旋风分离器
第6章 旋风分离器

集气筒
烟气出口
烟气入口
分离单管 隔热耐磨单层衬里 吊筒
集尘室
6.3 旋风分离器内气固两相流动规律
颗粒的分离是在含尘气流在分离器中的运动过程中实现的, 因此,分离器内气固两相的流动分布规律是决定分离性能的主 要因素 。
6.3.1 旋风分离器内气相流动规律
(1) 三维气流速度方向的定义
R
θ
C(dp)/Ci(dp)
1.20 1.00 0.80 0.60 0.40
dp=3μm dp=5μm dp=8μm dp=12μm dp=16μm
0.20
0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 r/R
图5-5 主要分离空间内颗粒粒级浓度沿径向分布(z=225)
(1) 分离器内颗粒浓度分布-沿壁面条带形螺旋线状分布
6.3.2 旋风分离器内固相流动分布规律
(2) 分离器内颗粒浓度分布-沿径向外高内低
6.3.2 旋风分离器内固相流动分布规律
(2) 分离器内颗粒浓度分布-沿径向外高内低
密相区
密相区
密相区
稀相区
稀相区
6.3.2 旋风分离器内固相流动分布规律
6.3.2 旋风分离器内固相流动分布规律
(3) CLK型(扩散型)
筒体下部为一倒锥形,并在底部装有倒置 的顶部开孔的漏斗形挡灰盘,其下沿与四壁底 圈留有齿缝。这种结构的作用是防止返回气流 将落下的粉尘重新卷起,因而提高了除尘效率, 尤其对直径10μm以下颗粒,效果更为明显,它 适用于净化颗粒浓度高的气体。
(4) CZT型(长锥型)
具有较长的锥体,一般采用锥体 长度为2.8D。体积小、用料省、除尘 效率高,适用于捕集非黏性的金属、 矿物、纤维性粉尘、刨花和木屑,特 别对纤维性的棉尘除尘效率几乎为 100%。
旋风分离器工作原理

旋风分离器工作原理旋风分离器是一种常用的气体固体分离设备,主要用于将气体中的固体颗粒进行分离和收集。
它基于离心力的原理,通过旋转气流将固体颗粒从气体中分离出来,从而实现气固分离的目的。
下面将详细介绍旋风分离器的工作原理。
1. 原理概述旋风分离器利用气体流体中的旋涡效应,将固体颗粒从气体中分离出来。
当气体流经旋风分离器时,由于管道的特殊设计,气流被迫形成一个旋转的涡流,固体颗粒在离心力的作用下沉降到分离器的底部,而干净的气体则从分离器的顶部排出。
2. 分离器结构旋风分离器主要由进气口、旋风体、底部排料口和出气口组成。
进气口位于分离器的一侧,气体通过进气口进入分离器。
旋风体是分离器的核心部件,它是一个中空的圆筒形结构,内部有一个圆锥形的底部。
当气体进入旋风体后,由于气流的旋转,固体颗粒被迫沉降到底部。
底部排料口用于收集和排出固体颗粒,而出气口则用于排出干净的气体。
3. 工作过程旋风分离器的工作过程可以分为三个阶段:进气阶段、分离阶段和排料阶段。
(1) 进气阶段:气体通过进气口进入旋风分离器,进入旋风体后,气流开始旋转。
(2) 分离阶段:在旋风体内,由于气流的旋转,固体颗粒受到离心力的作用,沿着旋风体的壁面向底部沉降。
同时,由于气流的旋转,固体颗粒与气流发生碰撞和摩擦,使得固体颗粒的速度减小,从而更容易沉降。
(3) 排料阶段:沉降到底部的固体颗粒通过底部的排料口被收集和排出,而干净的气体则从出气口排出。
4. 影响分离效果的因素旋风分离器的分离效果受到多种因素的影响,包括颗粒大小、气体流速、分离器尺寸和设计等。
(1) 颗粒大小:颗粒越小,受到气流的阻力越小,分离效果越好。
(2) 气体流速:气体流速越大,离心力越大,固体颗粒沉降速度越快,分离效果越好。
(3) 分离器尺寸和设计:分离器的尺寸和设计直接影响分离效果。
合理的尺寸和设计可以使气流旋转更加稳定,固体颗粒更容易沉降,并且减少气体中固体颗粒的带走。
5. 应用领域旋风分离器被广泛应用于工业生产中的气固分离过程。
旋风分离器工作原理

旋风分离器工作原理旋风分离器是一种常见的气固分离设备,主要用于将气体中的固体颗粒进行分离。
其工作原理基于离心力和气体流动的原理,通过引导气体流经特定的装置,使固体颗粒在离心力的作用下被分离出来。
旋风分离器通常由筒体、进料口、排料口、旋风管和底部排料装置等组成。
下面将详细介绍旋风分离器的工作原理:1. 进料口:气体和固体颗粒混合物通过进料口进入旋风分离器。
进料口通常位于分离器的顶部,使混合物能够顺利进入筒体内。
2. 筒体:筒体是旋风分离器的主要部分,通常呈圆筒形。
在筒体内,气体和固体颗粒混合物开始旋转,并且由于离心力的作用,固体颗粒会向外部壁面移动。
3. 旋风管:在筒体的顶部,有一个旋风管,用于引导气体流动。
当气体流动进入旋风管时,气体会形成一个旋涡状的流动,使固体颗粒受到离心力的作用,向筒体的壁面移动。
4. 离心力:旋风分离器的工作原理基于离心力的作用。
由于旋风管内的气体流动形成的旋涡,使固体颗粒受到离心力的作用,向外部壁面移动。
离心力的大小取决于气体流速、旋风管的形状和尺寸等因素。
5. 排料口:固体颗粒在离心力的作用下,沿着筒体的壁面向下移动,最终进入排料口。
排料口通常位于筒体的底部,用于收集和排出固体颗粒。
6. 底部排料装置:底部排料装置用于控制固体颗粒的排出。
它可以是一个旋转阀门或其他形式的装置,通过调节排料口的开闭来控制固体颗粒的排出速度和量。
旋风分离器的工作原理可以简单总结为:气体和固体颗粒混合物通过进料口进入筒体,然后在离心力的作用下,固体颗粒被分离出来,最终通过排料口排出。
这种分离器广泛应用于各个领域,例如粉尘收集、颗粒物分离、颗粒物分类等。
需要注意的是,旋风分离器的分离效果受到多种因素的影响,如气体流速、固体颗粒的大小和密度、旋风管的形状和尺寸等。
在实际应用中,需要根据具体的情况进行设计和调整,以达到最佳的分离效果。
总结:旋风分离器的工作原理基于离心力和气体流动的原理。
通过引导气体流经特定的装置,使固体颗粒在离心力的作用下被分离出来。
《旋风分离器高度和直径对性能及流场的影响》范文

《旋风分离器高度和直径对性能及流场的影响》篇一一、引言旋风分离器是一种利用离心力将固体颗粒从气流中分离出来的设备。
在许多工业过程中,如燃烧、粉体制备等,旋风分离器因其高效的分离能力而被广泛应用。
分离器的性能及流场状态对其运行效率和颗粒的收集效率具有重要影响。
本文将着重探讨旋风分离器的高度和直径对性能及流场的影响。
二、旋风分离器的基本原理和结构旋风分离器的基本原理是利用气流中的固体颗粒在旋转运动中的离心力作用,使颗粒在到达外围区域时与气相分离,从而达到清洁气流的目的。
其主要结构包括进气口、圆柱形部分、上升锥段和旋风收集器等。
其中,上升锥段和旋风收集器的设计对分离器的性能具有重要影响。
三、高度对性能及流场的影响1. 高度对性能的影响:旋风分离器的高度主要影响其处理能力和分离效率。
随着高度的增加,气流在分离器内的停留时间增长,颗粒有更多的机会与壁面接触并沉降,从而提高分离效率。
然而,过高的高度也可能导致气流在上升过程中扩散过大,降低中心区域的离心力,从而影响分离效果。
2. 高度对流场的影响:高度对流场的影响主要体现在气流的速度分布和湍流强度上。
随着高度的增加,气流速度逐渐降低,湍流强度也相应减小,这有助于颗粒的沉降和气流的稳定。
然而,过高的高度可能导致气流在上升过程中出现涡流和回流现象,影响流场的均匀性。
四、直径对性能及流场的影响1. 直径对性能的影响:旋风分离器的直径直接影响其处理量。
较大的直径可以允许更多的气流进入分离器,从而提高处理能力。
然而,直径过大可能导致颗粒在旋转运动中的离心力不足,降低分离效率。
因此,在设计和选择旋风分离器时需要综合考虑处理能力和分离效率的需求。
2. 直径对流场的影响:直径对流场的影响主要体现在气流的均匀性和稳定性上。
较大的直径可以提供更广阔的空间供气流旋转和扩散,有助于保持气流的均匀性和稳定性。
然而,过大的直径可能导致中心区域的离心力降低,从而影响颗粒的沉降效果。
因此,在满足处理需求的前提下,应尽量选择合适的直径以优化流场分布。
旋风分离器工作原理

旋风分离器工作原理
旋风分离器是一种常用的粉尘分离设备,广泛应用于工业生产过程中的粉尘处理和空气净化领域。
其工作原理基于离心力和重力的作用,通过旋转气流的方式将粉尘颗粒从气体中分离出来。
旋风分离器主要由进气口、旋风筒、出料口和排气口等组成。
当气体通过进气口进入旋风筒时,由于旋风筒内部的特殊结构设计,气流开始产生旋转运动。
在旋转运动的过程中,气流中的粉尘颗粒受到离心力的作用,被迫向外部壁面移动。
由于粉尘颗粒的质量较大,受到离心力的作用后,会沿着旋风筒的壁面向下滑动,并最终通过出料口排出旋风筒。
而相对较轻的气体则在旋风筒的中心部分继续向上流动,并通过排气口排出旋风分离器。
旋风分离器的分离效果主要取决于其内部的设计结构和气流速度。
一般来说,较高的气流速度和合理的设计结构可以提高分离效果。
在旋风筒的设计中,通常会设置导流板或导流环等装置,用于引导气流的旋转运动,增加离心力的作用。
此外,旋风分离器还可以通过调节进气口和排气口的尺寸来控制气流速度和分离效果。
当气流速度较高时,分离效果会更好,但同时也会增加能耗。
因此,在实际应用中,需要根据具体的粉尘处理要求和经济性考虑来确定最佳的工作参数。
总结起来,旋风分离器通过利用离心力和重力的作用,将气体中的粉尘颗粒从气流中分离出来。
其工作原理简单有效,适用于各种粉尘处理和空气净化场合。
在实际应用中,需要根据具体要求和经济性考虑来选择合适的旋风分离器,并调节工作参数以达到最佳的分离效果。
标准旋风分离器尺寸

标准旋风分离器尺寸旋风分离器是一种常用的颗粒物料分离设备,广泛应用于化工、建材、冶金等行业。
它通过离心力和重力的作用,将气体中的颗粒物料进行分离,达到净化气体的目的。
在选择和设计旋风分离器时,尺寸是一个至关重要的参数。
本文将讨论标准旋风分离器尺寸的相关内容,以便读者能够更好地了解和应用该设备。
首先,我们需要了解旋风分离器的尺寸参数包括进口直径、出口直径、筒体高度、锥体高度、旋风筒体倾角等。
这些尺寸参数的选择对于旋风分离器的分离效果、处理能力、压降等性能指标都有着重要的影响。
在实际应用中,需要根据具体的气体流量、颗粒物料的性质和要求等因素进行合理的选择。
其次,进口直径是影响旋风分离器性能的重要参数之一。
较大的进口直径可以降低气体的流速,有利于颗粒物料的沉降和分离;而较小的进口直径则可以增加气体的旋转速度,提高分离效果。
因此,在选择进口直径时,需要综合考虑气体流量、颗粒物料的粒径分布等因素,以达到最佳的分离效果。
再次,出口直径也是影响旋风分离器性能的重要参数之一。
较大的出口直径可以降低气体的旋转速度,降低压降,提高处理能力;而较小的出口直径则可以增加气体的旋转速度,提高分离效果。
在选择出口直径时,需要综合考虑气体流量、分离效果要求等因素,以达到最佳的性能指标。
此外,筒体高度和锥体高度也是影响旋风分离器性能的重要参数之一。
较高的筒体和锥体高度可以增加分离器的分离效果,但会增加设备的高度和成本;而较低的筒体和锥体高度则可以降低设备的高度和成本,但会影响分离效果。
在选择筒体和锥体高度时,需要综合考虑分离效果要求、设备成本等因素,以达到最佳的性能指标。
最后,旋风筒体倾角也是影响旋风分离器性能的重要参数之一。
合理的筒体倾角可以使气体和颗粒物料在旋风筒内形成合适的旋转流动,提高分离效果;而不合理的筒体倾角则会影响分离效果。
在选择筒体倾角时,需要综合考虑气体流动特性、分离效果要求等因素,以达到最佳的性能指标。
综上所述,标准旋风分离器尺寸是影响设备性能的重要参数,需要根据具体的应用要求进行合理的选择和设计。
旋风分离器参数

旋风分离器参数旋风分离器是一种广泛应用于工业生产中的气固分离设备,主要用于处理含有固体颗粒的气流。
它的工作原理是利用离心力将颗粒从气流中分离出来,从而实现气固分离的目的。
旋风分离器的结构简单、操作方便、处理能力大,因此在很多领域都有广泛的应用。
本文将对旋风分离器的参数进行详细介绍。
1. 入口速度:旋风分离器的入口速度是指气体进入旋风分离器的速度,通常用符号u表示。
入口速度的大小直接影响到旋风分离器的分离效果和处理能力。
一般来说,入口速度越大,离心力越大,颗粒分离效果越好。
但是,入口速度过大会导致气体在旋风分离器内的停留时间过短,从而影响分离效果。
因此,需要根据实际情况选择合适的入口速度。
2. 颗粒粒径:旋风分离器可以处理的颗粒粒径范围较广,但不同粒径的颗粒对旋风分离器的分离效果有很大影响。
一般来说,颗粒粒径越大,离心力越大,分离效果越好。
但是,颗粒粒径过大会导致颗粒在旋风分离器内的运动轨迹不稳定,从而影响分离效果。
因此,需要根据实际情况选择合适的颗粒粒径。
3. 气体流量:旋风分离器的气体流量是指单位时间内通过旋风分离器的气体体积,通常用符号Q表示。
气体流量的大小直接影响到旋风分离器的处理能力和分离效果。
一般来说,气体流量越大,处理能力越强,但同时离心力也会增大,导致颗粒分离效果变差。
因此,需要根据实际情况选择合适的气体流量。
4. 旋风分离器直径:旋风分离器的直径是指旋风分离器内腔的直径,通常用符号D表示。
旋风分离器直径的大小直接影响到旋风分离器的处理能力和分离效果。
一般来说,旋风分离器直径越大,处理能力越强,但同时设备的体积和重量也会增大。
因此,需要根据实际情况选择合适的旋风分离器直径。
5. 旋风分离器高度:旋风分离器的高度是指旋风分离器内腔的高度,通常用符号H表示。
旋风分离器高度的大小直接影响到旋风分离器的处理能力和分离效果。
一般来说,旋风分离器高度越大,处理能力越强,但同时设备的体积和重量也会增大。
旋风分离器原理和结构

旋风分离器原理和结构
旋风分离器的原理基于两个基本物理现象:离心力和离心分离。
当气体通过旋风分离器时,在分离器内部形成了高速旋转的气流,产生了强大的离心力。
由于离心力的作用,密度较大的固体颗粒被迫向离心器壁内靠拢,然后从底部排出。
而密度较小的气体则在旋风分离器的中间部分通过排出口排出,从而达到固体颗粒和气体的有效分离。
进料口是固体颗粒和气体进入旋风分离器的通道,通过进料口的设计可以控制进入旋风分离器的物料流速和方向,以提高分离效果。
分离器筒体是整个旋风分离器的主体部分,它是一个外形类似于圆柱体的筒体结构。
分离器筒体呈圆筒形状,内部是光滑的表面,可以减少气流运动的阻力,并且有利于固体颗粒向底部滑动和排出。
排出口是固体颗粒离心分离后的出口,通过排出口排出分离的固体颗粒。
排出口的位置和形状的设计可以影响固体颗粒的排出速度和质量。
总结起来,旋风分离器利用离心力和离心分离原理将固体颗粒和气体有效分离。
其结构包括进料口、分离器筒体、旋风分离器锥体、排出口、旋风分离器轴和驱动装置等部分。
不同部分的设计可以影响旋风分离器的分离效果和运行性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋风分离器
一、概念
旋风分离器,是利用离心力分离气流中固体颗粒或液滴的设备。
二、基本信息
作用:使气固液分离
分离效率:97%
分离精度:可除去≥10μm的固体颗粒
三、设备介绍
利用离心力分离气流中固体颗粒或液滴的设备。
四、工作原理
为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。
是工业上应用很广的一种分离设备。
五、性能指标
分离精度
旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm 的固体颗粒。
在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。
压力降
正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。
设计使用寿命
旋风分离器的设计使用寿命不少于20年。
六、结构设计
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。
内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。
设备管口提供配对的法兰、螺栓、垫片等。
通常,气体入口设计分三种形式:
a) 上部进气
b) 中部进气
c) 下部进气
对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。
而对于干气常采用中部进气或上部进气。
上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。
七、应用范围
旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。
它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,旋风除尘器在净化设备中应用得最为广泛。
改进型的旋风分离器在部分装置中可以取代尾气过滤设备。