塔吊附着计算书
塔吊附着计算(验算合格)

塔吊附着计算塔机安装位置至建筑物距离超过使用说明规定,需要增长附着杆或附着杆与建筑物连接的两支座间距改变时,需要进行附着的计算。
主要包括附着杆计算、附着支座计算和锚固环计算。
一. 参数信息二. 支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:1. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)W k=0.8×0.7×1.95×1.54×0.2=0.34kN/m2q sk=1.2×0.34×0.35×1.8=0.25kN/m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2)W k=0.8×0.7×1.95×1.54×0.30=0.50kN/m2q sk=1.2×0.50×0.35×1.80=0.38kN/m2. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=-2450+800=-1650.00kN.m非工作状态下,标准组合的倾覆力矩标准值M k=-2450.00kN.m3. 力 Nw 计算工作状态下: N w=0.000kN非工作状态下: N w=0.000kN三. 附着杆内力计算塔吊四附着杆件的计算属于一次超静定问题,采用结构力学计算个杆件内力: 计算简图:方法的基本方程:计算过程如下:其中:∑1p为静定结构的位移;T i0为F=1时各杆件的轴向力;T i为在外力M和P作用下时各杆件的轴向力;l i为各杆件的长度。
考虑到各杆件的材料截面相同,在计算中将弹性模量与截面面积的积EA约去,可以得到:各杆件的轴向力为:考虑工作状态和非工作状态两个工况,以上的计算过程将θ从0-360度循环,解得每杆件的最大轴压力,最大轴拉力:杆1的最大轴向拉力为:102.2kN;杆2的最大轴向拉力为:62.57kN;杆3的最大轴向拉力为:62.57kN;杆4的最大轴向拉力为:102.2kN;杆1的最大轴向压力为:102.20kN;杆2的最大轴向压力为:62.57kN;杆3的最大轴向压力为:62.57kN;杆4的最大轴向压力为: 102.20kN。
塔吊附墙计算书.doc

编制单位:编制人:审核人:编制时间:目录一、塔吊附墙概况二、塔吊附墙杆受力计算三、结构柱抗剪切验算四、附墙杆截面设计和稳定性强度验算一、塔吊附墙概况本工程结构高度53.4 m,另加桅杆15米,总高度68.4米。
本工程采用FO/23B塔吊,塔吊采用固定式现浇砼基础,基础埋设深度-5.35m,塔身设两道附墙与结构柱拉结:塔身升到12标准节时,设第一道附墙于第6标准节(结构标高23.47米),塔吊升到第17标准节时,设第二道附墙于第14标准节(结构标高42.8米),然后加到第23标准节为止。
在加第二道附墙之前,第一道附墙以上有17-6=11个标准节,而第二道附墙以上塔身标准节数最多为23-14=9节,因此,第二道附墙设置之前第一道附墙受力最大。
本计算书将对第一道附墙进行受力计算和构造设计。
为简化计算和偏于安全考虑,第二道附墙将采用与第一道附墙相同的构造形式。
本工程计划使用金环项目使用过的塔吊附墙杆。
根据塔吊与结构的位置关系,附墙杆夹角较小,附墙杆与结构柱连接的予埋件分别采用不同的形式。
本计算书主要包括四个方面内容:附墙杆及支座受力计算,结构柱抗剪切及局部受压验算,附墙杆予埋件锚筋设计,附墙杆型号选用。
二、塔吊附墙杆受力计算(一)、塔吊附墙内力计算,将对以下两种最不利受力情况进行:1、塔机满载工作,起重臂顺塔身x-x轴或y-y轴,风向垂直于起重臂(见图1);2、塔机处于非工作状态,起重臂处于塔身对角线,风向由起重臂吹向平衡臂(见图2)。
对于第一种受力状态,塔身附墙承担吊臂制动和风力产生的扭矩和附墙以上自由高度下塔身产生的水平剪力。
对于第二种受力状态,塔身附墙仅承受附墙以上自由高度下塔身产生的水平剪力。
以下分别对不同受力情况进行计算:(二)、对第一种受力状态,附墙上口塔身段面内力为:弯矩:M=164.83(T.m)剪力:V=3.013(T)扭矩:T=12(T.m),则:1、当剪力沿x-x轴时(见图a),由∑M B=0,得T+V*L1 -L B0’*N1=0即: N1=(T+ V*L1)/ L B0’=(12+3.013*3.65)/5.932=3.88(T)通过三角函数关系,得支座A反力为:R AY= N1*sin52.3426=3.88*sin52.3426=2.84(T)R Ax= N1*cos52.3426=3.88* cos52.3426=2.64(T)由∑M C=0,得N3*L G0’+T+V*0.8=0’=-(12+3.013*0.8)/0.966=-14.92(T)由∑M0’=0,得 N2*L C0’-(T+V*L6)=0即:N2 =(T+ V*L6)/ L C 0’=(12+3.013*0.027)/0.98=12.33(T)由力平衡公式∑N i=0,得R AY+R BY=0和-R AX-R BX +V =0,故R BY= -R AY =-2.84(T)(负值表示力方向与图示相反,以下同) R BX = -R AX +V =-2.64+12.33=9.48(T)2、当剪力沿y-y轴时(见图b),由∑M B=0,得T-(V*L4+L B0’*N1)=0即: N1=(T-V*L4)/ L B0’=(12-3.013*4.5)/5.932=-0.263(T)通过三角函数关系,得支座A反力为:R AY= N1*sin52.3426=-0.263*sin52.3426=-0.171(T)R Ax= N1*cos52.3426=-0.263* cos52.3426=-0.2(T)由∑M C=0,得N3*L C0’+T+V*0.8=0’=-(12+3.013*0.8)/0.98=-14.91(T)由∑M0’=0,得 N2*L C0’-(T+V*L5)=0即:N2 =(T+ V*L5)/ L G 0’=(12+3.013*0.2)/0.966=13.05(T)由静力平衡公式∑N i=0,得R AY +R BY+V =0和R AX+ R BX =0,故R BY= -(R AY +V)=-(-3.16+12)=-8.84(T)R BX = -R AX =2.93(T)(二)、对第二种受力状态(非工作状态),附墙上口塔身段面内力为:弯矩:M=191.603(T.m)剪力:V=10.036(T),剪力沿塔身横截面对角线,对图c,由∑M B=0,得V*L BH +L B0’*N1=0即: N1=-V*L BH/ L B0’=-10.036*0.6/5.932=-1.015(T)通过三角函数关系,得支座A反力为:R AY= -N1*sin52.3426=-1.015*sin52.3426=-0.8(T)R Ax= -N1*cos52.3426=-1.015* cos52.3426=-0.62(T)由∑M C=0,得N3*L0’C+ V* L C0=0即:N3=- V* L C0/ L C0’=-10.036*1.132/0.98=-11.6(T)由∑M0’=0,得 N2*L C0’-V*L7=0即:N2 = V*L7/ L C 0’=10.036*0.17/0.98=1.74(T)由力平衡公式∑N i=0,得R AY +R BY+V*cos450=0和-R AX-R BX +V*sin450 =0,故R BY= -R AY- V*cos450 =0.8-10.036*cos450=-6.3(T)R BX = -R AX +V* sin450 ==0.62+10.036*sin450=7.79(T)对图d,由∑M B=0,得V*L BG +L B0’*N1=0即: N1=-V*L BG/ L B0’=-10.036*5.67/5.932=-9.6(T)由∑M C=0,得N3*0+ V* L C0=0,即N3=0通过三角函数关系,得支座A反力为:R AY = N 1*sin52.3426=-9.6*sin52.3426=-7.6(T ) R Ax = -N 1*cos52.3426=-9.6* cos52.3426=-5.87(T ) 由静力平衡公式,得R AY +R BY +V*sin450=0和R AX +R BX +V*cos450 =0,故 R BY =-R AY -V*sin450=7.6-10.036*cos450=0.5(T ) R BX =-R AX -V*sin450=-5.87-10.036*sin450=-13(T ) 根据如上计算,附墙杆件和支座受力最大值见下表: AB 杆BC 杆BD 杆A 支座B 支座 R AX R AY R BX R BYN1=-9.6t N2=13.05tN3=-14.92t 7.6t 5.87t -13t 0.5t三、结构柱抗剪切和局部压力强度验算附墙埋件受力面积为470×470,锚固深度按450计算,最小柱断面为700×700,柱子箍筋为φ10@200,由上面的计算结果可知,支座最大拉力(压力)为(R BX 2+R BY 2)1/2=(13 2+0.52)1/2=13.01T=130.1KN 。
塔吊附着计算书

塔吊附着计算书1、附着装置布置方案根据塔机生产厂家提供的标准,附着距离一般为3~5 m,附着点跨距为7~8 m[1,2],塔机附着装置由附着框架和附着杆组成,附着框架多用钢板组焊成箱型结构,附着杆常采用角钢或无缝钢管组焊成格构式桁架结构,受力不大的附着杆也可用型钢或钢管制成。
根据施工现场提供的楼面顶板标高,按照QTZ63 系列5013 型塔式起重机的技术要求,需设4道附着装置,以满足工程建设最大高度100 m 的要求。
附着装置布置方案如图2 所示。
图1塔吊简图与计算简图塔吊基本参数附着类型类型1 最大扭矩270.00 kN·m最大倾覆力矩1350.00 kN·m 附着表面特征槽钢塔吊高度110 m 槽钢型号18A塔身宽度1645*1645*2800 mm风荷载设计值(福州地区)0.41附着框宽度 3.00 m 尺寸参数附着节点数 4 附着点1到塔吊的竖向距离 3.00 m第I层附着附着高度附着点1到塔吊的横向距离 3.00 m第8层23.45 m 附着点1到附着点2的距离9.00 m第16层46.65 m 独立起升高度40 m第24层70.85 m 附着起升高度151.2 m第31层95.95 m图2塔吊附着简图三、第一道附着计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
第一道附着的装置的负荷以第四道附着杆的负荷作为设计或校核附着杆截面计算,第一道附着高度计划在第8层楼层标高为23.45米。
(一)、支座力计算附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载取值:Q = 0.41kN;塔吊的最大倾覆力矩:M = 1668.00kN;弯矩图变形图剪力图计算结果: N w = 105.3733kN ;(二)、附着杆内力计算计算简图:计算单元的平衡方程:其中:2.1 第一种工况的计算:塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩合风荷载扭矩。
附着计算计算书

附着计算计算书本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工手册》、《钢结构设计规范》(GB50017-2003)等编制。
塔机安装位置至附墙或建筑物距离超过使用说明规定时,需要增设附着杆,附着杆与附墙连接或者附着杆与建筑物连接的两支座间距改变时,必须进行附着计算。
主要包括附着支座计算、附着杆计算、锚固环计算。
一、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载标准值应按照以下公式计算:ωk=ω0×μz×μs×βz= 0.390×1.170×1.450×0.700 =0.463 kN/m2;其中ω0──基本风压(kN/m2),按照《建筑结构荷载规范》(GBJ9)的规定采用:ω0 = 0.390 kN/m2;μz──风压高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定采用:μz = 1.450 ;μs──风荷载体型系数:μs = 1.170;βz──高度Z处的风振系数,βz = 0.700;风荷载的水平作用力:q = W k×B×K s = 0.463×1.600×0.200 = 0.148 kN/m;其中 W k──风荷载水平压力,W k= 0.463 kN/m2;B──塔吊作用宽度,B= 1.600 m;K s──迎风面积折减系数,K s= 0.200;实际取风荷载的水平作用力 q = 0.148 kN/m;塔吊的最大倾覆力矩:M = 1090.000 kN·m;弯矩图变形图剪力图计算结果: N w = 60.8891kN ;二、附着杆内力计算计算简图:计算单元的平衡方程:ΣF x=0T1cosα1+T2cosα2-T3cosα3=-N w cosθΣF y=0T1sinα1+T2sinα2+T3sinα3=-N w sinθΣM0=0T1[(b1+c/2)cosα1-(α1+c/2)sinα1]+T2[(b1+c/2)cosα2-(α1+c/2)sinα2]+T3[-(b1+c/2)cosα3+ (α2-α1-c/2)sinα3]=M w其中:α1=arctan[b1/a1] α2=arctan[b1/(a1+c)] α3=arctan[b1/(a2- a1-c)]2.1 第一种工况的计算:塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
塔吊附着计算2

塔机按照说明书与建筑物附着时,最上面一道附着装萱的负荷最大,因此以此道附着杆的负荷作为设计或校核附看杆截面的依据。
附着式塔机的塔身可以简化为一个带悬臂的刚性支挥连续梁,其内力及支座反力计算如下:风荷载标准值应按照叹下公式计算:二WoxpzX山xpz = 0.450*1 170*1.450x0 700 =0.534 kN/m;;其中5—一基本风压(kN, m2),按照《建筑结构荷载规范》(GBJ9)的规定采用:U)o = 0.450 kMm';宀一一风压高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定釆用:宀= 1.450 ;人-- 风荷载体型系数:人=1J7O;pz—一高度z处的风振系数,处= 0.700;风荷载的水平作用力,q = W k XBXK& = 0. 534X1.600X0. 200 = 0. 171 kN/mi其中w k-一风荷载水平压力,兀=0. 534 kN/m:tB 塔吊作用宽度,B二1. 600 m;K,―迎风面积折减系数,K= 0.200;实际取风荷载的水平作用力q = 0. 171 kN/m;塔吊的最大倾覆力矩:M = 1718.000 kN - m;剪力图计算结果:N w = 100. 5276kN ;二、关干附看杆的内力计算各种参考资料均考庶两种情况:计算情况1:塔机满载工作,起重臂顺塔身X-X轴或Y-Y轴,风向垂直起重臂.计算情况2:塔机非工作,起重臂处于塔身对角线方向,风由起重臂吹向平衡臂,如图(a)、(b)所示:二.附若杆内力计算计算简图:计算单元的平衡方程:=OZFXT iCOStti+T2COSC12 ・丁3<:05013=・*^€0胡£Fy=0Tjsi nai^T2sina2*T3sina3=-N w sin9£M o=OT J L(bj+c/2)cosaj-(ai+c 2)sinai]-?-T2[(bi+c/2)cosa2-(oi+c/2)sina2]+T3[-(bi+c/2)cosa3+(a2-ai c 2)sina3]=M w其中:六、实例计算某QTZ800kN ・rn 塔机附着框架 上有合外力5 = 200kN; M n = 300kN-m,采用三杆式附肴支承, 求其三根附彗杆可能产生的内力 极值C由图4・13中知:a = 1205mm,b = 1475mm, /j = 8819mm, b = 6272mm,/ = 15091 mm,h = 12430mm o(一) 求FC 杆的内力极值乩“ 由式(4-31)可知: 0x = aataii : = antaii :票= 39.25。
塔吊附着埋件 计算书

预埋件计算书一. 预埋件基本资料采用锚筋:焊接直锚筋HRB400-Ф16排列为(非环形布置):3行;行间距150mm;5列;列间距150mm;锚板选用:SB20_Q345锚板尺寸:L*B= 800mm×500mm,T=20基材混凝土:C30基材厚度:700mm锚筋布置平面图如下:二. 预埋件验算:轴力:N=360kN锚板上锚筋总个数为15 个锚筋总面积:A=15×π×(0.5×16)2/100=30.1593 cm2根据《混凝土结构设计规范2010版》,锚筋的抗拉强度设计值fy不应大于300 N/mm2预埋件抗拉强度:f y=300N/mm2X方向锚筋排数的影响系数:αrx=0.9Y方向锚筋排数的影响系数:αry=0.85锚筋的受剪承载力系数αv=(4.0-0.08*d)*(f c/f y)0.5=(4.0-0.08×16)×(14.3/300)0.5=0.593849锚板的弯曲变形折减系数αb=0.6+0.25×20/16=0.9125沿X向最外层锚筋中心间距Z x=600mm沿Y向最外层锚筋中心间距Z y=300mm按《混凝土结构设计规范2010版》公式9.7.2-1计算:A1min=N/(0.8*αb*f y)=360/(0.8×0.9125×300)×10=16.4384cm2按《混凝土结构设计规范2010版》公式9.7.2-2计算:A2min=N/(0.8*αb*f y)=360/(0.8×0.9125×300)×10=16.4384cm2故取锚筋截面面积为:A max=max(A1min,A2min)=16.4384cm2则截面实际产生承载力为:F=16.4384×102×300 = 493151N = 493.151kN由于在这里需要考虑地震组合工况:γRE=1实际允许承载力值为:F u=A*f y=30.1593×102×300=904.779×103N = 904.779kN则有:F < F u,满足!三. 预埋件构造验算:锚固长度限值计算:锚固长度按《混凝土结构设计规范》2010版公式8.3.1-1来取:钢筋的外形系数:α=0.14钢筋的抗拉强度设计值:f y=360钢筋的公称直径d=16 mm混凝土轴心抗拉强度设计值:f t=1.43N/mm2锚固长度限值:l ab=α*f y/f t*d=0.14×360/1.43×16=563.916 mm锚固长度为600,最小限值为563.916,满足!锚板厚度限值计算:按《混凝土结构设计规范2010版》9.7.1规定,锚板厚度宜大于锚筋直径的0.6倍,故取锚板厚度限值:T=0.6×d=0.6×16=9.6mm锚筋间距b取为列间距,b=150 mm锚筋的间距:b=150mm,按规范且有受拉和受弯预埋件的锚板厚度尚宜大于b/8=18.75mm, 故取锚板厚度限值:T=150/8=18.75mm锚板厚度为20,最小限值为18.75,满足!行间距为150,最小限值为96,满足!列边距为150,最小限值为48,满足!行边距为100,最小限值为32,满足!列边距为100,最小限值为32,满足!。
塔吊附墙验算计算书

塔吊附墙验算计算书塔机附着验算计算书本文的计算依据为《塔式起重机混凝土基础工程技术标准》/T187-2019和《钢结构设计标准》GB-2017.一、塔机附着杆参数塔机型号为QTZ63(TC5610)-中塔身桁架结构类型,计算高度为98m,起重臂长度为56m,起重臂与平衡臂截面计算高度为1.06m。
塔身宽度为1.6m,平衡臂长度为12.9m。
工作状态时扭矩标准值Tk1为269.3kN·m,包含风荷载。
非工作状态下不平衡自重引起的倾覆力矩标准值Mk'为1940kN·m(反向),工作状态下不平衡自重引起的倾覆力矩标准值Mk为1720kN·m。
附着杆数为四杆附着,附墙杆截面类型为格构柱,附墙杆类型为Ⅰ类,塔身锚固环边长为1.8m。
二、风荷载及附着参数附着次数为2,附着点1到塔机的横向距离为5m,附着点2到塔机的横向距离为2.2m,附着点3到塔机的横向距离为2.2m,附着点4到塔机的横向距离为2.2m。
工作状态基本风压ω为0.2kN/m,塔身前后片桁架的平均充实率α为0.35.点1到塔机的竖向距离为2m,点2到塔机的竖向距离为4.8m,点3到塔机的竖向距离为3.2m,点4到塔机的竖向距离为3.2m。
非工作状态基本风压ω'为0.35kN/m。
工作状态和非工作状态的风压等效高、工作状态和非工作状态的附着点高度、附着点净高、工作状态风压等效均布荷载等参数均有具体数值,这里不再赘述。
285.472kN时,支座6处附墙杆内力计算如下:考虑塔机产生的扭矩由支座6处的附墙杆承担,因此需要计算支座6处锚固环的截面扭矩T。
根据扭矩组合标准值T kTk1269.3kN·m,可得到T的值。
同时考虑塔身承受双向的风荷载和倾覆力矩及扭矩,需要将水平内力Nw计算出来。
根据计算简图和塔机附着示意图、平面图,可以得到α和β的值,并用力法计算各杆件轴力。
最终得到支座6处附墙杆的水平内力Nw20.5RE285.472kN。
塔吊扶墙附着计算书

塔机附着验算计算书一、塔机附着杆参数二、风荷载及附着参数附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.695×1.206×1.95×0.2×0.35×1.06=0.237kN/m 2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.237×572-1/2×0.237×12.92=365.287kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(270+365.287)=571.758kN·m3、附着支座反力计算计算简图剪力图得:R E=77.975kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座4处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。
4、附墙杆内力计算支座4处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座4处的附墙杆承担),水平内力N w=20.5R E=110.273kN。
计算简图:塔机附着示意图塔机附着平面图α1=arctan(b1/a1)=53.241°α2=arctan(b2/a2)=46.353°α3=arctan(b3/a3)=46.353°α4=arctan(b4/a4)=53.241°β1=arctan((b1-c/2)/(a1+c/2))=46.185°β2=arctan((b2+c/2)/(a2+c/2))=46.185°β3=arctan((b3+c/2)/(a3+c/2))=46.185°β4=arctan((b4-c/2)/(a4+c/2))=46.185°四杆附着属于一次超静定结构,用力法计算,切断T4杆并代以相应多余未知力X1=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附着计算计算书
品茗软件大厦工程;工程建设地点:XXX;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。
本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。
本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工手册》、《钢结构设计规范》(GB50017-2003)等编制。
塔机安装位置至附墙或建筑物距离超过使用说明规定时,需要增设附着杆,附着杆与附墙连接或者附着杆与建筑物连接的两支座间距改变时,必须进行附着计算。
主要包括附着支座计算、附着杆计算、锚固环计算。
一、支座力计算
塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:
风荷载标准值应按照以下公式计算:
ωk=ω0×μz×μs×βz= 0.550×1.170×1.290×0.700 =0.581 kN/m2;
其中ω0──基本风压(kN/m2),按照《建筑结构荷载规范》(GBJ9)的规定采用:ω0 = 0.550 kN/m2;
μz──风压高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定采用:μz = 1.290 ;
μs──风荷载体型系数:μs = 1.170;
βz──高度Z处的风振系数,βz = 0.700;
风荷载的水平作用力:
q = W k×B×K s = 0.581×1.600×0.200 = 0.186 kN/m;
其中 W k──风荷载水平压力,W k= 0.581 kN/m2; B──塔吊作用宽度,B= 1.600 m;
K s──迎风面积折减系数,K s= 0.200;
实际取风荷载的水平作用力 q = 0.186 kN/m;
塔吊的最大倾覆力矩:M = 500.000 kN·m;
弯矩图
变形图
剪力图
计算结果: N w = 42.5299kN ;
二、附着杆内力计算
计算简图:
计算单元的平衡方程:
ΣF x=0
T1cosα1+T2cosα2-T3cosα3=-N w cosθΣF y=0
T1sinα1+T2sinα2+T3sinα3=-N w sinθ
ΣM0=0
T1[(b1+c/2)cosα1-(α1+c/2)sinα1]+T2[(b1+c/2)cosα2-(α1+c/2)sinα2]+T3[-(b1+c/2)co sα3+(α2-α1-c/2)sinα3]=M w
其中:
α1=arctan[b1/a1] α2=arctan[b1/(a1+c)] α3=arctan[b1/(a2- a1-c)]
2.1 第一种工况的计算:
塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
将上面的方程组求解,其中θ从 0 - 360 循环, 分别取正负两种情况,求得各附着最大的轴压力和轴拉力。
杆1的最大轴向压力为: 61.03 kN;
杆2的最大轴向压力为: 0.00 kN;
杆3的最大轴向压力为: 38.38 kN;
杆1的最大轴向拉力为: 14.15 kN;
杆2的最大轴向拉力为: 34.40 kN;
杆3的最大轴向拉力为: 48.37 kN;
2.2 第二种工况的计算:
塔机非工作状态,风向顺着着起重臂, 不考虑扭矩的影响。
将上面的方程组求解,其中θ= 45, 135, 225, 315,M w= 0,分别求得各附着最大的轴压力和轴拉力。
杆1的最大轴向压力为: 37.59 kN;
杆2的最大轴向压力为: 10.48 kN;
杆3的最大轴向压力为: 43.09 kN;
杆1的最大轴向拉力为: 37.59 kN;
杆2的最大轴向拉力为: 10.48 kN;
杆3的最大轴向拉力为: 43.09 kN;
三、附着杆强度验算
1.杆件轴心受拉强度验算
验算公式:σ= N / A n≤f
其中σ --为杆件的受拉应力;
N --为杆件的最大轴向拉力,取 N =48.375 kN;
A n --为杆件的截面面积,本工程选取的是 16号槽钢;
查表可知 A n =2515.00 mm2。
经计算,杆件的最大受拉应力σ=48374.628/2515.00 =19.234N/mm2,
最大拉应力不大于拉杆的允许拉应力 215N/mm2, 满足要求。
2.杆件轴心受压强度验算
验算公式:σ= N / φA n≤f
其中σ --为杆件的受压应力;
N --为杆件的轴向压力,杆1: 取N =61.029kN;
杆2: 取N =10.476kN;
杆3: 取N =43.087kN;
A n --为杆件的截面面积, 本工程选取的是 16号槽钢;
查表可知 A n = 2515.00 mm2。
λ --杆件长细比,杆1:取λ=82,杆2:取λ=100,杆3:取λ=76
φ --为杆件的受压稳定系数,是根据λ查表计算得:
杆1: 取φ=0.675,杆2: 取φ=0.555,杆3: 取φ=0.714;
经计算,杆件的最大受压应力σ=35.950 N/mm2,
最大压应力不大于拉杆的允许压应力 215N/mm2,满足要求。
四、附着支座连接的计算
附着支座与建筑物的连接多采用与预埋件在建筑物构件上的螺栓连接。
预埋螺栓的规格和施工要求如果说明书没有规定,应该按照下面要求确定: 1.预埋螺栓必须用Q235钢制作;
2.附着的建筑物构件混凝土强度等级不应低于C20;
3.预埋螺栓的直径大于24mm;
4.预埋螺栓的埋入长度和数量满足下面要求:
0.75nπdlf=N
其中n为预埋螺栓数量;d为预埋螺栓直径;l为预埋螺栓埋入长度;f为预埋螺栓与混凝土粘接强度(C20为1.5N/mm2,C30为3.0N/mm2);N为附着杆的轴向力。
5.预埋螺栓数量,单耳支座不少于4只,双耳支座不少于8只;预埋螺栓埋入长度不少于15d;螺栓埋入端应作弯钩并加横向锚固钢筋。
五、附着设计与施工的注意事项
锚固装置附着杆在建筑结构上的固定点要满足以下原则:
1.附着固定点应设置在丁字墙(承重隔墙和外墙交汇点)和外墙转角处,切不可设置在轻质隔墙与外墙汇交的节点处;
2.对于框架结构,附着点宜布置在靠近柱根部;
3.在无外墙转角或承重隔墙可利用的情况下,可以通过窗洞使附着杆固定在承重内墙上;
4.附着固定点应布设在靠近楼板处,以利于传力和便于安装。