1)个数的和等于2(2)n n +.(1)经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-, 设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于2(2)n n +”;(3)设M 表示211,212,213,…,212016这2016个数的和,即M =211+212+213+…+212016, 求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C二、11. 10xy 212.①a 41 ②33-+x x 13.2.016×10-614.6 15.4b a16. -5 17. 2 18. 21-n三、19.解:(1)224816x xx x --+=2(4)(4)4x x x x x -=--; (2)2m n m n n m m n n m -++---=2m n m n mn m n m n m n m --+=----. 20.解:(1)方程两边乘3x (x -2),得3x =x -2. 解得x =-1.检验:当x =-1时,3x (x -2)≠0. 所以,原分式方程的解为x =-1.(2)方程两边乘(x +1)(x -1),得x -1+2(x +1)=4. 解得x =1.检验:当x =1时,(x +1)(x -1)=0,因此x =1不是原分式方程的解. 所以,原分式方程无解.21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2aa b -. 当a=23,b =-3时,原式=411. 22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数, ∴x -3=±2或x -3=±1,解得x =1或x=2或x=4或x=5. ∴所有符合条件的x 的值为1、2、4、5. 23.解:(1)设乙骑自行车的速度为x 米/分,则甲步行的速度是12x 米/分,公交车的速度是2x 米/分,根据题意,得60012x +30006002x -=3000x -2. 解得x =300.经检验,x =300是原方程的解.答:乙骑自行车的速度为300米/分. (2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米. 24.解:(1)由题意知第5个数a=156⨯=1156-. (2)∵第n 个数为1(1)n n +,第(n+1)个数为1(1)(2)n n ++,∴1(1)n n ++1(1)(2)n n ++=2(1)(2)n nn n n ++++=()()()2112n n n n +++=2(2)n n +,即第n 个数与第(n+1)个数的和等于2(2)n n +.(3)∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-14=134⨯<213<123⨯=12-13,…,12015-12016=120152016⨯<212015<120142015⨯=12014-12015, 12016-12017=120162017⨯<212016<120152016⨯=12015-12016, ∴1-12017<211+212+213+…+212015+212016<122016-,即20162017<211+212+213+…+212015+212016<40312016. ∴20162017<M<40312016.。

2020—2021年最新苏科版八年级数学下册《分式》复习要点测试及答案解析.docx

2020—2021年最新苏科版八年级数学下册《分式》复习要点测试及答案解析.docx

(新课标)苏科版八年级下册期中复习要点考试时间:120分钟;考试题型:选择题、填空题、解答题;考试分值:130分。

第10章《分式》考点:分式概念,有意义条件,值为零条件;分式基本性质;分式加减乘除运算;分式方程及应用题。

【基础训练】1.在1x 、12、212x +、3xy π、3x y +、1a m+中分式的个数有 ( )A .2个B .3个C .4个D .5个2.根据分式的基本性质,分式aa b--可变形为 ( )A .aa b-- B .aa b+ C .a a b-- D .a a b-+ 3.计算222x yx y y x+--,结果为 ( )A .1B .-1C .2x +yD .x +y4.下列各式正确的是 ( )A .11a x a b x b ++=++ B .22y y x x = C .()0n na a m ma =≠ D .n n a m m a-=- 5.关于x 的方程2334ax a x +=-的解为x =1,则a 等于 ()A .1B .3C .-1D .-36.若分式32x x +-有意义,则x ≠_______.7.已知113xy-=,则分式2322x xy y x xy y+---的值等于_______.8.(2013.攀枝花)若分式211x x -+的值为0,则实数x的值为_______. 9.若关于x 的方程222x m x x++--=2有增根,则m的值是_______.10.甲、乙两班进行植树活动,根据提供信息可知:①甲班共植树90棵,乙班共植树129棵;②乙班的人数比甲班人数多3人;③甲班每人植树是乙班每人植树的34.若设甲班人数为x 人,求两班人数各是多少?所列方程是_______. 11.化简:(1)2422a a a -+++(2)1111xx x ⎛⎫-÷⎪--⎝⎭ 12.解下列方程: (1)321x x =+ (2)23201x x x x+-=--13.化简并求值:22112x yx y x y x y⎛⎫-+÷ ⎪-+-⎝⎭,其中x 、y 满足2x -+(2x-y -3)2=0.【拓展提高】14.若2a =3b =4c ,且abc ≠0,则2a bc b+-的值是 ( )A .2B .-2C .3D .-315.如果把分式2y x y+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .缩小3倍C .缩小6倍D .不变16.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围是_______.17.已知a 2-2a -1=0,则a 2+21a =_______.18.化简: (1)22111a a a a-⎛⎫-÷ ⎪+⎝⎭(2)22211212x x x x x x x ++-÷-+-+19.解方程: (1)21111x xx x++=-- (2)223124x x x --=+-20.先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程x 2+3x -1=0的根.21.某班有45名同学参加紧急疏散演练:对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快30秒,求指导前平均每秒撤离的人数.22.水源村在今年退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入村民植树活动,并且该环保组织植树的速度是全村植树速度的1.5倍,整个植树过程共用了13天完成.(1)全村每天植树多少亩?(2)如果全村植树每天需2000元工钱,环保组织是义务植树,因此实际工钱比计划节约多少元?23.已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.24.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已1,公交车的速度是乙骑自知甲步行的速度是乙骑自行车速度的2行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?第10章《分式》1.B 2.C 3.A 4.C 5.D 6.2 7.358.1 9.010.90312943xx =⨯+11.(1)2a (2)1 12.(1)x =-3 (2)x =1,无解 13.21x y =⎧⎨=⎩ 4314.B 15.D 16.m>-6且m ≠-4 17.6 18.(1)原式=-1 (2)原式=12x +;19.(1)x =-2 (2)x =54;20.13;21.指导前平均每秒撤离1人 22.(1)8亩; (2)24000元. 23.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数,∴x -3=±2或x -3=±1,解得x=1或x=2或x=4或x=5.∴所有符合条件的x 的值为1、2、4、5.24.解:(1)设乙骑自行车的速度为x 米/分,则甲步行的速度是12x 米/分,公交车的速度是2x 米/分,根据题意,得60012x +30006002x -=3000x -2,解得x=300,经检验,x=300是原方程的解.答:乙骑自行车的速度为300米/分. (2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米.。

苏科版数学八年级下册:第10章 分式 单元复习小结 (word版含答案)

苏科版数学八年级下册:第10章 分式  单元复习小结 (word版含答案)

单元复习小结类型之一 分式有意义、无意义的条件1.(2020南京)若式子1-1x -1在实数范围内有意义,则x 的取值范围是 .类型之二 分式值为零的条件2.(2020宿迁沭阳县期末)当x= 时,分式|x |-6x+6的值为0.类型之三 分式的基本性质3.如图果把分式2mn m -n 中的m ,n 都扩大为原来的3倍,那么分式的值 ( )A .扩大为原来的9倍B .扩大为原来的6倍C .扩大为原来的3倍D .不变 4.分式x 2-y 2x 2-2xy+y 2约分的结果是 .类型之四 分式的混合运算5.(2021苏州)已知两个不等于0的实数a ,b 满足a+b=0,则b a +a b 等于( ) A .-2 B .-1C .1D .2 6.(2020南京)计算:a-1+1a+1÷a 2+2a a+1.7.(2021盐城)先化简,再求值:1+1m -1·m 2-1m ,其中m=2.类型之五 解分式方程8.(2020徐州)方程9x =8x -1的解为 . 9.(2021南京)解方程:2x+1+1=x x -1.类型之六 分式方程的应用10.(2021徐州)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件,则该商品打折前每件多少元?11.(2021扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗.12.(2020兴化期中)某文化用品商店用120元从某厂家购进一批套尺,很快销售一空,第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的进价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,则可以盈利多少元?13.(2020泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25 km的普通道路,路线B包含快速通道,全程30 km,走路线B比走路线A平均速度提高50%,时间节省6 min,求走路线B的平均速度.14.某校利用暑假对田径场进行改造维修,项目承包单位派遣一号施工队进场施工,计划用40天的时间完成整个工程.当一号施工队工作了5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号施工队与一号施工队共同完成剩余工程,结果按通知要求如图期完成整个工程.(1)若由二号施工队单独施工,则完成整个工程需要多少天?(2)若此项工程由一号、二号两个施工队同时进场施工,则完成整个工程需要多少天?类型之七与分式方程增根有关的问题15.(2020泰州姜堰区期末)如图果关于x的分式方程mx-2+2xx-2=1有增根,那么m的值为 ()A.-2B.2C.4D.-416.当m为何值时,分式方程3x +6x-1=x+mx2-x有增根?答案单元复习小结1.x ≠1 分式有意义的条件是分母不能为0,故x-1≠0,解得x ≠1.2.6 由题意,得|x|-6=0,且x+6≠0,所以x=6.3.C4.x+y x -y 原式=(x+y )(x -y )(x -y )2=x+y x -y .5.A b a +a b =b 2+a 2ab =(a+b )2-2ab ab, 当a+b=0时,原式=02-2ab ab =-2. 故选A .6.解:原式=(a -1)(a+1)+1a+1·a+1a 2+2a =a 2a+1·a+1a (a+2)=a a+2. 7.解:原式=m -1m -1+1m -1·m 2-1m =m m -1·(m+1)(m -1)m=m+1.当m=2时,原式=2+1=3.8.x=9 方程两边同乘x (x-1),得9(x-1)=8x ,解得x=9.经检验,x=9是原分式方程的解.9.解:去分母,得2(x-1)+x 2-1=x (x+1),解得x=3,经检验,x=3是原方程的根,所以,分式方程的解为x=3.10.解:设该商品打折前每件x 元,则打折后每件0.8x 元.根据题意,得400x +2=4000.8x ,解得x=50.经检验,x=50是原方程的解,且符合题意.答:该商品打折前每件50元.11.解:设原先每天生产x 万剂疫苗.由题意,得240(1+20%)x +0.5=220x ,解得x=40,经检验,x=40是原方程的解且符合题意,答:原先每天生产40万剂疫苗.12.解:(1)设第一批套尺购进时的进价为x 元/套.由题意,得1000.8x -120x =1, 解得x=5.经检验,x=5是原方程的解,且符合题意.答:第一批套尺购进时的进价为5元/套.(2)第二批套尺购进时的进价为5×0.8=4(元/套).全部售出后的利润为100÷4×(5.5-4)=25×1.5=37.5(元).答:可以盈利37.5元.13.解:设走路线A 的平均速度为x km/h,则走路线B 的平均速度为(1+50%)x km/h . 由题意,得25x -30(1+50%)x =660,解得x=50. 经检验,x=50是原方程的解,且符合题意,∴(1+50%)x=75.故走路线B 的平均速度为75 km/h .14.解:(1)设由二号施工队单独施工,完成整个工程需要x 天.依题意可得 140×5+140+1x ×(40-5-14)=1, 解得x=60.经检验,x=60是原分式方程的解且符合题意.答:若由二号施工队单独施工,则完成整个工程需要60天.(2)由题意可得1÷140+160=24(天). 答:若此项工程由一号、二号两个施工队同时进场施工,则完成整个工程需要24天.15.D 去分母,得m+2x=x-2,由分式方程有增根,得x-2=0,解得x=2.把x=2代入整式方程m+2x=x-2,得m+4=0,解得m=-4.故选D .16.解:方程两边同乘x(x-1),得3(x-1)+6x=x+m,.解得x=m+38因为原分式方程有增根,所以x=0或x=1.当x=0时,即m+3=0,解得m=-3;8=1,解得m=5.当x=1时,即m+38综上所述,当m=-3或m=5时,原分式方程有增根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(新课标)苏科版八年级下册
10.2 分式的基本性质
一.选择题
1.化简的结果是()
A.﹣1 B.1 C.D.
2.下列分式中,最简分式是()
A.B.
C.D.
3.如果把中的x和y都扩大到5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍
4.下列分式运算中正确的是()
A.B.
C.D.
5.不改变分式的值,把分子、分母中各项系数化为整数,结果是()
A.B.C.D.
二.填空题
6.若,则= .
7.化简= .
8.约分= .
9.分式,﹣,的最简公分母是.
10.若,则的值是.
11.阅读下列材料:
通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.
如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).
如:==1﹣;
再如:===x+1+.
解决下列问题:
(1)分式是分式(填“真分式”或“假分式”);
(2)假分式可化为带分式的形式;
(3)如果分式的值为整数,那么x的整数值为.12.下列4个分式:①;②;③;④,中最简分式有个.
三.解答题
13.约分:
(1);
(2);
(3)•.
14.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;
(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.
(3)当x满足什么条件时,分式的值①等于0?②小于0?
参考答案
1.(2016•台州)化简的结果是()
A.﹣1 B.1 C.D.
【分析】根据完全平方公式把分子进行因式分解,再约分即可.【解答】解:==;
故选D.
【点评】此题考查了约分,用到的知识点是完全平方公式,关键是把要求的式子进行因式分解.
2.(2016•滨州)下列分式中,最简分式是()
A. B.
C.D.
【分析】利用最简分式的定义判断即可.
【解答】解:A、原式为最简分式,符合题意;
B、原式==,不合题意;
C、原式==,不合题意;
D、原式==,不合题意,
故选A
【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.
3.如果把中的x和y都扩大到5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍
【分析】把中的x和y都扩大到5倍,就是用5x代替x,用5y代替y,代入后看所得到的式子与原式有什么关系.
【解答】解:,
即分式的值不变.
故选B.
【点评】本题主要考查对分式的基本性质,是考试中经常出现的基础题.
4.下列分式运算中正确的是()
A.B.
C.D.
【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.
【解答】解:∵==,
∴A是正确的,B、C、D是错误的.
故选:A.
【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.
5.不改变分式的值,把分子、分母中各项系数化为整数,结果是()
A.B.C.D.
【分析】分式的分子、分母中含有分数系数,不改变分式的值,使分式分子、分母的各项系数化为整数要乘以2与3的最小公倍数6.
【解答】解:分式的分子和分母乘以6,原式=.故选D.【点评】易错选A选项,因为在分子和分母都乘以6时,原本系数是整数的项容易漏乘,应特别注意.
6.若,则= .
【分析】由,得a=,代入所求的式子化简即可.
【解答】解:由,得a=,
∴=.
故答案为:.
【点评】解题关键是用到了整体代入的思想.
7.化简= .
【分析】首先把分子分母分解因式,再约去分子分母的公因式即可.
【解答】解:原式=
=,
故答案为:.
【点评】此题主要考查了分式的约分,关键是正确把分子分母分解因式,找出公因式.
8.约分= .
【分析】由系数与系数约分,同底数的幂与同底数的幂约分求解即可.
【解答】解:=.
故答案为:.
【点评】此题考查了约分的知识.题目非常简单,解题时要注意细心.
9.分式,﹣,的最简公分母是12x2y3.
【分析】确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,﹣,的分母分别是x、3x2y、12y3,故最简公分母是12x2y3;
故答案为12x2y3.
【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.
10.若,则的值是 6 .
【分析】若,可以得到:a﹣b=﹣4ab.代入所求的式子
化简就得到所求式子的值.
【解答】解:由,可以得到:a﹣b=﹣4ab,
∴=.
故的值是6.
【点评】正确对式子进行变形,用已知式子把所求的式子表示出来,是代数式求值的基本思考方法.
11.阅读下列材料:
通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.
如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).
如:==1﹣;
再如:===x+1+.
解决下列问题:
(1)分式是真分式(填“真分式”或“假分式”);
(2)假分式可化为带分式1﹣的形式;
(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4 .
【分析】(1)依据定义进行判断即可;
(2)将原式变形为的形式,然后再进行变形即可;
(3)首先将原式变形为2﹣,然后依据x+1能够被3整数列方程求解即可.
【解答】解:(1)分式是真分式;
(2)假分式=1﹣;
(3)==2﹣.
所以当x+1=3或﹣3或1或﹣1时,分式的值为整数.
解得x=2或x=﹣4或x=0或x=﹣2.
故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4.【点评】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.
12.下列4个分式:①;②;③;④,中最简分式有 2 个.
【分析】根据确定最简分式的标准即分子,分母中不含有公因式,不能再约分,即可得出答案.
【解答】解:①是最简分式;
②==,不是最简分式;
③=,不是最简分式;
④是最简分式;
最简分式有①④,共2个;
故答案为:2.
【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.
13.约分:
(1);
(2);
(3)•.
【分析】(1)把分子与分母进行约分即可;
(2)根据平方差公式和完全平方公式先把分子与分母进行因式分解,然后约分即可;
(3)先把分母进行因式分解,然后通分,即可得出答案.【解答】解:(1)=﹣;
(2)==;
(3)•=•=.【点评】此题考查了约分与通分,用到的知识点是平方差公式和完全平方公式,注意先把分母因式分解,再进行约分和通分.
14.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;
(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.
(3)当x满足什么条件时,分式的值①等于0?②小于0?【分析】(1)根据分式的性质:分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案;
(2)根据分式的分子、分母、分式改变其中任意两个的符号,分式的值不变,可得答案;
(3)根据解分式方程,可得答案;根据解不等式,可得答案.【解答】解:(1)原式=;
(2)原式=﹣。

相关文档
最新文档