医学电生理学N3
神经肌肉的电生理学检查项目

神经肌肉的电生理学检查项目神经肌肉的电生理学检查项目是一种常见的医学检查方法,用于评估神经和肌肉的功能状态。
该检查包括多个项目,每个项目都有其特定的目的和应用范围。
以下是对神经肌肉的电生理学检查项目进行全面详细解析。
一、神经传导速度测定(NCS)神经传导速度测定(NCS)是一种常见的神经电生理学检查方法,用于评估神经传导速度、幅度和延迟等指标。
该检查通常通过在皮肤表面放置电极,并刺激相应的神经来进行。
NCS可用于评估多种疾病,如周围神经病变、脊髓损伤和脊髓灰质炎等。
二、肌电图(EMG)肌电图(EMG)是一种用于评估肌肉活动和功能状态的电生理学检查方法。
该检查通常通过在皮肤表面或针头插入到特定位置放置电极来进行。
EMG可用于诊断多种疾病,如运动神经元疾病、周围神经病变和肌无力等。
三、重复神经刺激(RNS)重复神经刺激(RNS)是一种用于评估肌肉疲劳和神经传导状态的电生理学检查方法。
该检查通常通过在皮肤表面放置电极,并刺激相应的神经来进行。
RNS可用于诊断多种疾病,如重症肌无力和周期性麻痹等。
四、单光子发射计算机断层扫描(SPECT)单光子发射计算机断层扫描(SPECT)是一种用于评估脑部血流量和代谢率的影像学检查方法。
该检查通常通过注射放射性示踪剂,并使用计算机对其进行分析来进行。
SPECT可用于诊断多种疾病,如中风、癫痫和帕金森氏症等。
五、功能性核磁共振成像(fMRI)功能性核磁共振成像(fMRI)是一种用于评估大脑活动和功能状态的影像学检查方法。
该检查通常通过使用强大的磁场和无害的无线电波来获取图像,并对其进行分析来进行。
fMRI可用于诊断多种疾病,如脑卒中、多发性硬化和阿尔茨海默症等。
六、脑电图(EEG)脑电图(EEG)是一种用于评估大脑电活动的电生理学检查方法。
该检查通常通过在头皮表面放置电极,并记录大脑电活动来进行。
EEG可用于诊断多种疾病,如癫痫、睡眠障碍和脑损伤等。
七、视觉诱发电位(VEP)视觉诱发电位(VEP)是一种用于评估视觉系统功能状态的电生理学检查方法。
电生理检查

43
图形VEP
fVEP能判断有没有光传导至视皮层,pVEP能判断中央视敏度 全视野模式VEP 在发现视交叉前的损伤方面最敏感 对图形的注视对于P-VEP检查很重要 。不聚焦在图形上将影响
反应潜伏期,振幅和波形。 验伪盲时,装病的患者可能会通过故意不聚焦在图片上,或不
保持注视,而产生异常的应答 镜片: 患者需佩戴合适的矫正镜片
7
什么是动作电位
动作电位:受刺激处的细胞膜两侧出现一个特殊 形式的电变化
去极化:如果膜内电位向负值减少的方向变化。 复极化:细胞先发生去极化,然后再向正常安静时
膜内所处的负值恢复。 超极化:当静息电位的数值向膜内负值加大的方
向变化时,称作膜的超极化
8
EOG (眼电图)
使用视网膜全视野球形刺激器,全视野要均匀照明; 红色二极管组成的脉冲视标引导眼睛按30度视角移动
OPs波下降或消失:视网膜缺血,糖网,视网膜静 脉周围炎,缺血性中央静阻
30
视力下降心凹或黄斑区(硫酸羟 氯喹片视网膜毒性)
视网膜疾病可以从小的局部损伤开始(年龄相关性黄斑 病变,Stargardt病 )
正常全视野ERG 不能解释视力损失 我们如何找出这些小的局部的早期病变? 如何排除“功能性视力障碍”
Best’s病比率 <1.5
1.8或更大的Arden比率是正常, 1.65 到 1.80 异常, < 1.65 是显著异常
13
Best’s病
视网膜营养不良包括视网膜色素上皮 (RPE) 双眼黄斑卵黄样病变 ERG: 正常 EOG: 异常. Arden 比率 亮/暗 < 1.5
14
什么时候需要ERG 或VEP 检查
36
禁忌证
电生理三基试题及答案

电生理三基试题及答案一、单项选择题(每题1分,共10分)1. 电生理学研究的主要对象是什么?A. 细胞B. 组织C. 器官D. 系统答案:A2. 动作电位的产生主要依赖于哪种离子的跨膜流动?A. 钾离子B. 钠离子C. 钙离子D. 氯离子答案:B3. 静息电位的形成主要依赖于哪种离子的外流?A. 钾离子B. 钠离子C. 钙离子D. 氯离子答案:A4. 神经冲动传导的速度与哪种因素有关?A. 神经纤维的直径B. 神经纤维的长度C. 神经纤维的类型D. 神经纤维的兴奋性5. 神经肌肉接头的兴奋传递依赖于哪种化学物质?A. 乙酰胆碱B. 多巴胺C. 肾上腺素D. 去甲肾上腺素答案:A6. 心室肌细胞动作电位的特点是?A. 快速上升B. 平台期C. 快速下降D. 复极化答案:B7. 心电图中Q-T间期代表什么?A. 心室除极和复极的时间B. 心房除极和复极的时间C. 心室复极的时间D. 心房除极的时间答案:C8. 肌肉收缩的直接能源物质是?A. ATPB. ADPC. 肌酸D. 葡萄糖答案:A9. 神经递质释放的方式是?B. 胞吐C. 胞吞D. 内吞答案:B10. 突触后电位的类型包括?A. 兴奋性突触后电位B. 抑制性突触后电位C. 两种都有D. 两种都没有答案:C二、多项选择题(每题2分,共10分)1. 以下哪些因素会影响动作电位的产生?A. 细胞膜的离子通道状态B. 细胞内外离子浓度梯度C. 细胞膜的电阻D. 细胞膜的电容答案:ABCD2. 静息电位的维持依赖于哪些机制?A. 离子泵的持续工作B. 离子通道的选择性通透C. 离子的主动转运D. 离子的被动扩散答案:AB3. 神经冲动传导的特点包括?A. 快速性B. 单向性D. 可逆性答案:AB4. 心电图中P波代表什么?A. 心房除极B. 心室除极C. 心房复极D. 心室复极答案:A5. 肌肉收缩的调节机制包括?A. 钙离子的释放B. 肌丝滑行C. ATP的消耗D. 肌丝的松弛答案:ABCD三、判断题(每题1分,共10分)1. 动作电位的产生与钠离子内流有关。
周围神经损伤常用的电生理评定方法

周围神经损伤是一种常见的神经系统疾病,临床上需要通过电生理评定方法来帮助诊断和治疗。
此类方法是通过记录神经传导速度和肌肉电活动来评估神经系统功能的一种手段。
以下是常用的电生理评定方法:1. 神经传导速度测定(Nerve Conduction Velocity, NCV)神经传导速度测定是通过电刺激神经并测定刺激信号传导的速度来评估神经系统功能的测试方法。
这种方法通过贴电极在神经上并施加短暂的电刺激,然后记录刺激信号从刺激点到肌肉的传导速度。
通过比较正常值,可以判断神经传导速度是否受损,是一种主要用于评估周围神经损伤的方法。
2. 肌肉电图(Electromyography, EMG)肌肉电图是通过在肌肉上放置电极来检测肌肉电活动的方法。
这种方法可以测量肌肉的电活动,从而评估肌肉神经功能是否正常。
肌肉电图通常与神经传导速度测定一起使用,可以全面评估周围神经损伤。
3. 视觉诱发电位(Visual Evoked Potentials, VEP)视觉诱发电位是一种通过刺激视觉系统并记录大脑皮层潜伏期反应来评估视觉系统功能的方法。
这种方法适用于评估视觉神经损伤,可以通过比较潜伏期反应的正常值来判断视觉系统功能是否正常。
4. 听觉诱发电位(Auditory Evoked Potentials, AEP)听觉诱发电位是一种通过刺激听觉系统并记录大脑皮层潜伏期反应来评估听觉系统功能的方法。
这种方法通常用于评估听觉神经功能,可以帮助诊断听觉系统疾病和损伤。
总结起来,以上是常用的周围神经损伤的电生理评定方法,通过这些方法的综合分析可以全面评估神经系统功能是否正常,帮助临床诊断和治疗。
在实际临床中,医生们需要根据患者的具体情况选择合适的电生理评定方法,并结合临床症状和体征进行综合分析,以达到准确诊断和有效治疗的目的。
通过电生理评定方法可以更准确、客观地评估神经损伤或疾病的程度和病情发展趋势。
这些方法不仅可以用于诊断,还可以用于评估治疗效果和预后预测。
电生理作用原理适应症

电生理作用原理适应症
电生理是指利用电流对生物组织产生影响的生理学原理。
电生理作用可以通过改变细胞膜的电位和离子通道的开放状态来影响细胞内外的离子流动,从而影响神经元的兴奋性和传导性。
电生理作用可以用于多种医学应用,包括神经肌肉电刺激、心脏起搏器和除颤器等。
在神经肌肉电刺激中,电生理作用可以用于治疗肌肉萎缩、神经损伤和疼痛管理。
通过电刺激,可以促进肌肉收缩和神经再生,从而恢复肌肉功能和减轻疼痛。
心脏起搏器和除颤器利用电生理作用来维持心脏的正常节律和处理心律失常。
通过向心脏发送电流,可以使心脏肌肉收缩并恢复正常的心跳节律。
除了上述应用,电生理作用还可以用于治疗其他疾病,如尿失禁、脑瘫、帕金森病和癫痫等。
此外,电生理作用还被用于研究神经生物学和心脏生理学等领域,为科学研究和临床诊断提供重要工具。
总的来说,电生理作用在医学上有着广泛的应用,包括治疗神经肌肉疾病、心律失常和其他疾病,同时也在科学研究中发挥着重要作用。
通过对电生理作用的深入了解和应用,可以为医学和生命科学领域带来更多的突破和进展。
医学基础知识重点:生理学之心肌电生理考点汇总

医学基础知识重点:生理学之心肌电生理考点汇总
生理学是医学事业单位考试的重要考察内容,尤其是心肌电生理相关内容,帮助大家梳理相关内容,以便大家更好地复习和记忆。
下面把相关内容整理如下:
心肌电生理的特点总结如下:
1.2期平台期是心室肌细胞的主要特征,是心室肌动作电位复极较长的原因,决定心室肌细胞有效不应期长短。
2.心室肌细胞动作电位分期及发生机制:0期去极Na内流,1.2.3期K外流,2期多个Ca内流,4期钠泵来决定。
3.自律细胞形成机制:快Na慢Ca。
浦肯野纤维的4期去极化主要是Na内流;窦房结细胞4期去极化由Ca内流形成。
4.心肌跨膜电位类型和特点:
(1)快反应电位:包括心房肌、心室肌、心房传导组织、浦肯野纤维,主要Na内流;
特点:静息电位大,去极幅度大,速度快,兴奋扩布传导快。
(2)慢反应电位:包括窦房结、房室结,主要Ca和Na内流;
特点:静息电位小,去极幅度小,速度慢,兴奋扩布传导慢。
5.心肌生理特性:自律性、兴奋性、传导性、收缩性。
6.有效不应期:包括绝对不应期和局部反应期,相当于心肌收缩活动的整个收缩期和舒张早期;意义:保证心肌不发生完全强直收缩从而保证了心脏的收缩和舒张交替进行。
7.自律细胞包括:窦房结房室交界希氏束浦肯野(自律性由高到低)
8.心肌传导性:浦肯野纤维最快(4m/s),房室交界最慢(0.02m/s);房-室延搁是心内兴奋传导的重要特点,使心脏不发生房室收缩重叠现象,保证了心室血液的充盈及泵血功能的完成。
电生理检查
心内电生理检查基本方法回顾电生理检查-多导显示EarliestA waveEarliestv wave2腔内电图记录–导管摆放QT IACTP-AA-H H-VST segmentPR segmentP wave 正常范围PR 120-200msQRS 80-120msAH 50-130 msHis 10-25 msHV 35-55 ms5His HB PF SAN:Sinus nodeAVN:AV nodeHis: Penetrating portion of the bundle of HisHB : Branching portion of the bundle of HisPF:Purkinje fibersSAN AVNA H V TAtriumPA AH HVHBE传导系统腔内电图与体表电图的关系单级VS 双极Advantage DisadvantageUnipolar Give directionalinformation Pick up noise and far-field signalsCan help detect the origin of ectopic sites To decrease noise may need placement of an IVC electrodeBipolar Good for finding earliestactivation Does not give directional informationUsually much cleanerthan unipolarEasy to do7电生理检查程序电刺激(PES)•PES是一种通过接触心内膜的电极导管间断或持续发送电流的起搏技术。
•临近电极的细胞会除极并扩布到整个心脏。
•程序电刺激的作用1.传导功能测试2.心律失常诱发•PES 包括以下三种起搏方式: –递增刺激(burst)–递减刺激(ramp)–额外刺激•PES 用于测量和评估….–不应期–传导特性–心肌激动的特性–心律失常的特性•诱发•终止•鉴别●递增刺激–每组以固定频率刺激心脏。
电生理作用原理适应症
电生理作用原理适应症
电生理作用原理是指电流对生物体产生的生理效应。
电流通过刺激神经和肌肉细胞,引起细胞膜电位的变化,从而影响细胞的兴奋性和功能。
这项技术已经广泛应用于医学领域,用于治疗多种疾病和症状。
电生理作用原理在心脏领域得到了广泛应用。
心脏是我们身体最重要的器官之一,它的正常运行对维持生命至关重要。
电生理作用原理通过刺激心脏细胞,调节心脏的节律和收缩力,治疗心律失常等心脏疾病。
这种治疗方法可以减少心脏病患者的症状,提高生活质量,并延长患者的寿命。
电生理作用原理也在神经科学领域发挥着重要作用。
神经系统是人体信息传递的关键,它控制着我们的感觉、运动和认知功能。
电生理作用原理通过刺激神经细胞,改变神经电位,治疗神经系统疾病和症状。
例如,对于帕金森病患者,电生理作用原理可以刺激大脑的特定区域,减少运动障碍和震颤等症状。
电生理作用原理还被应用于康复医学领域。
康复医学旨在帮助患者恢复功能和改善生活质量。
电生理作用原理可以通过刺激肌肉细胞,促进肌肉的收缩和放松,增强肌肉力量和协调性。
这对于运动损伤、中风后遗症等患者的康复非常有帮助。
电生理作用原理是一种有效的治疗方法,已经在多个领域得到广泛
应用。
通过刺激神经和肌肉细胞,调节细胞的电位和功能,电生理作用原理可以治疗心脏疾病、神经系统疾病和康复需求。
这种技术的应用为患者提供了更加精准和有效的治疗手段,改善了患者的生活质量。
随着科学技术的不断进步,电生理作用原理在医学领域的应用前景将更加广阔。
医学电生理的基本原理和技术
数据分析:对实验数据进行分析,如信号处理、统计分析等
添加标题
实验结果:得出实验结论,如电生理现象的机制、电刺激的效果等
添加标题
实验改进:根据实验结果进行实验改进,如优化实验设计、改进实验操作等
添加标题
医学电生理的应用实例
心电图和心律失常诊断
心电图:记录心脏电活动的波形图,用于诊断心律失常
深部脑刺激(DBS):通过植入电极刺激大脑深部核团,治疗帕金森病等疾病
经颅磁刺激(TMS):通过磁场刺激大脑皮层,治疗抑郁症等疾病
脑机接口(BCI):通过采集大脑信号控制外部设备,实现人机交互
电刺激在疼痛治疗和康复医学中的应用
电刺激原理:通过电流刺激神经,缓解疼痛
电刺激方法:经皮电刺激、深部脑刺激等
生物电的传播:神经纤维上的动作电位传导
生物电的产生:细胞膜内外电位差的形成
生物电的测量和记录
生物电的产生:细胞膜内外电位差的形成
生物电的记录和分析:对生物电进行量化和分析,了解生理功能和病理变化
生物电的记录设备:心电图仪、脑电图仪等
生物电的测量方法:电生理学、心电图、脑电图等
生物电的干扰和抑制
生物电的产生和传播:介绍生物电的产生机制和传播途径。
干扰因素:列举可能干扰生物电的因素,如药物、疾病、环境等。
抑制方法:介绍各种抑制生物电的方法,如药物治疗、物理治疗等。
临床应用:举例说明生物电的干扰和抑制在临床医学中的应用。
医学电生理的技术和方法
电生理信号的采集和处理
电生理信号的采集:使用电极、导线等设备,获取生物体内的电活动信号
信号的显示和存储:将处理后的信号显示在屏幕上,并存储在计算机中
主要研究领域包括心电图、脑电图、肌电图等
电生理知识点总结
电生理知识点总结1. 电生理学的基本概念电生理学是研究生物体在电场中产生和传导电流,以及利用电流来调控细胞功能的生理学学科。
电生理学的研究对象包括细胞膜的离子通道、离子泵、细胞内外离子浓度的差异、动作电位等。
电生理学研究的重点在于探索细胞和组织在电流的作用下产生的生物学效应,揭示电刺激对生物体的影响和调控机制。
2. 离子通道的特点和分类离子通道是细胞膜上多种离子的通道蛋白,具有高度的选择性和特异性。
离子通道的开闭状态可以调节细胞内外离子浓度的平衡,影响细胞的电位和电导率,从而控制细胞兴奋性和肌肉收缩等生物学过程。
根据离子传导的特点和作用机制,离子通道可以分为压力门控通道、电压门控通道、配体门控通道和异源门控通道等多种类型。
3. 离子泵的结构和功能离子泵是细胞膜上的一种重要膜蛋白,具有将离子从低浓度转运到高浓度的能力。
离子泵的典型代表包括Na+/K+ ATP酶和Ca2+ ATP酶等。
离子泵通过ATP酶的水解反应,将ATP分解为ADP和磷酸根,从而产生能量来催化离子的运输。
离子泵在维持细胞内外离子平衡、调节细胞内外离子浓度差异和细胞兴奋性等方面起着重要作用。
4. 动作电位的产生和传导动作电位是细胞膜上的一种电信号,是由于细胞膜上的离子通道在受到电刺激后发生开放和关闭而产生的电压变化。
动作电位的产生和传导是神经元和肌肉等可兴奋细胞活动的基础。
动作电位有兴奋性、传导性和波动性等特点,能够快速、一致地传导信号,完成神经冲动的传递和信息处理。
5. 生物体电生理学的应用电生理学在临床医学、药理学、生物技术和生理学研究等领域具有广泛的应用价值。
通过测量心电图、脑电图和肌电图等生物电信号,可以诊断心脏、脑部和肌肉等组织的功能状态和病理情况,指导疾病的治疗和康复。
通过研究离子通道和离子泵的结构和功能,可以探索药物的作用机制和开发新药物,为疾病治疗提供新的思路和方法。
综上所述,电生理学是生物医学领域中一个重要的研究方向,它通过研究细胞和组织在电场作用下的生物学效应,揭示电刺激对生物体的影响和调控机制,为临床医学和生命科学的发展提供了重要的理论基础和技术手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.尖波
时程在70-200ms,波幅高于100μV,阴性者多,可双相或三相,是 因神经元同步化不足所致。另可因原发焦点在对侧半球或深部核团者, 因传导时间较长所致。 3.棘慢波
100-200μV波幅,3Hz,常伴以临床症状,为癫痫小发作的特异波, 当局限出现时,示癫痫灶所在;但不规则者,且频率多变;棘波及慢波 关系不规则者,则和痫灶元直接关系。6Hz方形波,可持续1-2s,多见于 脑外伤后,精神运动性癫痫。在正常人中偶可出现,但波幅低。 4.阵发性节律波 (不包括快波,均属慢波频段)
决定脑波的主要因素及其规律如下:
1.周期(波频Hz)的主要决定因素
(1)神经元回路的物理性:回路的长短及神经纤维 的粗细,以及神经冲动经过突触的数目。如皮层→丘脑 回路电位周期长于短的皮层内回路。细纤维、兴奋传导 速度越慢,则周期越长;兴奋通过突触时,时间将延迟。
(2)神经元的不应期:约100ms。 (3)神经元物质代谢速度:突触后电位是在物质代 谢过程中形成的,当达到一定水平时,导致细胞放电→ 送入回路中,代谢越慢则有长周期慢波,如老年人。 (4)大脑皮层神经元同步化和去同步化程度。
散在或θ波,或局限出现者,多见于脑各种器质疾病,示神经元代 谢低下。
癫痫的脑电变化
癫痫发作的典型症状是惊厥和意识障碍,但均为一过性的, 难以及时观察和确诊,而在癫痫发作期间或发作时,多数病例可 有特征性的脑电变化,因此,脑电图检查即成为癫痫的重要诊断 手段。
一、癫样放电的基本波形 癫痫发作时或间期,脑电图上出现突发性的高波幅放电,称
(1)3Hz癫痫小发作。(2)6Hz同步者为精神运动性癫痫,可广泛 或局限于颞区。(3)α波范围、高频、连续、不受外界刺激影响。(4 )高幅β,波幅100μV,多见于癫痫患者的额颞区。(5)14和6Hz阳性 波 见于浅睡时,有的单独或同时出现。
高波幅和年龄有关,1岁以下只有6Hz阳性波,10-39岁则二波同时出 现者占60%-70%,40岁以上则6Hz多见。 5.非阵发性异常波
二、异常波的分类及病因
(一)生理波病理化 1.α波异常
(1)广泛性α波变慢,伴调幅差,多见于广泛性慢 性脑功能低下的各种疾病,包括脑外伤、脑炎恢复期,各 种病因的脑萎缩、脑动脉硬化症等。
(2)广泛性低电压(<20μv)或无α波,见于重度脑 功能障碍的各种疾病,但正常人偶可见到。
(3)连续性全导联α波,α波幅增高,频率慢,调幅 差,枕区α前移,诱发α波无反应,见于脑干受损又名α 昏迷。
第三节 异常脑波概述
一、异常脑波产生的原因 异常脑波是脑机能的异常状态在脑电图的表现,其产 生原因如下: (一)脑器质性病变。 (二)全身性疾病继发,特别是中毒、代谢病,导致 大脑皮层神经元的形态或机能改变。
1.神经元树突基部侧棘的形态变化和该部的持续性 去极化。
2.神经元轴突侧支抑制系统被破坏。 3.神经元数量减少。 4.神经元物质代谢障碍。 5.神经纤维传导速度减慢。 由于上述因素,导致脑波波率、波幅、波形、位相、 出现形式、反应性的异常,产生各种异常脑波的出现。
为痫样放电(epilepform discharge)。其常见波形如图。
1.棘波(spike wave)时程在70 ms以下,幅度50-150V, 波的升支及降支极为陡峭,可有单相、双相或三相,但以负相为主 的双相多见,并呈单个或节律性出现,常见于颞叶癫痫。一般认为 出现高幅度、短周期的负向棘波的部位常为靠近癫痫病灶的部位。
(4)懒波:局限性α波减少或缺如,频率减慢,左右 差大于10%,要注意硬膜下血肿。
(5)α波局限性波幅高,双侧差大于20%~25%或在 50μV以上。多见于脑功能亢进包括癫痫。
(6)枕叶以波光反应消失,可见于该部脑梗塞等。
2.快波异常 (1)波幅高于30μV (见于癫痫症,服安眠剂量不足、垂 体功能障碍等)。 (2)限局性波幅增高,可见于颅脑外伤、外伤后癫痈、深 部肿瘤等。 (3)局限性波幅下降或消失。
2.波幅(μV)的决定因素
(1)皮层神经元同步化和去同步化程度。 (2)皮层神经元数量及大小,人脑枕叶和中央区α波幅高 于他区,因枕叶皮层的颗粒细胞体积虽小,但数目众多。中央 前区的细胞数虽不多,但细胞又大又长。 (3)神经元排列的一致性:皮层表面排列一致,有规则; 第6层神经元多,但排列方向不一致,故波幅前者高,后者低 。 (4)记录电极和皮层间距大则波幅低,如硬膜下血肿。 (5)神经元兴奋性:兴奋性高,波幅高,频率快,多见于 树突的持续性去极化或轴突侧支抑制系统被破坏后。
上述各种检测技术均是在常规脑电检测技术的基础上发 展起来的,能更精确地反映人脑功能变化的心理、生理、病 理状态,使脑电生理的检测不仅应用于临床医学,且已广泛 应用于军事、航空、航天、深海医学的研究,使脑电生理检 测技术达到丰富多彩、完善、客观而前途宽广的境地。但不 论脑电生理新技术有多大的发展,在临床诊断和科学研究方 面,脑电图的基本描记分析和结合临床实际对照,仍占有无 可争议的重要地位。
到前为止脑电生理检测技术已形成了一整套可以彩色
直观显示、自动快速进行频谱及功率谱定量分析、时空定位、 自动打印成像、大容量贮存、无纸描记及24h有线或无线长期 监测、较强的抗干扰装置等完整检测系统,脑电生理检测技 术已进入了一个划时代阶段。
目前临床应用的各种脑电生理检测技术,有脑感觉及运 动(磁、电刺激)诱发电位、事件相关电位、脑电位分布图 (脑电地形图)、显著概率地形图、脑时域地形图、压缩功 率谱阵分析、24h有线或无线长期脑电监测及分析系统、无纸 脑电描记等。
3.睡眠波异常 纺锤波、驼峰波、K-综合,一侧减弱或消失。
(二)异常波 1.棘波 时程在70ms以下,波幅高于100μV,示皮层有超同步性放
电。属短周期、高波幅阳性棘波者,最接近于病灶部位。但和 一般诱发电位者不同在于前者是在慢波基础上产生,且有较长 周期,而阳性棘波不能成为痫灶定位指标,一般属病灶远隔部 位,孤立性棘波,散在出现,持续间隔短,一般不伴以临床症 状及体征者,无定位价值。