初中毕业、升学统一考试数学模拟试题
初三数学试卷中招模拟题

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √-92. 若x=2,则代数式3x^2 - 4x + 1的值为()A. 1B. 3C. 5D. 73. 已知一元二次方程ax^2 + bx + c = 0(a≠0)的判别式△=b^2 - 4ac,若△=0,则方程有两个()A. 两个不相等的实数根B. 两个相等的实数根C. 一个实数根D. 没有实数根4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 2D. y = 2x^25. 已知等腰三角形ABC中,AB=AC,AD是BC边上的高,则∠BAC的大小为()A. 45°B. 60°C. 90°D. 120°6. 在平面直角坐标系中,点A(-2,3),点B(2,-3),则线段AB的中点坐标为()A. (0,0)B. (-1,-1)C. (-1,3)D. (1,-1)7. 若a、b、c、d为实数,且a^2 + b^2 + c^2 + d^2 = 0,则()A. a = b = c = d = 0B. a、b、c、d中至少有一个为0C. a、b、c、d中至多有一个为0D. a、b、c、d中最多有一个为08. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形9. 若sinα = 1/2,则α的取值范围是()A. 0° < α < 90°B. 0° < α < 180°C. 90° < α < 180°D. 180° < α < 270°10. 下列各式中,正确的是()A. 3^2 = 9B. 2^3 = 8C. (-2)^2 = 4D. (-3)^2 = 9二、填空题(每题5分,共20分)11. 若x = 3,则代数式2x^2 - 5x + 2的值为______。
中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。
初三数学毕业升学模拟试题(附答案)

初三数学毕业升学模拟试题(附答案)以下是查字典数学网为您引荐的初三数学毕业升学模拟试题(附答案),希望本篇文章对您学习有所协助。
初三数学毕业升学模拟试题(附答案)一选择题(本大题共10小题,每题2分,共20分)1. -7的相反数的倒数是 ( )A.7B.-7C.D.-2.计算a3a4的结果是( )A.a5B.a7C.a8D.a123. 右图中几何体的正视图是( )4. 一方有难、八方援助,截至5月26日12时,陕西省累计为某地震灾区捐款约为11180万元,该笔善款可用迷信记数法表示为( )A. 11.18103万元B. 1.118104万元C. 1.118105万元D. 1.118108万元5.半径区分为3 cm和1cm的两圆相交,那么它们的圆心距能够是( )A.1 cmB.3 cmC.5cmD.7cm6. 某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间与山高间的函数关系用图形表示是( )7. 货车行驶25千米与小车行驶35千米所用时间相反,小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为千米/小时,依题意列方程正确的选项是A. B.C. D.8. 抛物线图像如下图,那么一次函数与正比例函数在同一坐标系内的图像大致为( )第15题图9. 是的外心,,,CDAB,那么外接圆的半径是( )A. B. C. D.10.如图,在Rt△ABC中,BAC=90,AB=3,BC=5,假定把Rt△ABC 绕直线AC旋转一周,那么所得圆锥的正面积等于( )A.6 C.12 D.15二填空题(每题3分,共24分)11. 分解因式: .12. 一次考试中7名先生的效果(单位:分)如下:61,62,71,78,85,85,92,这7名先生的极差是分,众数是分。
13、假设正比例函数的图象经过点(1,-2),那么k 的值等于 .14. 不等式组的解集为 .15.假定二次根式有意义,那么x的取值范围是 .16.假定正比例函数的图象经过点(-2,-1),那么这个函数的图象位于第_____象限.17. 圆内接四边形ABCD的内角B:C=2:3:4,那么____18.如图,Rt△ABC中,B=90,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,那么△ABE的周长等于_________cm.三解答题(76分)19.(1)(6分) 计算:︱-3︱-( )-1 + -2cos60(2)(6分)先化简,再求值:,其中x=220.(6分)解方程组21.(此题总分值8分)在不透明的口袋里装有白,黄,蓝三种颜色的乒乓球(除颜色外其他都相反),其中白球有2个,黄球有1个,现从中恣意摸出一个是白球的概率为 .(1)试求袋中蓝球的个数.(2)第一次恣意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.22.(8分)如图,在平行四边形ABCD中,为上两点,且, . 求证:(1) ;(2)四边形是矩形.23、(10分)为了解先生课余活动状况,某校正参与绘画、书法、舞蹈、乐器这四个课外兴味小组的人员散布状况停止抽样调查,并依据搜集的数据绘制了下面两幅不完整的统计图,请依据图中提供的信息,解答下面的效果:(1)此次共调查了多少名同窗?(2)将条形统计图补充完整,并计算扇形统计图中书法局部的圆心角的度数;(3)假设该校共有名先生参与这个课外兴味小组,面每位教员最多只能辅导本组的名先生,估量每个兴味小组至少需求预备多少名教员.24.(10分) 某市政府鼎力扶持大先生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售进程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数: .(1)设李明每月取得利润为w(元),当销售单价定为多少元时,每月可取得最大利润?(2)假设李明想要每月取得2021元的利润,那么销售单价应定为多少元?(3)依据物价部门规则,这种护眼台灯的销售单价不得高于32元,假设李明想要每月取得的利润不低于2021元,那么他每月的本钱最少需求多少元?(本钱=进价销售量)25.(本小题共10分)如图,是⊙O的直径,直线与⊙O相切于点,平分 .(1)求证: ;(2)假定,,求⊙O的半径长.26.(本小题共12分)如图,的顶点,,是坐标原点.将绕点按逆时针旋转90失掉(1)写出两点的坐标;(2)求过三点的抛物线的解析式,并求此抛物线的顶点的坐标;(3)在线段上能否存在点使得 ?假定存在,央求出点的坐标;假定不存在,请说明理由.参考答案二填空题 (24分)11.. ,12 31, 85,13 -2,14 . ,15. x , ,16 一三,17 .90,18. 7,三解答题19(1)解:原式=3 2 + 2 =1+2-1 =2(2)解:原式= =当x=2时,原式= =20 .①+②,得4x=12,解得:x=3.将x=3代入①,得9-2y=11,解得y=-1.所以方程组的解是 .21.(8分) ⑴篮球1个 (2分)22 (此题8分)解:(1) ,四边形是平行四边形,在和中,(2)解法一:,. 四边形是平行四边形,. 四边形是矩形.解法二:衔接 .在和中,. 四边形是平行四边形,四边形是矩形.23 (10分)200人(2)乐器组60人(图略),书法局部圆心角 36(3) 绘画组需教员23人书法组需教员5人舞蹈组需教员8人乐器组需教员15人24解:( 12分)(1)由题意,得:w = (x-20)y=(x-20)( )答:当销售单价定为35元时,每月可取得最大利润. (2)由题意,得:解这个方程得:x1 = 30,x2 = 40.答:李明想要每月取得2021元的利润,销售单价应定为30元或40元.(3)法一:∵ ,抛物线启齿向下.当3040时,w2021.∵x32,当3032时,w2021.设本钱为P(元),由题意,得:P随x的增大而减小.当x = 32时,P最小=3600.答:想要每月取得的利润不低于2021元,每月的本钱最少为3600元.25.(10分)解:(1)衔接,直线与相切于点,是的直径,.又平分,又,优秀教育文档.(2)又衔接,那么,在和中,,.查字典数学网。
中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.22.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7 4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a65.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>17.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°8.已知方程组,则x﹣y=()A.5B.2C.3D.49.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<110.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有个.13.圆内接正方形的边长为3,则该圆的直径长为.14.计算:(+a)•=.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了人,扇形统计图中表示“C”的圆心角为°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.参考答案与解析一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.2【分析】直接估算无理数大小的方法以及实数比较大小的方法分析得出答案.【解答】解:∵1<<2;∴0<<1;故﹣2<﹣<<1<2;故选:D.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.【解答】解:从上面看,得到的视图是:;故选:A.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000202=2.02×10﹣7.故选:D.4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a6【分析】根据合并同类项的运算法则、同底数幂的除法、积的乘方分别进行计算即可得出答案.【解答】解:A、2a﹣a=a,故本选项错误;B、6a2÷2a=3a,故本选项正确;C、6a+2a=8a,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误;故选:B.5.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个【分析】根据众数和中位数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知7个出现次数最多,所以众数为7个;因为共有50个数据;所以中位数为第25个和第26个数据的平均数,即中位数为7个.故选:A.6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1;解不等式2x﹣4≤1,得:x≤;则1<x≤;故选:B.7.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】利用对顶角相等及三角形内角和定理,可求出∠4的度数,由直线l1∥l2,利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:∵∠A+∠3+∠4=180°,∠A=30°,∠3=∠1=85°;∴∠4=65°.∵直线l1∥l2;∴∠2=∠4=65°.故选:D.8.已知方程组,则x﹣y=()A.5B.2C.3D.4【分析】方程组两方程相减即可求出所求.【解答】解:;①﹣②得:(2x+3y)﹣(x+4y)=16﹣13;整理得:2x+3y﹣x﹣4y=3,即x﹣y=3;故选:C.9.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<1【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.【解答】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D选项错误.故选:C.10.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.【分析】根据题意,作出合适的辅助线,然后根据矩形的性质和正方形的性质,可以得到BG和EG的长,从而可以得到tan∠EBC的值.【解答】解:作EF⊥DC于点F,作EG⊥BC交BC的延长线于点G;则四边形CGEF是矩形;设AB=2a;∵在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE;∴EF=a,BC=2a;∴EG=a,CG=a;∴tan∠EBC=;故选:A.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2;=2(x2﹣2xy+y2);=2(x﹣y)2.故答案为:2(x﹣y)2.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有20个.【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个;∵摸到红色球的频率稳定在0.2左右;∴口袋中得到红色球的概率为0.2=;∴=;解得:x=20;即白球的个数为20个;故答案为:20.13.圆内接正方形的边长为3,则该圆的直径长为3.【分析】连接BD,利用圆周角定理得到BD是圆的直径,然后根据边长利用勾股定理求得直径的长即可.【解答】解:如图;∵四边形ABCD是⊙O的内接正方形;∴∠C=90°,BC=DC;∴BD是圆的直径;∵BC=3;∴BD===3;故答案为:3.14.计算:(+a)•=.【分析】先把括号内通分,然后约分得到原式的值.【解答】解:原式=•=•=.故答案为.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为32m2.【分析】设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,首先列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8;∵墙长为15m;∴16﹣2x≤15;∴0.5≤x<8;∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.【分析】过点F作FH⊥AD于H,易证∠DFH=30°,设CF=x,则DF=6﹣x,DH=(6﹣x),HF =(6﹣x),EH=DE+DH=5﹣,由折叠的性质得EF=CF=x,在Rt△EFH中,EF2=EH2+HF2,即可得出答案.【解答】解:过点F作FH⊥AD于H,如图所示:∵四边形ABCD是菱形,∠A=60°;∴AB=CD=6,∠EDF=120°;∴∠FDH=60°;∴∠DFH=30°;设CF=x;则DF=6﹣x,DH=DF=(6﹣x),HF=(6﹣x);∴EH=DE+DH=2+(6﹣x)=5﹣;由折叠的性质得:EF=CF=x;在Rt△EFH中,EF2=EH2+HF2;即x2=(5﹣)2+[(6﹣x)]2;解得:x=;∴CF=;故答案为:.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣2+1﹣2=﹣.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.【分析】先根据题意列举出所有可能的结果与取出的两个球上的汉字恰能组成“中国”或“加油”的情况,再利用概率公式即可求得答案.【解答】解:列举如下:中国加油中/(国,中)(加,中)(油,中)国(中,国)/(加,国)(油,国)加(中,加)(国,加)/(油,加)油(中,油)(国,油)(加,油)/所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“中国”或“加油”的情况有4种;则取出的两个球上的汉字恰能组成“中国”或“龙岩加油”的概率为=.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答】(1)证明:∵BE⊥CE,AD⊥CE;∴∠E=∠ADC=90°;∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°;∴∠EBC=∠DCA.在△BCE和△CAD中;;∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7;∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13;∴△ACD的周长为:5+12+13=30;故答案为:30.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了500人,扇形统计图中表示“C”的圆心角为72°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.【分析】(1)从两个统计图中可知“A非常了解”的人数为150人,占调查人数的30%,可求出调查人数;用360°乘以“C”所占的百分比即可得出“C”的圆心角度数;(2)用总人数减去其它等级的人数求出B等级的人数,从而补全条形统计图;(3)用总人数乘以不太了解垃圾分类人数所占的百分比即可.【解答】解:(1)小明共调查的总人数是:150÷30%=500(人);扇形统计图中表示“C”的圆心角为:360°×=72°;故答案为:500,72;(2)B等级的人数有:500×40%=200人,补全条形统计图如图所示:(3)根据题意得:50000×=5000(人);答:估计50000名市民中不太了解垃圾分类相关知识的人数有5000人.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为(50﹣x)元,平均每天的销量为(20+2x)件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?【分析】(1)根据“这种衬衫的售价每降低1元时,平均每天能多售出2件”结合每件衬衫的原利润及降价x元,即可得出降价后每件衬衫的利润及销量;(2)根据总利润=每件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵每件衬衫降价x元;∴每件衬衫的利润为(50﹣x)元,销量为(20+2x)件.故答案为:(50﹣x);(20+2x).(2)依题意,得:(50﹣x)(20+2x)=1600;整理,得:x2﹣40x+300=0;解得:x1=10,x2=30.∵为了扩大销售,尽快减少库存;∴x=30.答:每件衬衫应降价30元.22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.【分析】(1)连接OD,AD,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,推出OD∥AC,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)设AD=3k,BD=4k,根据勾股定理得到AB=5k,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,AD;∵AB是⊙O的直径;∴AD⊥BC;∵AB=AC;∴∠BAD=∠CAD;∵OA=OD;∴∠OAD=∠ODA;∴∠DAC=∠ADO;∴OD∥AC;∵DE⊥AC;∴OD⊥DE;∴DE是⊙O的切线;(2)∵tan B==;∴设AD=3k,BD=4k;∴AB=5k;∵∠AED=∠ADB=90°,∠BAD=∠DAE;∴△ABD∽△DAE;∴=;∴=;∴k=;∴AB=5k=.故答案为:.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.【分析】(1)设直线AB的解析式为y=kx+b,把A,B两点坐标代入,转化为解方程组即可.(2)由题意M(m,m+1),N(m,﹣m+4),根据MN=MP,构建方程解决问题即可.(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.由BT∥OJ,推出∠BJO =∠TBJ,推出tan∠TBJ=tan∠BJO=,推出=,设EK=m,BK=2m,则BE=m,推出EK =BE,由点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK,推出当D,E,K 共线,DE+EK的值最小.【解答】解:(1)设直线AB的解析式为y=kx+b;∵点A的坐标是(﹣1,0),点B(2,3);∴;解得:;∴直线AB的解析式为y=x+1;(2)∵点B(2,3),点C(3,);∴直线BC的解析式为y=﹣x+4;∵点P(m,0),PM∥y轴,交直线AB于点M,交直线BC于点N;∴M(m,m+1),N(m,﹣m+4);∵MN=MP;∴m+1=(﹣m+4)﹣(m+1);解得:m=;∴M(,);(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.∵直线BC的解析式为y=﹣x+4;∴tan∠BJO=;∵BT∥OJ;∴∠BJO=∠TBJ;∴tan∠TBJ=tan∠BJO=;∴=,设EK=m,BK=2m,则BE=m;∴EK=BE;∵点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK;∴当D,E,K共线,DE+EK的值最小,此时DE=DJ=2,EK=BK=1;∴点P在整个运动过程中的运动时间的最小值为2+1=3秒,此时E(4,2).24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是AD=BE,位置关系是AD⊥BE;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.【分析】(1)由等腰直角三角形的性质可得AO=BO,DO=EO,∠AOB=∠DOE=90°,由“SAS”可证△BOE≌△AOD,可得AD=BE,∠OBE=∠OAD,由直角三角形的性质可得AD⊥BE;(2)通过证明△AOD∽△BOE,可得=,∠OAD=∠OBE,可得结论;(3)如图3,连接AO,DO,由勾股定理可求AO的长,由(2)可知:△BEO∽△ADO,可求AD=2BE,由勾股定理可求解.【解答】解:(1)如图1,延长AD,BE交于点H;∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF;∴AO=BO,DO=EO,∠AOB=∠DOE=90°;∴∠BOE=∠AOD;∴△BOE≌△AOD(SAS);∴AD=BE,∠OBE=∠OAD;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;故答案为:AD=BE,AD⊥BE;(2)AD=BE不成立,AD⊥BE仍然成立;理由如下:如图2,连接AO,DO;∵AB=AC,DE=DF,∠BAC=∠EDF=60°;∴△ABC和△DEF是等边三角形;∵OB=OC,OE=OF;∴∠DOE=90°=∠AOB,DO=EO,AO=BO;∴∠AOD=∠BOE,;∴△AOD∽△BOE;∴=,∠OAD=∠OBE;∴AD=BE;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;(3)如图3,连接AO,DO;∵AC=3=AB,OB=OC,BC=6;∴AO⊥BC,BO=3;∴AO===6;由(2)可知:△BEO∽△ADO,AD⊥BE;∴==2;∴AD=2BE;∵AB2=AD2+BD2;∴45=4BE2+(5+BE)2;∴BE=﹣1;∴AD=2﹣2;∴sin∠ABD==.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.【分析】(1)将点A,B坐标代入抛物线解析式中,求解即可得出结论;(2)先求出点E坐标,进而表示出OM,利用三角形面积公式建立方程求解即可得出结论;(3)先判断出△MON∽△DEM,得出;再分点M在线段OE上和EO的延长线上,表示出ME,ON,进而得出n=,即可得出结论.【解答】解:∵抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0);∴设抛物线的解析式为y=a(x+1)(x﹣4)=ax2﹣3ax﹣4a;∴﹣4a=2;∴a=﹣;∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知,抛物线的解析式为y=﹣x2+x+2;∴C(0,2),对称轴为x=;∵点D和点C关于对称轴对称;∴D(3,2);∵DE⊥OB;∴E(3,0);∵N(0,n),且N在线段OC上;∴CN=OC﹣ON=2﹣n;∵ME=ON=n;∴OM=OE﹣ME=3﹣n;∵△CMN的面积是;∴S△CMN=CN•OM=(2﹣n)(3﹣n)=;∴n=或n=(舍去);∴M(,0);(3)∵∠DME=∠MNO=α,∠MON=∠DEM;∴△MON∽△DEM;∴;∵D(3,2);∴DE=2;设M(m,0);当m=0时,点M和点O重合,不能构成三角形MON;当点M在线段OE上时,则0<m<3;∴OM=m,ME=3﹣m;∴ON=n;∴;∴n===;∴0<n<;当点M在x轴负半轴时,则m<0;∴OM=﹣m,ME=3﹣m;∴ON=﹣n;∴;∴n===;∴n<0;即n的取值范围n<且n≠0.。
2024年初中毕业生学业考试 数学预测题参考答案

2024年初中毕业生升学模拟检测数学学科参考答案及评分建议2024.06一、选择题(共10小题,每小题3分,共30分)序号 1 2 3 4 5 6 7 8 9 10 答案 B C A C B A C D B D部分试题详解二、填空题(共6小题,每小题3分,共18分)2,10CD =,三、解答题(共8小题,共72分)解不等式②,得x <25;…………………………………………………………………4分∴不等式组的解集为-1≤x <25;………………………………………………………6分∵x 为整数,∴x 的取值为-1,0,1,2.……………………………………………………………8分 18.解 (1)四边形AFDE 是平行四边形.……………………………………………………2分理由如下:∴OD OB =,OA OC = ∵DE BF =,∴OD DE OB BF ,∴OE OF =,………………………………………………………………………4分 ∵OA OC =,∴四边形AFCE 为平行四边形;…………………………………………………5分 (2)32.…………………………………………………………………………………8分19.解 (1)800;40;5.………………………………………………………………………3分(2)126.…………………………………………………………………………………5分 (3)30000×800440=16500(人) 答:评价武汉马拉松A 等级的人数的有16500人.……………………………8分20.(1)证明 如图,连接CD ,∵AB BE =, ∴BAE BEA ∠=∠, ∵OC OD =,∴OCD ODC ∠=∠, ∵ BDBD =, ∴BAE OCD ∠=∠,……………………………………………………………1分 在ABE 中,1801802ABCBAE BEA BAE ∠=°−∠−∠=°−∠, 在OCD 中,1801802COD OCD ODC OCD ∠=°−∠−∠=°−∠,………………………3分∴ABC COD ∠=∠.……………………………………………………………4分 (2)解 ∵O 的半径为2,E 是OC 的中点,∴1OECE ==,4=, ∴213BE OB OE =+=+=, ∵AB BE =, ∴3AB =,∵BC 为O 的直径, ∴90BAC ∠=°,由勾股定理得AC =由(1)知BAE BEA OCD ODC ∠=∠=∠=∠, ∵CED BEA ∠=∠,∴CED ODC ∠=∠, 又∵ECD DCO ∠=∠ ∴CED CDO ∽ ,………………………………………………………………5分∴CD CECO CD= 即2212CD OC CE ⋅=×==,∴CD =,∵CED OCD ∠=∠,∴DE CD ==,∵BAE DCE ∠=∠,BEA DEC ∠=∠,∴BAE DCE ∽ ,………………………………………………………………6分 ∴AE AB CE CD=,即1AE =,∴AE ………………………………………………………………………7分∴AD AE DE =+==…………………………………………8分 21.解 (1)如图1;……………………………………………………………………………4分(2)如图2;……………………………………………………………………………6分 (2)如图3;……………………………………………………………………………8分22.建立模型 AB x ∥轴,5cm AB =,点B 为水流抛物线的顶点,∴抛物线的对称轴为:5x =.52ba∴−=, 10b a ∴=−,把点()15,0M 代入抛物线215y ax bx ++得:1510a b ++=, 把10b a =−代入1510a b ++=得:151010a a −+=.解得:15a =−,…………………………………………………………………1分2b ∴=,…………………………………………………………………………2分 ∴水流抛物线的函数表达式为:212155y x x =−++;………………………3分 解决问题 (1)解 不能,…………………………………………………………………4分圆柱形水杯最左端到点O 的距离是15312cm −=, 当12x =时,21122121510.25cm y =−×+×+=.………………………………5分 10.2cm 11cm < ,∴水流不能流到圆柱形水杯内.……………………………………6分(2)解 当11y =时,21215115x x −++=,解得:5x =+5x =−……8分圆柱形水杯的底面半径为3cm ,水杯的底面圆的圆心P 在x 轴上运动,为了使水流能流到圆柱形水杯内,5353OP ∴+<<+,即28OP +<<+………………………………………10分23.解 (1)①连AM ,交BE 于点G .∵点A 和点M 关于EB 对称,∴AM EB ⊥,…………………………………………………………………1分 ∴90EAG AEG ∠=°−∠, ∵四边形ABCD 是矩形, ∴90ABE AEG ∠=°−∠,∴EAG ABE ∠=∠, ∵90D EAB ∠=∠=°, ∴ADM BAE △∽△,…………………………………………………………2分 ∴BE ABAM AD=.…………………………………………………………………3分②AE BF DM −.……………………………………………………………4分 过点F 作FH AD ⊥,垂足为H ,连接AM ,交FE 于点G ,连接AF .∵FHAD ⊥,∴90AHF ∠=°,∵四边形ABCD 是矩形, ∴90DAB B D ∠=∠=∠=°, ∴四边形ABFH 是矩形, ∴BF AH =,∵点A 和点M 关于EF 对称, ∴AM EF ⊥,∴90EAG AEF ∠=°−∠, ∵FHAD ⊥,∴90EFH AEF ∠=°−∠,∴EAG EFH ∠=∠, ∵90D EHF ∠=∠=°,∴ADM FHE △∽△,…………………………………………………………6分∴DM AD EH HF==∴DM DM EH AE BF==−AE BF −. ………………………………………………………7分(2)延长EA 到点M ,使得EM EF =,连接FM ,交BE 于点G ,连接BM .∵EB 平分AEF ∠, ∴BEF BEM ∠=∠, ∴()SAS FEB MEB ≅ , 转化为(1)②问题,∴ABE DMF △∽△,,2FM EB FM FG ⊥=,……………………………8分 ∵BE BF =, ∴11222sin AE BE BF BF DF FM FG FG EBF===⋅=∠, ∵tan EBF k ∠=,∴sin EBF ∠………………………………………………………9分∴12sinAEDF EBF==∠.………………………………10分24.解(1)由题意得:()22214243y a x ax ax a ax bx=−+=−++=++,∴43a+=,2a b−=,解得:1a=−,2b=,……………………………………………………………2分∴抛物线的函数表达式为:223y x x=−++.……………………………………3分(2)∵()()22331y x x x x=−++=−++∴11x=−,23x=,∴()1,0A−,()3,0B,另0x=,则3y=,∴点()0,3C,设BC的解析式为:y kx c=+,∴303k cc+==,解得:13kc=−=∴BC的解析式为:3y x=−+.………………………………………………4分设()2,23P t t t−++,过点P作P G y∥轴交BC与点G,过点A作AH y∥轴交BC与点H.∴(),3G t t−+,()1,4H−,∴()222333PG t t t t t=−++−−+=−+,4AH=,……………………………5分∵P G y∥轴,AH y∥轴,∴PG AH∥,∴PE PGAE AH=,∴()221139934421616PECACES PE PGW t t tS AE AH====−+=−−+≤,……………6分当32t=时,w有最大值为916,此时315,24P.………………………………7分(3)直线PQ过定点()3,4−,……………………………………………………………8分理由如下∶设直线PQ 的解析式为1y k x d =+,11()P x y ,,22()Q x y ,, 当2123k x d x x +=−++时, 整理得:()21230x k x d −+−+−=1212x x k +=−,12·3x x d =−,…………………………………………………10分设直线PA 的解析式为2y k x m =+,直线QA 的解析式为3y k x n =+, 当2223k x m x x +=−++时, 整理得:()22230x k x m −+−+−=1212x k −=−,13x m −=−,当2323k x n x x +=−++时, 整理得∶ ()23230x k x n −+−+−=, 2312x k −=−,23x n −=−,∵·4OG OH =,∴4mn −=, ∴()()12334x x −−=−, 整理得,13k d +=−,…………………………………………………………11分 ∴直线PQ 经过点()3,4−.………………………………………………………12分。
2024年浙江初中毕业生学业模拟考试(台州卷)数学试题+答案+答题卡

2024年浙江省初中毕业生学业模拟考试(台州卷)数 学 试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平. 答题时,请注意以下几点:1. 全卷共4页,满分120分,考试时间120分钟.2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3. 答题前,请认真阅读答题纸上的“注意事项”,按规定答题.4. 本次考试不得使用计算器.一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. “中国空间站”入选了2023年全球十大工程成就.空间站离地球的距离约为380 000米,数据380 000用科学计数法可表示为( ▲ ).A. 38×104B.3.8×106C.3.8×105D.0.38×106 2.下列四个2024年巴黎奥运会项目图标中,既是轴对称图形又是中心对称图形的是( ▲ ).A. B. C. D.3. 下列计算正确的是( ▲ ).A .32x x xB .523)(x xC .33)x x (D .326x x x4. 如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=55°,则∠2=( ▲ ).A .70°B .65°C .60°D .55°5. 对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P ′,Q ′,保持PQ =P ′Q ′,我们把这种变换称为“保距变换”,下列变换中不一定是“保距变换”的是( ▲ ). A . 平移 B. 旋转 C. 轴对称 D. 位似 6. 小明的期中与期末测试成绩如下表:A.小明期末与期中总分相同B.小明英语期末名次一定在中等以上C.小明数学期末成绩比期中有进步D.小明语文期末成绩比期中有退步(第4题) (第7题) (第10题)DC B AG FE D C B A 2 1 D C B A7. 如图,Rt △ABC 中,∠ABC =90°,AB =3,BC =2,以点C 为圆心,BC 长为半径作圆弧交AC 于点D ,则AD 长在( ▲ ).A. 0与1之间 B . 1与2之间 C. 2与3之间 D. 3与4之间8. 有如下数列:a 1,a 2,a 3,a 4,a 5,a 6,...,a n-2,a n-1,a n ,...,满足a n -2·a n =2a n -1,已知a 1=1,a 3=4, 则a 2024=(▲).A.8B.6C.4D.29. 学校要制作一块广告牌,请来两名工人,已知甲单独完成需4天,乙单独完成需6天,若先由乙做1天,再两人合作,完成任务后共得到报酬900元,若按各人的工作量计算报酬,则分配方案为( ▲ ). A .甲360元,乙540元B .甲450元,乙450元C .甲300元,乙600元D .甲540元,乙360元10. 如图,在Rt △ABC 中,∠ACB =90°,以AB 为边向三角形外作正方形ABDE ,作EF ⊥BC 于点F ,交对角线AD 于点G ,连接BG. 要求△BFG 的周长,只需要知道( ▲ ). A.线段BF 的长度 B.线段AC 的长度 C.线段FG 的长度 D.线段BC 的长度 二、填空题(本题有6小题,每小题4分,共24分) 11. 分解因式:x 2 xy = ▲ .12. 一个不透明的口袋中有3个质地相同的小球,其中2个红色,1个蓝色. 随机摸取一个小球是红色小球的概率是 ▲ .13. 小明用刻度尺(单位:cm )测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,D 是AB 的中点,点A ,B 对应的刻度分别是1,8,则CD = ▲ cm .14. 某绿化队原来用漫灌方式浇绿地,a 天用水m 吨,现改用喷灌方式,可使这些水所用的天数为2a 天,现在比原来每天节约用水 ▲ 吨.(用含a ,m 的代数式表示)15. 在平行四边形ABCD 中,点E ,F 在BC 边上,把△ABE 沿直线AE 折叠,△CDF 沿直线DF 折叠,使点B ,C 落在对角线AC 上的点G 处,若∠AGD =110°,则∠B 的度数为 ▲ .(第13题) (第15题)16. 已知抛物线k x a y +=2)2(-上有A (-2,y 1),B (1,y 2),C (4,y 3),D (5,y 4)四个点,某数学兴趣小组研究后得到三个命题:①若y 1+y 3 > y 2+y 4,则a > 0;②若y 2-y 3 > 0,则y 1-y 4 > 0; ③若y 2 y 3 = 0,则y 1 y 4 > 0. 属于真命题是 ▲ .(填写序号)三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分) 17.π0(2)2 .18. 解不等式组:14,23.x x xEGFDCBAA BC D19. 图1是太阳能路灯的实物图,图2是其示意图,AB 垂直于地面l ,AB =800 cm ,BC =105 cm ,∠ABC=108°,求点C 离地面的高度. (结果精确到1cm ,参考数据:sin18°≈0.31,cos18°≈0.95 ,tan18°≈0.31 )20. 如图,一次函数b kx y 与反比例函数xcy的图象相交于A ,B 两点,A ,B 的坐标分别为(2,n ),(-4,-2).(1)分别求出一次函数和反比例函数的解析式;(2)已知点M (m ,c ),B (m ,d ),分别在一次函数和反比例函数上,当c >d 时,直接写出m 的取值范围.(第20题) (第21题)21. 如图,在△ABC 中,∠ABC 的平分线BD 交AC 边于点D ,已知∠ADB =2∠ABD .(1)求证:AB ²=AD AC ;(2)若DC =2AD =2,求∠A 的度数.22. 某中学开展专家讲座,帮助学生合理规划周末使用手机的时间,并在讲座前后对本校学生周末手机使用时间情况进行随机抽样调查,制成如下统计图表(数据分组包含左端值不包含右端值).(1)在讲座开展前抽取的学生中周末使用时长在哪个区间的人数最多?占抽取人数的百分之几? (2)该校共有学生1500人,请估计讲座开展后全校周末使用手机8小时以上的学生人数;(3)小军认为,活动开展后的样本中周末使用手机6小时以上的人数与讲座前相比变化不大,所以讲座并没有起到效果.请结合统计图表,对小军分析数据的方法及讲座宣传活动的效果谈谈你的看法.DCBAlD BCA图1 图223. 图1是某校园的紫藤花架,图2是其示意图,它是以直线AB 为对称轴的轴对称图形,其中曲线AC ,AD ,BE ,BF 均是抛物线的一部分.图1 图2 图3素材1:某综合实践小组测量得到点A ,B 到地面距离分别为5米和4米.曲线AD 的最低点到地面的距离是4米,与点A 的水平距离是3米;曲线BF 的最低点到地面的距离是289米,与点B 的水平距离是4米.素材2:按图3的方式布置装饰灯带GH ,GI ,KL ,MN ,HJ ,布置好后成轴对称分布,其中GI ,KL ,MN ,HJ 垂直于地面, GI 与HJ 之间的距离比KL 与MN 之间的距离多2米.任务一:(1)在图2中建立适当的平面直角坐标系,求曲线AD 的函数解析式; 任务二:(2)若灯带GH 长度为d 米,求 MN 的长度.(用含d的代数式表示); 任务三:(3)求灯带总长度的最小值.24. 如图,半圆O 的直径AB =6.点C 在半圆O 上,连结AC ,BC ,过点O 作OD ∥AC 分别交BC , AB于点E ,D ,连结AD 交BC 于点F . (1)求证:点D 是 BC的中点; (2)将点O 绕点F 顺时针旋转90 °到点G .①当点G 在线段AD 上,求AC 的长;②当点G 在线段AC 上,求sin ∠ABC 的值.(第24题)FBOA E CDBO备用图A数学答案第1页共5页2024年浙江省初中毕业生学业模拟考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)题号12345678910答案CACADBBDBD二、填空题(本题有6小题,每小题4分,共24分)11.x (x -y )12.2313.3.514.2m a15.75°16.①③三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分)17.(6分)解:原式=3+1-4…3分=0…6分18.(6分)解:由①得:5x <-…2分由②得:1x <…4分∴不等式组的解集为:5x <-.…6分19.(6分)解:过点C 作CE ⊥AD ,垂足为E∵CE ⊥AD ,∴∠CEB =90°∴∠C =∠ABC -∠AEC =18°…2分∵BE =BC sin ∠C ,∴BE =105×0.31=32.55≈33(cm )…4分AE =AB +BE =833cm…6分答:点C 距离地面的高度是833cm20.(8分)解:(1)将B (-4,-2)代入xcy =42-=-c 得解得c=8…2分∴反比例函数的解析式:xy 8=令x=2代入得y=4∴A(2,4)将点A (2,4),点B (-4,-2)代入y =kx +b 得⎩⎨⎧+-=-+=bk b k 4224…4分数学答案第2页共5页解得⎩⎨⎧==21b k ∴一次函数的解析式为y =x +2…6分(2)-4<m <0或m >2(写对一个一分共2分)21.(8分)解证明:(1)∵BD 平分∠ABC ∴∠ABC =2∠ABD =2∠DBC∵∠ADB =2∠ABD ∴∠ABC =2∠ADB ……………1分∵∠ADB =∠DBC +∠C ∴∠ABD =∠C………………2分∴△ABD ∽△ACB ………………3分∴ACABAB AD =即AB ²=AD ⋅AC ………………4分(2)由(1)得∠DBC =∠C ∴BD =CD =2……………1分∵2AD =2∴AD =1∴AC =3∵AB ²=AD ⋅AC ∴AB=3……………2分∴AB ²+AD ²=BD ²……………3分∴∠A =90°……………4分22.(10分)(1)在开展前周末手机使用时长为4~6小时的同学最多.……2分5+8+15+12+10=50(人)15÷50×100%=30%……4分(2)16+24+40+16+4=100(人)4÷100×100%=4%1500×4%=60(人)……2分由样本估计总体,全校讲座开展后周末使用手机8小时以上大约有60人……3分(3)因为忽略了两次样本容量的差异,所以小军分析的方法不合理……1分样本中周末使用手机时长6小时以上的人数由44%下降为20%,所以此次讲座宣传活动是有效果的.……2分(未运用统计量说明的给1分)23.(10分)(1)如图,以地面所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的直角坐标系.设()234y a x =-+,代入()05A ,得:()25034a =-+,解得:19a =,()21349y x =-+ (3)分数学答案第3页共5页(2)2H d x =,12M d x =-,2113492M d y ⎛⎫=--+ ⎪⎝⎭214523699d d =-+214523699MN d d =-+…4分(3)设曲线BF 的函数解析式为:()22849y a x =-+,代入()04B ,得:()2284049a =-+解得:118a =,()21284189y x =-+设灯带总长度为w ,GH d =,22w MN HJ GH=++22145212822436991829d d d d⎡⎤⎛⎫⎛⎫=-++-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2111761239d d =-+,当2x =时,1739w =最小值.…3分24.(12分)解:(1)解法一:∵AB 是半圆O 直径∴∠C =90°……………………2分∵OD ∥AC∴∠OEB =∠C =90°,即OD ⊥BC……………………3分∴ BD= CD ,即点D 是 BC 的中点……………………4分解法二:∵OD ∥AC ∴∠D =∠CAD ……………………1分∵OA =OD ∴∠D =∠OAD …………………2分∴∠OAD =∠CAD……………………3分∴ BD= CD ,即点D 是 BC 的中点……………………4分解法三:连结CO ∵AB 是半圆O 直径∴∠ACB =90°……………………2分∵OD ∥AC ∴∠OEB =∠ACB =90°,即OD ⊥BC……………………3分∵OB =OC ,OE =OE ∴Rt △BOE ≌Rt △COE (HL )∴∠BOD =∠COD ∴ BD = CD ,即点D 是 BC的中点……………………4分(说明:各种方法合理均可.)(2)①解法一:连结OF ,作FG =OF∵点O 绕点F 顺时针旋转90°到点G ∴∠OFG =90°∴AF =DF……………………1分FBOAE CDF OAEC D G数学答案第4页共5页又∵OD ∥AC∴∠D =∠CAD ,∠C =∠DEC ∴△ACF ≌△DEF (AAS )……………………2分(由平行线直接得△ACF ∽△DEF 也给分.)∴AC =DE ∵O 是AB 中点,OD ∥AC ∴AC =2OE ……………………3分∵直径AB =6∴OE +DE =OD =3∴AC =2……………………4分解法二:连结OF ,BD ,作FG =OF ∵点O 绕点F 顺时针旋转90°到点G ∴∠OFG =90°∴AF =DF……………………1分又∵AB 是半圆O 直径∴∠ADB =90°∴OF ∥BD∴△OEF ∽△DEB ,OF :BD =1:2……………………2分∴DE =2OE ∵直径AB =6∴OE =1……………………3分∵O 是AB 中点,OD ∥AC ∴AC =2OE =2……………………4分(2)②解法一:如图,构造对应图形易证△CFG ≌△EOF………………1分∴OE =CF 由①得,AC =2OE ,△ACF ∽△DEF .设OE =CF =x ,则AC =2x ,DE =3-x ∴CF :AC =EF :DE =1:2∴EF =……………………2分∴CE =BE =CF +EF =∴在Rt △BOE 中,解得:x =1.8……………………3分∴sin ∠ABC ==0.6……………………4分(说明:各种方法合理均可.如:连结BD,通过比例和勾股定理求BD 的长等也可解决问题)解法二:如图,构造对应图形,作FH ⊥AB 于点H 易证△CFG ≌△EOF……………………1分∴OE =CF ,EF =CG ,∠OFE =∠CGF 易证△CFG ≌△HFO ,△CFA ≌△HFA ∴AC =AH =3,∠OFE =∠CGF =∠BOF ∴AG =AO =BO =BF =3……………………2分F B OAEC DGFBO AECD GF B O AE C DGH由①得,AC=2OE.设OE=CF=x,EF=CG=y,则AC=2x ∴2x-y=AG=3,x+y+y=BF=3(BC=2CE=2x+2y,再由AC2+BC2=AB2也可)解得:x=1.8……………………3分∴sin∠ABC==0.6……………………4分数学答案第5页共5页19.(本题满分6分)(第19题)21.(本题满分8分)(1)(4分)(第21题)(2)(4分)考号[0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9]20.(本题满分8分)(1)(6分)(2)(2分).(第20题)一、选择题(本题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)18.(本题满分6分)解不等式组:1423.x x x ⎧⎨⎩+<-,<+2024年中考模拟考试(一)数学答题卷学校班级姓名说明1、准考证号和选择题请用2B 铅笔填涂;2、除选择题外请用0.5mm 黑色中性笔答题;3、保持答题卷整洁,请勿折叠.缺考标记:[](考生不得填涂)二、填空题(本题有6小题,每小题4分,共24分)11..12..13..14..15..16...17.(本题满分6分)计算:9+(π-2)0+|-2|.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分)◤□■◤◥24.(本题满分12分)(1)(4分)(第24题)(2)①(4分)②(4分)22.(本题满分10分)(1)(4分)(2)(3分)(3)(3分)23.(本题满分10分)(1)(3分)(图2)(2)(4分)(图3)(3)(3分)模拟(一)数学答题卷第3页共4页模拟(一)数学答题卷第4页共4页。
2024届安徽省黄山市初中毕业学业模拟考试数学试题(二模)附答案

2024届安徽省黄山市初中毕业学业模拟考试数学试题(二模)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题所给的四个选项中,只有一项正确. 请在答题卷的相应区域答题.)1. 4的相反数是A .B .C .D .2±14-4-142.计算的正确结果为()23(3)2x x -⋅-A .B .C .D .518x 536x518x-536x-3. 大庆油田发现预测地质储量亿吨的页岩油,这标志着我国页岩油勘探开发取得重大1268.战略突破.数字用科学记数法表示为1268000000A. B. C. D.9126810.⨯8126810.⨯7126810.⨯6126810.⨯4.将一个机器零件按如图方式摆放,则它的俯视图为A .B .C .D .5. 如图,将直尺与含角的三角尺叠放在一起,若,则的大小是30︒155∠=︒2∠A .B .C .D .65︒70︒75︒80︒6.如图,电路图上有四个开关和一个小灯泡,则任意闭合其中两个开关,小灯A B C D 、、、泡发光的概率是A. B. C. D.1214第4题图第5题图第6题图7.“房住不炒”多次出现在政府报告中,明确了要稳地价、稳房价、稳预期.为响应中央“房住不炒”的基本政策,某房企连续降价两次后的平均价格比降价之前减少了19%,则平均每次降价的百分率为A .9.5%B .10%C .10.5%D .11%8.如图,平行四边形中,分别是的中点,,,ABCD G H 、AD BC 、AE BD ⊥CF BD ⊥四边形是矩形,若,,则GEHF 5AB =8AD =BD A .B .C .82231529. 如图,边长为4的正方形中,为边ABCD E AD 动点,将线段绕点顺时针旋转得到线段EF F 90︒FG B .4C .10.对于一个函数,自变量取时,函数值等于0x c y 的二次函数x 210y x x m =--+(0)m ≠方程有两个不相等的非零实数根21020x x m +--=3x 定正确的是A .B .C .1301x x <<131x x >240x x <二、填空题(本大题共4小题,每小题5分,满分20分. 11.的解集为.412x -<12. 分解因式 :.324x xy -=13. 如图,正比例函数与反比例函数()110y k x k =≠E 第8题图第13题图的图象交于,()220k y k x =≠()6,A m (),8B n -两点,点C 是坐标系中的一点,若,90ACB ∠=︒则的长为.OC 14.如图,在中,,将绕Rt ABC ∆90ACB ∠=︒ABC ∆点顺时针旋转得到,和相交于点,C DEC ∆BC DE O 点落在线段上,连接.D AB BE (1)若,则;20ABC ∠=︒BCE=∠(2)若,则.BEBD =tan ABC=∠三、(本大题共2小题,每小题8分,满分16分. 请在答题卷的相应区域答题.)15.计算:111452cos -⎛⎫-︒+ ⎪⎝⎭16.如图,三个顶点的坐标分别为.ABC ∆(2,4),(1,1),(4,3)A B C (1)请画出关于x 轴对称的;ABC ∆111A B C ∆(2)请画出绕点逆时针旋转后的;ABC ∆B 90︒22A BC ∆(3)仅用无刻度直尺作图(保留作图痕迹),求作线段的中点.AB P 第14题图ABC四、(本大题共2小题,每小题8分,满分16分. 请在答题卷的相应区域答题.)17.《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的,则有50钱;若乙得到甲所有钱的,则也有50钱,问甲、乙各12持钱多少?请解答此问题.18.观察以下等式:第1个等式:;第2个等式:21131232-=⨯⨯31182343-=⨯⨯第3个等式:;第4个等式:411153454-=⨯⨯511244565-=⨯⨯……按照以上规律,解决下列问题:(1)写出第5个等式:_______________________;(2)写出你猜想的第n 个等式:__________________(用含n 的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分. 请在答题卷的相应区域答题.)19.如图,O 为的外接圆,直线与O 相切于点,弦,与ABC ∆MN C BD MN ∥AC 相交于点.BD E (1)求证:;CAB CBD ∠=∠(2)若,求O 的半径.58BC ,BD == 20.现有一张宽为12cm 练习纸,相邻两条格线间的距离均为0.8cm .调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得.32α∠=︒(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印________个完整的图案?请直接写出答案.(参考数据:,,3205.sin ︒≈3208.cos ︒≈)3206.tan ︒≈六、(本大题满分12分. 请在答题卷的相应区域答题.)21.为了解某校九年级学生的理化实验操作情况,随机抽查一部分同学实验操作的得分.根据获取的样本数据,制作了如下的不完整的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)抽查的人数为________,6分所在的扇形的圆心角的大小是________度;请补全条形统计图;(2)样本数据的平均数为________分,众数为________分,中位数为________分;(3)该校九年级共有1200名学生,估计该校理化实验操作得满分10分有多少人.七、(本大题满分12分. 请在答题卷的相应区域答题.)22.某建筑物的窗户如图所示,上半部分是等腰三角形,,AF ∶BF 3∶4,点ABC ∆AB AC =分别是边的中点,下半部分四边形是矩形,G H F 、、AB AC BC 、、BCDE ,制造窗户框的材料总长为16米(图中所有黑线的长度和),设BE IJ MNCD ∥∥∥米,米.BF x =BE y =(1)求与之间的函数关系式,并求出自变量的取值范围;x x (2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.x八、(本大题满分14分.请在答题卷的相应区域答题.)23.如图1,在正方形中,分别为边的中点,连接交于ABCD E F 、AB BC 、AF DE 、点.G (1)求证:;AFDE ⊥(2)如图2,连接,求证:平分;BG BG EGF ∠(3)如图3,连接,若的面积为,求证:.BG ADG ∆S 22BG S =答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分.)12345678910CCABAABDDA二、填空题(本大题共4小题,每小题5分,满分20分. 请在答题卷的相应区域答题.)11.12.13. 1014.6x <()()22x x y x y +﹣40︒1-三、解答题(本大题共2小题,每小题8分,满分16分)15.解:111452cos -⎛⎫-︒+ ⎪⎝⎭222212+⨯--=2212+--=…………………………………………………………………………8分1=16.(1)如图所示,即为所求.………………………………………2分111A B C ∆(2)如图所示,即为所求.…………………………………………5分22A BC ∆(3)如图所示,点即为所求.…………………………………………8分P 四、(本大题共2小题,每小题8分,满分16分)17.解:设甲、乙的持钱数分别为x ,y ,根据题意可得:,15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得:,37.525x y =⎧⎨=⎩答:甲、乙的持钱数分别为37.5,25.…………………………………………8分18.解:(1);……………………………………………………2分611355676-=⨯⨯(2);……………………………………4分111(2)(1)(2)1n n n n n n n +-=++++证明:∵等式左边()()()11212n n n n n n +=-+++()()()21112n n n n +-=++()()2212n n n n n +=++()()()212n n n n n +=++11n =+又∵等式右边=,11+n ∴等式左边=等式右边,∴成立.………8分()()()1111212n n n n n n n +-=++++五、(本大题共2小题,每小题10分,满分20分)19.解:(1)连接,交于点OC BD F ∵直线与相切于点,MN O C ∴,OC MN ⊥∵,BD MN ∥∴,OC BD ⊥∴,BC CD =∴;…………………………………………………4分CAB CBD ∠=∠(2)连接,由(1)知,OB OC BD ⊥8BD =∴4BFDF ==∴在中得Rt BCF∆3CF ===设半径为,在中,r Rt BOF ∆3OF r =-根据勾股定理可得,解得.……………10分()22234r r-+=256r =20.解:(1)如图,在中,∵,Rt BCE ∆CE sin BC α=∴,081605CE .BC .sin .α===∵四边形是矩形,ABCD ∴,90BCD ∠=︒∴,90BCE FCD ∠+∠=︒又∵在中,Rt BCE ∆∴,90EBC BCE ∠+∠=︒∴32FCD EBC ∠=∠=在中,∵,Rt FCD ∆FC cos FCD CD ∠=∴,1623208FC .CD cos .===︒∴矩形图案的长和宽分别为2cm 和1.6cm ,∴面积=2×1.6=3.2()………………………………………7分2cm (2)5. ………………………………………………………………………10分六、(本大题满分12分)21.(1)40,36,补全图形如下………………………………………………3分(2)8.3,9,8 ; …………………………………………………………9分(3)解:(人),7120021040⨯=答:该校九年级共有1200名学生,估计该校理化实验操作得满分10分有210人.…………………………………………………………………………………12分七、(本大题满分12分)22.解:(1)∵是等腰三角形,是的中点,ABC ∆F BC ∴,BF CF ,AF BC,AB AC =⊥=∵米,BF x =∴米,米,CF x =22BC BF x ==∵∶∶,AF 3BF =4∴米,34AF x =在中,由勾股定理得(米) Rt AFB54AB x ===∴米,54AC AB x ==∵点分别是边的中点,,G H 、AB AC 、90AFB AFC ∠=∠=︒∴米,米,1528FG AB x ==1528FH AC x ==∵四边形是矩形,BCDE ∴米,米,2ED BC x ==BE CD y ==∵,BE IJ MN CD ∥∥∥∴米,BE IJ MN CD y ====∵制造窗户框的材料总长为16米,∴米,16AB AC FG FH AF BC ED BE IJ MN CD ++++++++++=∴,555532241644884x x x x x x x y +++++++=整理得;1748y x =-+由题意得,017408x x ⎧⎪⎨-+⎪⎩>>解得;………………………………………………………6分32017x<<(2)2113322244ABC S BC AF x x x ∆=⋅=⋅⋅= ,2171724884BCDE S BC BE x x x x ⎛⎫=⋅=⋅-+=-+ ⎪⎝⎭矩形设窗户的面积为平方米,W 则ABC BCDEW S S ∆=+矩形22223178447827832277x x x x x x =-+=-+⎛⎫=--+ ⎪⎝⎭,702- <有最大值,W ∴当米时,最大,最大值为平方米. ……………………12分87x =W 327八、(本大题满分14分)23.(1)∵四边形是正方形,ABCD ∴,90AD AB BC,DAE ABF ==∠=∠=︒∵分别为边的中点,E F 、AB BC 、∴,AE BF =∴,DAE ABF ≌∴,ADE BAF ∠=∠∵,90DAG EAG ∠+∠=︒∴,90DAG ADG ∠+∠=︒∴,90AGD ∠=︒∴;………………………………………………………………4分AF DE ⊥(2)如图2,过点作,垂足为,B BMAF ⊥M ∵,则,AFDE ⊥BM GE ∥∵,AE BE =∴,AGGM =设,则,BFa=2AB a,AF====∵,1122ABF S AB BF AF BM =⋅=⋅ ∴,2a a BM ⋅=⋅∴,BM =∴,AM ==∴,GM BM ==∴为等腰直角三角形,BMG ∴,45904545BGM ,BGE ∠=︒∠=︒-︒=︒∴,BGM BGE ∠=∠∴平分;……………………………………………………9分BG EGF ∠(3)的面积为,则,ADG S 2AG DG S ⋅=过点作,垂足为,B BM AF ⊥M 由(2)知:,22122GM AG,BM AM ,BG BM ===∵,90AGD AMB ,ADG BAM ,AB AD ∠=∠=︒∠=∠=∴,DAG ABM ≌∴,BM AG,AM DG ==∴,21222AG DG,AG DG AG S =⋅==即,2AG S =∴,2BM S =∴.…………………………………………………14分2222BG BM S ==。
2024年河北省初中毕业生升学文化课模拟考试数学试题(二)

2024年河北省初中毕业生升学文化课模拟考试数学试题(二)一、单选题1.如图,围绕在正方形四周的四条线段a ,b ,c ,d 中,长度最小的是( )A .aB .bC .cD .d2.下列各式的值最小的是( )A .112-- B .112-+ C .112- D .112+ 3.如图将矩形纸片ABCD 进行折叠,如果84AEF ∠=︒,那么EHC ∠的度数为( )A .96︒B .168︒C .132︒D .144︒4.5纳米芯片非常小,相比之下,人类头发的直径大约为100000纳米,即5纳米只有人类头发直径的120000,120000用科学记数法表示为( ) A .4210-⨯ B .4510-⨯ C .5210-⨯ D .5510-⨯ 5.如图,点A ,D ,B ,C 是圆O 上的四个点,连接AB ,CD ,相交于点E ,若∠BOD =40°,∠AOC =120°,则∠AEC 等于( )A .70°B .75°C .80°D .85°6.在平面直角坐标系中,点P (﹣5,m 2+3)关于原点的对称点在( )A .第一象限B .第二象限C .第三象限D .第四象限7.计算211a a a ---的正确结果是( ) A .11a -- B .11a - C .211a a --- D .211a a -- 8.列选项中的尺规作图,能推出PA=PC 的是( )A .B .C .D .9.已知实数a ,b 满足0a b +=,0a ≠,0b ≠,则a b b a+=( ) A .1 B .2 C .-2 D .-110.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()64-,,点B ,C 在x 轴上,将正方形ABCD 平移后,点O 成为新正方形的对称中心,则正方形ABCD 的平移过程可能是( )A .向右平移8个单位长度,再向下平移4个单位长度B .向右平移4个单位长度,再向下平移4个单位长度C .向右平移2个单位长度,再向下平移4个单位长度D .向右平移4个单位长度,再向下平移2个单位长度11.如图,168∠=︒,直线a 平移后得到直线b ,则23∠-∠的度数为( )A .68°B .78°C .108°D .112°12.如图,点O 为ABC ∠内部一点,且2OB =,E 、F 分别为点O 关于射线BA ,射线BC 的对称点.当90ABC ∠=︒时,则EF 的长为( )A .4B .6C .8D .1013.给出四个命题:①若a b >,c d =,则ac bd >;②若ac bc >,则a b >;③若22ac bc >,则a b >;④若a b >,则22ac bc >.真命题是( )A .①B .②C .③D .④14.某射击运动员在训练中射击了10次,成绩如图,下列结论正确的是( )A .平均数是8B .众数是8C .中位数是9D .方差是115.将二次函数y =x 2-4x -4化为y =a(x -h)2+k 的形式,正确的是( )A .y =(x -2)2B .y =(x +2)2-8C .y =(x +2)2D .y =(x -2)2-816.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知大小,用锯子去锯这个木材,锯口深1DE =寸,锯道1AB =尺(1尺10=寸),则这根圆柱形木材的直径是( )A .12寸B .13寸C .24寸D .26寸二、填空题17.幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为.18.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC V 周长的最小值为.19.在平面直角坐标系中,直线()0y kx b k =+<,经过点()6,0,且与坐标轴围成的三角形的面积是9,与曲线()20y x x=>的图象G 交于A ,B 两点. (1)则直线的表达式为;(2)横、纵坐标都是整数的点叫作整点.记图象G 在点A 、B 之间的部分与线段AB 围成的区域(不含边界)为W .则区域W 内的整点的坐标是.三、解答题20.请你根据下图中所给的内容,完成下列各小题.我们定义一个关于非零常数a ,b 的新运算,规定:a b ax by =+◎.例如:3232x y =+◎.(1)如果5x =-,2418=-◎,求y 的值;(2)118=◎,4220=◎,求x ,y 的值.21.某工厂进行厂长选拔,从中抽出一部分人进行筛选,其中有“优秀”,“良好”,“合格”,“不合格”.(1)本次抽查总人数为,“合格”人数的百分比为.(2)补全条形统计图.(3)扇形统计图中“不合格人数”的度数为.(4)在“优秀”中有甲乙丙三人,现从中抽出两人,则刚好抽中甲乙两人的概率为. 22.设5n 表示一个两位数,其中n 是十位上的数字(19n ≤≤),例如,当4n =时,5n 表示的两位数是45.观察以下等式:①当1n =时,2152251210025=⨯⨯+=;②当2n =时,2256252310025==⨯⨯+;③当3n =时,23512253410025==⨯⨯+;……根据以上规律,解决下列问题(1)写出第六个等式:______(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明:(3)运用:若25n 与100n 的差为2525.求n 的值.23.一个不透明的口袋中放有6个涂有红、黑、白三种颜色的小球(除颜色外都相同),其中红球个数比黑球个数多2个从口袋中随机取出一个球是白球的概率为13. (1)求红球的个数;(2)如下表,不同颜色小球分别标上数字“1”,“2”,“3”,则6个球上面的数字的众数是,中位数是;取走一个红球后,剩下球上数字的中位数是;(3)从口袋中随机取出一个球后不放回,之后又随机取出一个球,用列表法或画树状图的方法,求两次都取出红球的概率.24.如图,在平面直角坐标系中,一次函数y x n =-+的图象与正比例函数2y x =的图象交于点(),4A m .(1)求m ,n 的值;(2)设一次函数y x n =-+的图象与x 轴交于点B ,与y 轴交于点C ,求点B ,点C 的坐标;(3)写出使函数y x n =-+的值小于函数2y x =的值的自变量x 的取值范围;(4)在x 轴上是否存在点P 使PAB V 为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.某班级同学从学校出发去白鹿原研学旅行,一部分坐大客车先出发,余下的几人20min 后乘坐小轿车沿同一路线出行,大客车中途停车等候,5min 后小轿车赶了上来,大客车随即开动,以出发时速度的107继续行驶,小轿车保持原速度不变,最终两车相继到达了景点入口,两车距学校的路程(S 单位:km)和行驶时间(t 单位:min)之间的函数关系如图所示,请结合图象解决下列问题.(1)求大客车在途中等候时距学校的路程有多远?(2)在小轿车到达景点入口时,大客车离景点入口还有多远?26.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1)后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足123S S S +=的有_______个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为1S ,2S ,直角三角形面积为3S ,请判断1S ,2S ,3S 的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,已知123α∠=∠=∠=∠,则当α∠变化时,回答下列问题:(结果可用含m 的式子表示)①2222a b c d +++=_______;②b 与c 的关系为_______,a 与d 的关系为_______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第4题)
A
B P x
y
O
A
B
C
A
B
C
考数学试卷
一、选择题(本题共8个小题,每小题3分,共24分.请把答案填在答卷上) 1. 5
1
-
的倒数是 A. -5 B. C. D. 5
2. 如图所示上山坡道的倾斜度,小明测得图中所 示的数据,则该坡道倾斜角α的正切值是 A .
3
4
B .
43
C .35
D .
4
5
3. 2012年4月份,城区环境检测中心的关于“水心菜篮子” 某一周空气质量报告中某项
污染指数的数据如表所示,这组数据的众数是
A. 20
B. 21
C. 22
D. 24 4. 如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,则K 的值为 A .1 B .2 C .3 D .4
5. 数据0,1-,6,1,x 的平均数为1,则这组数据的方差是 A .2
B .
345
C .2
D .
265
6.如图一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC 长为12分米,伞骨AB 长为9分米,那么制作这样的一把雨伞至少需要绸布面料为( )平方分米
151
5
-x
k
y =
检测时间 周一 周二 周三 周四 周五 周六 周日 污染指数
21
22
21
24
20
22
21
3
4
第2题
α
3
4
m 第6题
A
B
C ·
D E
y x
A. 36π
B. 54π
C. 27π
D. 128π
7.如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是 A .3 B .113 C .10
3 D .4
第7题 第8题 8.已知抛物线
c bx ax y ++=2的图象如图所示,则下列结论:①abc >0;②
2=++c b a ;
③a <2
1
; ④b >1.其中正确的结论是 A . ①② B . ②③ C . ③④ D . ②④
二、填空题(本大题共10个小题.每小题3分;共30分.请把答案填在答卷上相应的题号后) 9.16的平方根是__▲_______.
10. 股市有风险,投资需谨慎。
截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为 ▲ ; 11.分解因式:分解因式: =___▲__.
12. 在一个暗箱里,装有3个红球、5个黄球和7个绿球,它们除颜色外都相同,搅拌均匀后,从中任意摸出一个球是红球..
的概率是 ▲_ 13.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA
的中点.请你添加一个条件,使四边形EFGH 为矩形,应添加的条件是 ▲ .
14.根据上图提供的信息,可知一个杯子的价格是 ▲ 元 15. 已知⊙与⊙两圆内含,,⊙的半径为5,那么⊙
的半径的取值范围是 ▲ .
16.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ∥BD 于点O ,AE ∥BC ,
DF ∥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF = ▲
269mx mx m -+1O 2O 321=O O 1O 2O r 第16题
A D H
G C
F B
E 第13题
第14题图
共43元 共94元
17. 直角三角形纸片的两直角边长分别为6,8,
现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是___▲__
18. 如图,是的直径,弦,是弦的
中点, .若动点以的速度从点出发沿着方向运动,设运动时间为
,连结,当是直角三角形时,
(s )的值为__▲_______
三、解答题:(本大题10题,共96分)下列各题解答时必须给出必要的演算过程或推理步骤.
19. (10分)见答卷 20.(6分)见答卷
21.(8分)列方程或方程组解应用题:
“五一”节日期间,某超市进行积分兑换活动,
具体兑换方法见右表. 爸爸拿出自己的积分卡,对小华说:“这里积有8200 分,你去给咱家兑换礼品吧”.小华兑换了两种礼品,共10件,还剩下了200分,请问她兑换了哪两种礼品,各多少件?
22.(8分)如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).
(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动
转盘两次转盘自由停止后,指针所指扇形数字的所有结果;
(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无
理数的概率.
AB O ⊙2cm BC =F BC 60ABC ∠=°E 2cm/s A A B A →→()(03)t s t <≤EF BEF △t 积分兑换礼品表 兑换礼品 积分 电茶壶一个 7000分 保温杯一个 2000分 牙膏一支
500分
6
8
C
E A
B
D
第17题
1 3
6
23. (8分)见答卷
24.(8分)如图,直线分别交x 轴,y 轴于点A C
,,点P 是直线AC 与双曲线k
y x
=在第一象限内的交点,PB x
⊥轴,垂足为点B ,APB △的面积为4.
(1)求点P 的坐标;
(2)求双曲线的解析式及直线与双曲线另一交点Q 的坐标.
25. (10分)如图,D 是⊙O 直径CA 延长线上一点,点B 在⊙O 上,且AO AD AB ==.
(1)求证:BD 是⊙O 的切线。
(2)若E 是劣弧 上一点,AE 与BC 相交于点F ,BEF ∆的面积为8,
且3
2
cos =BFA ,求ACF ∆的面积。
26.(12分) 某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,
其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A 型利润
B 型利润
甲店 200 170 乙店
160
150
(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
27.(本题12分)在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定
1
12
y x =+
C
BC
的角度而得到新位置图形的一种变换.
活动一:如图1,在Rt ∥ABC 中,D 为斜边AB 上的一点,AD =2,BD =1,且四边形DECF 是正方形,求阴影部分的面积.
小明运用图形旋转的方法,将∥DBF 绕点D 逆时针旋转90°,得到∥DGE (如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积: .
活动二:如图3,在四边形ABCD 中,AB =AD ,∥BAD =∥C =90°,BC =5,CD =3,过点A 作AE ∥BC ,垂足为点E ,求AE 的长.
小明仍运用图形旋转的方法,将∥ABE 绕点A 逆时针旋转90°,得到∥ADG (如图4所示),则∥四边形AECG 是怎样的特殊四边形?答: .∥AE 的长是 . 活动三:如图5,在四边形ABCD 中,AB ∥AD ,CD ∥AD ,将BC 按逆时针方向绕点B 旋转90°得到线段BE ,连接AE .若AB =2,DC =4,求∥ABE 的面积.
28.(本题14分) 已知二次函数2
y x bx c =-++的图像与x 轴交于B (-2,0),C (4,0)两点,点E 是对称轴l 与x 轴的交点. (1)求二次函数的解析表达式;
(2)T 为对称轴上一动点,以点B 为圆心,BT 为半径作⊙B ,写出直线CT 与⊙B 相切时,T 点的坐标; (3)若在x 轴上方的P 点为抛物线上的动点,且∠BPC 为锐角,直接写出PE 的取值范围.
(4)对于(1)中得到的关系式,若x 为整数,在使得y
为完全平方数的所有x 的值中,设x 的最大值为m ,最小值为n ,次小值为s ,(注:一个数如果是另一
l A
B
C
D
E F 图1
A
B
C
D
E
图2
G
图5
B
C
D
A
E
E A B
C
D
G 图4
A
B
C
D
图3
E y
x
E
C
A B
O
、、的值.个整数的完全平方,那么就称这个数为完全平方数.)求m n s。