第二章复变函数的积分

合集下载

数学物理方法第二章复变函数的积分

数学物理方法第二章复变函数的积分
1 1
一般而言,复变函数的积分不仅与起点和终点有 关, 同时还与路径有关。
§2.2 柯西(Cauchy)定理
——研究积分与路径之间的关系 (一)单连通域情形 单连通域: 在其中作任何简单闭合围线,围 线内的点都是属于该区域内的点。 单连通区域的Cauchy 定理 :如果函数 f (z) 在闭 单连通区域 B 中单值且解析, 则沿 B 中任 何一个分段光滑的闭合曲线 l (也可以是 B 的 边界 l0 ), 函数的积分为零。
lim f( z z ) k)( k k 1
n
存在且与 k 的选取无关, 则这个和的极限称为 函数 f (z) 沿曲线 l 从 A 到 B 的路积分,记为


l
f (z) dz
n k k k 1
z ) d z lim f ( )( z z f(
l n k 1 max | z | 0 k
l 1 l 2
f (z)=Re (z)不是解析函数!
y i l2 o l1 1 l2
I1 Rez d z xd( x iy) 1 xd x i d y i 0 0 2 ( y = 0) (x=1)
1 1
1+i
l1 x
1 I 0 id y x d x 2 0 0 (x=0) ( y=i ) 2
l l l
v u u v d x d y i d x d y s s x y y x
又u、v 满足C-R条件 u v u v , x y y x
y
f ( z ) d z 0
l
B
l
o

复变函数与积分变换第二章:解析函数

复变函数与积分变换第二章:解析函数

u v i x x
偏导数的定义
若沿平行于虚轴的方式 z z z(x 0)
f ( z z ) f ( z ) f ( z ) lim z 0 z [u( x , y y ) iv ( x , y y )] [u( x , y ) iv ( x , y )] lim y 0 i y u( x , y y ) u( x , y ) v ( x , y y ) v ( x , y ) lim i lim y 0 y 0 i y i y
f ' ( z ) ux iv x ux iuy v y iuy v y iv x
函数在区域 D 内解析的充要条件
定理二
函数 f ( z ) u( x , y ) iv ( x , y ) 在其定义
域 D 内解析的充要条件是: uபைடு நூலகம் x , y )与 v ( x , y ) 在 D 内可微, 并且满足柯西-黎曼方 程.
z ( z0 z )( z0 z ) z0 z0 z0 z z0 , z z
z 关键看 , 如果z0 0则极限存在,否则不存在。 z
定理
(1) 在区域 D 内解析的两个函数 f ( z ) 与 g( z ) 的 和、差、积、商 (除去分母为零的点 )在 D 内解析.

(6)
f [ g( z )] f ( w ) g( z ). 其中w g( z )
1 (7) f ( z ) , 其中 w f ( z )与z ( w )是 ( w ) 两个互为反函数的单值 函数, 且 ( w ) 0
微分的概念:
设函数 w f ( z )在 z0 可导, 则 w f ( z0 z ) f ( z0 ) f ( z0 ) z ( z )z ,

复变函数 题库

复变函数 题库

复变函数题库第一章 复变函数 1. 复数21ii +的指数表示为 主辐角为 三角式为 , z=i ,则Arg z= , 复数z 3/5+4i/5=,则z 为( ), 复数1-的三角式为 , Arg(z+2i)=()2. 复数的指数式 ,复数11ii -+的三角式 ,复数1i e +的三角式 ,z y ix =+的辐角为3. Im(32)i -= ,Re(32)i += ,arg(22)i += ,复数z 16/25+8i/25=的主辐角为4. 内点指 ,外点指 ,边界点指 ,闭区域指 ,柯西-黎曼方程是复变函数可导的 条件5. 推导直角坐标系和极坐标系下的柯西-黎曼第二章 复变函数的积分1. 极坐标系中的柯西-黎曼方程为2. 调和函数的表达式为3. 复连通区域柯西定理的数学表达形式为4. 单连通区域柯西定理的数学表达形式为5. 柯西公式为6.()nl z dz α-=⎰Ñ ,若z 和α为复数,则1l dz z α=-⎰Ñ7. ()()n f z =8. 已知一个解析函数)(z f 的实部是y x sin e u =,求该解析函数9. 已知一个解析函数)(z f 的实部是22u x y xy =-+,(0)0f =,求该解析函数 10. 已知一个解析函数)(z f 的实部是32u 3x xy =-,(0)0f =,求该解析函数 11. 已知一个解析函数)(z f 的虚部是22v yx y=+,求该解析函数 12. 已知一个解析函数)(z f 的实部是u (cos sin )x e x y y y =-,(0)0f =,求该解析函数。

第三章 幂级数展开1. 幂级数11()kk z i k ∞=-∑的收敛圆半径为 ,幂级数1!()k k z k k ∞=∑的收敛圆半径为 ,幂级数1!kk z k k ∞=⎛⎫⎪⎝⎭∑的收敛圆半径为 , 幂级数0k k k e t ∞=∑(其中t为复变数)的收敛圆半径为2. 32382(4)z z z +=-是的 阶极点,z i=是221()(1)f z z =+的 阶极点,00zz e =是的 ,若某函数的展开式为0100000!()()kk k f z z z -=-=-∑,则0z 为该函数的 ,若某函数的展开式为00()!()k f z k z z ∞=-∑,则0z 为该函数的 。

第二章复变函数的积分

第二章复变函数的积分

第二章 复变函数的积分在微积分学中,微分法与积分法是研究函数性质的重要方法。

同样,在复变函数中,积分法也跟微分法一样是研究复变函数性质十分重要的方法和解决实际问题的有力工具。

§2.1 复变函数积分的概念一、复变函数的积分设C 为平面上给定的一条光滑(或按段光滑)曲线。

若选定C 的两个可能方向中的一个作为正方向,那么就把C 理解为带有方向的曲线,称为有向曲线。

设曲线C 的两个端点为A 与B ,如果从A 到B 的方向作为C 的正方向,那么从B 到A 的方向就是C 的负方向,并把它记作-C 。

在今后的讨论中,常把两个端点中的一个作为起点,另一个作为终点。

除特殊声明外,正方向总是指从起点到终点的方向。

关于简单闭曲线的正方向是指当曲线上的点P 顺此方向沿该曲线前进时,临近P 点的曲线内部始终位于P 点的左方。

与之相反的方向就是曲线的负方向。

若光滑或逐段光滑的曲线C 的参数方程为)()()(t iy t x t z z +==,)(βα≤≤t (2.1) t 为实参数,则规定t 增加的方向为正方向,即由)(αz a =到)(βz b =的方向为正方向。

定义2.1 设函数)(z f w =定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑有向曲线,把曲线C 任意分成n 个弧段,设分点为:B z z z z z A n n ==-,...,,,1210 在每个小弧段上任取一点k ζ(图3.1),作和∑=∆=nk k k n z f S 1)(ζ其中1--=∆k k k z z z ,记=∆k s 的长度,}Δ{max 1k nk s δ≤≤=。

当n 无限增加,且δ趋于零时,如果不论对C 的分法及k ζ的取法如何,当n S 有唯一极限,那么称这个极限值为函数)(z f 沿曲线C 的积分,记作∑⎰=→=nk k kδCz ζf dz z f 1Δ)(lim )( (2.2)图2.1C 称为积分路径,⎰Cdz z f )(表示沿C 的正方向的积分,⎰-C dz z f )(表示沿C的负方向的积分。

数学物理方法第2章复变函数积分-2016方案

数学物理方法第2章复变函数积分-2016方案

(2.1.3)
(2) 化为参数积分计算.设积分曲线L的参数方程为z(t),
将z(t)及dz(t)=z'(t)dt代入式(2.1.4),可得
3
【例2.1.1】计算积分I=
其中曲线L是
(1)沿1+ i 到2+4 i 的直线,见图2.2(a);
(2)沿1+ i 到2+i,再到2+4 i 的折线,见图2.2(b);
§2.2.1 单通区域的柯西定理
定理 若函数f(z)在单通区域D 内解析,则f(z)在D内沿任意 闭曲线的积分为零
∮l f(z)dz = 0 (2.2.1)
证明 这个定理的严格证明比较复 杂, 为简单起见, 我们在“f(z)在D 内连续” 附加条件下证明这个定 理.
先将复变积分化为两个实变积 分的线性叠加
29
这就是解析函数的定积分公式,它与实变 函数中的牛顿-莱布尼茨公式具有相同的形 式。
通常把f(z)的原函数的集合
称f(z)的不定积分,式中C为复常数。
30
(2.2.8)
31
§2.2.3 复通区域的柯西定理
定理 若f(z)在闭复通区域 解析,则f(z)沿所
有内、外边界线(L=L0+ 之和为零
37
【2.2.2】试计算 其中积分回路分别(图2.11) (1) |z-i|=2;(2) |z+i|=2;(3) |z|=3.
38
解 首先,将被积函数分解为部分分式(利用通 分可以凑出来)
≠0
=0
39
40
【例2.2.3】若f(z)=1/(z-a) 在z=a的无心邻域内 连续,积分回路是以a点为圆心的圆弧
由于a点在D内随意变动时,柯西公式依然成立, 有时分别用z和x代替式 (2.3.1)的a和z。将柯西公 式改写为

第二章 复变函数的积分chen

第二章 复变函数的积分chen
l
= ∫ [u( x , y )dx − v ( x , y )dy ] + i ∫ [u( x , y )dy + v ( x , y )dx ]
l l
结论: ※ 结论:复变函数的路积分可以归结为两个实变函数线 积分,它们分别构成路积分的实部和虚部。 积分,它们分别构成路积分的实部和虚部。
路积分的概念和性质
2
1
1 3 = 2 − + 2i = + 2i 2 2
路积分的计算例题
【例二】沿图所示的三条曲线分别计算复变函数 f ( z ) = Re z 从 O 到 B 的路积分。

OAB
f ( z )dz = ∫
OAB
Re zdz = ∫ Re zdz + ∫ Re zdz
OA AB
OA段 z = iy , Re z = 0 dz = idy 段
C
C
f (z)dz
C
∫ [ f + g]dx = ∫
a
fdx + ∫ gdx
a
b
∫ [ f + g]dz = ∫
C
C
fdz + ∫ gdz
C

b
a
f ( x)dx = −∫ f ( x)dx
b
a


C
f (z)dz = −∫ f (z)dz
f dz + ∫ f dz = ∫
C2 C1 ∪C2

c
a
f dx + ∫ f dx = ∫ f dx

l
f ( z )dz = ∫ [u( x , y )dx − v ( x , y )dy ] + i ∫ [v ( x , y )dx + u( x , y )dy ]

数学物理方法 第二章 复变函数的积分

数学物理方法 第二章 复变函数的积分
wuxia@
证明: 1 dz 1 f (α )dz (1)已知f (α ) = f (α ) ⋅ ∫l z − α = 2πi ∫l z − α 2πi 1 f ( z )dz 1 f ( z ) − f (α ) 与f (α ) = 比较,只需证明 ∫l z − α ∫l z − α dz = 0即可. 2πi 2πi f ( z ) − f (α ) (2)因为z = α为 的奇点,因此,以α为圆心,取任意小 z −α f ( z ) − f (α ) ε为半径做小圆Cε , 这样在l及Cε 所围复通区域上 单值解析。 z −α f ( z ) − f (α ) 1 f ( z ) − f (α ) 1 根据柯西定理, ∫ dz = ∫Cε z − α dz l 2πi z −α 2πi 对于Cε 上的z有:z − α = εe iϕ , dz = iεeiϕ dϕ 于是, 有: 1 f ( z ) − f (α ) 1 2π f ( z ) − f (α ) iϕ 1 iεe dϕ = iϕ ∫l z − α dz = 2πi ∫0 εe 2πi 2π
wuxia@


0
[ f ( z ) − f (α )]dϕ
(3)现在需要对上式右端做估计 因为f ( z )连续,一定可以找到∆ > 0,当 | z − α |≤ ∆时, | f ( z ) − f (α ) |≤ ε ′ 因而有: 1 2π 1 2π 1 ∫0 [ f ( z ) − f (α )]dϕ ≤ 2π ∫0 | f ( z ) − f (α ) |⋅ | dϕ |< 2π 2π =ε 1 f ( z ) − f (α ) 1 f ( z) ∴ dz = 0, f (α ) = ∫l z − α ∫l z − α dz 2πi 2πi

第二章 复变函数的积分

第二章  复变函数的积分
第二章 复变函数的积分
一.复变函数的积分
(复平面的路径积分) 复平面的路径积分)
∫ f (z )dz ≡ lim ∑ f (ξ )(z
l n →∞ k =1 k
l l
n
k
− z k −1 ) ≡ lim ∑ f (ξ k )dz k n→∞
k =1
n
∫ f (z )dz = ∫ u (x, y )dx − v(x. y )dy + i ∫ v(x, y )dx + u (x. y )dy
ez I =∫ 2 dz c ( z + 1) 2
z 2
2π i (n−1) f (ξ ) ∫ (ξ − z)n dξ = (n −1)! f (z) l
例:计算
z = a (> 1)
解:
I=∫
c1
e z /( z − i ) 2 e /( z + i) dz dz + ∫ 2 2 c2 ( z + i) ( z − i)
1
I 2 = ∫ xdz + ∫ xdz =
0
1
1+i
i
1 ∫ 0idy + ∫ xdx = 2 0 0
直线参数方程 : z = (1 + i)t或( y = x)
1
I 3 = ∫ t (1 + i )dt = 1 + i 2 0
(可见积分与路径有关)
例2
1+i
z 2 dz = ? 1)沿折线 0—1---1+i ∫
= 2π i [e z /( z + i) 2 ]′z =i + 2π i [e z /( z − i ) 2 ]′z = −i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f (z)dz lim f (k )(zk zk1)
l
积分n函 数k1
积分路径 一般来说,复变函数的积分值与积分路径有关.
2、复变函数积分计算方法
n
f (z)dz lim f (k )(zk zk1) n k 1
l
1)将复变函数的路积分化为两个实变函数的线积分
2)参数积分法
若积分曲线的参数方程z=z(t) ( ),dz z'(t)dt


f (z)dz f [z(t)]z'(t)dt
l
(极坐标法,通常用来计算积分路径为圆弧时的情况)
通常思路:
积分路径l为圆弧: 宗量用指数形式表示:
z z0
z z0 ei
n
n
f (z)dz f (z)dz;l lk
l
k 1 lk
k 1
f (z)dz f (z)dz
lAB
lBA

f (z)dz

l
f (z) dz ; dz
dx2 dy2 ds
l
Ms; M f (z) , s l的长度
用来求积分的估计值
r
1
z3 z
2
dz

z3 z r 1 z2
dz
(1)
z3
z r 1 z2
dz M
dz M
z r
ds Ms
z r
(2)
由(1)(2)式,得:
z3 dz Ms
z r 1 z2
M

1
r
3
r
2
s ds 2 r z r

z3 z r 1 z2 dz
下一页
附:格林公式
L
B
若函数P(x,y)、Q(x,y)在闭域 B
上具有连续的一阶偏微商,则:
l Pdx Qdy (Qx Py )dxdy
B
l:B的边界线
2、复连通区域的柯西定理Cauchy定理
1)复通区域境界线:
B
外境界线:逆时针为正方向
l1
区域在行走的左侧
l2
内境界线:顺时针为正方向
l
lAB
l1
lB ' A '
n k 1
n
lim
[u(xk , yk ) iv(xk , yk )][( xk xk1) i( yk yk1)]
n k 1
n
n
lim lim u(xk , yk )( xk xk1)
v(xk , yk )( yk yk1 )
x kn1
f (x, y) u(x, y) iv(x, y)
zk xk iyk
zk1 xk1 iyk1
n
f (z)dz lim f (k )(zk zk1)
l
n nk 1
lim
[u(xk , yk ) iv(xk , yk )][( xk xk1) i( yk yk1)]
i
OA 3
ydx

9
0
12i
AB
0
0
2
zdz
zdz
zdz 7 12i
(2)同理可求 O 另一条路径ODB
l
OA
AB
2
的积分也为此数
D
(3)路径: y 4 x; x : 0 ~ 3, y : 0 ~ 4
3
zdz xdx ydy i ydx xdy
1
Re zdz xdx i xdy xdx
AB
Re zdz
AB
Re zdz
AB
Re
zdz
0

1
2
l
OA
AB
2
(2)同理可求另一条路径ODB的积分
为:1/2+i
例 计算 zdz ,l 为从原点到3+i4的三条直线段。
l
解:分析:积分式为: z x iy dz dx idy
l
lll2源自参数积分法 积分路径l为圆弧: z z0
宗量用指数形式表示:z z0 ei
Ñ 试证:
dz 2i
C
(z z0 )n


0
n 1
;c: n 1
z z0
r
3、复积分的性质
f (z)dz
l
试证:


l
f (z)
Ms; M


7 2

12i;
OAB路径

l
zdz


7 2
12i; ODB路径


7 2
12i; OB路径
究竟哪些函数积分与路径有关,哪些无关?有什么规律?
§2、2 Cauchy定理
在定义域上处处可导的 函数,在此区域上积分 与路径无关
主要讨论复变函数满足什么条件其路积分值才能不决定 于积分路径,而只与始末位置有关。
O
D
对OA:x=0,dx=0,y:0~1
(3)路径:y=x,则:
Re zdz xdx i xdy 0
OA
OA
OA
1
1
Re zdz xdx i ydy xdx i ydy
OB
OB
OB
0
0
1 1i 22
对AB:y=1,dy=0,x:0~1 1
1、单连通区域的柯西(Cauchy)定理
如果函数在闭连通区域 B上解析,则沿 B
B
上任一分段光滑闭合曲线L (L也可以是 B
L
的境界线),有
f (z)dz u(x, y)dx v(x, y)dy i v(x, y)dx u(x, y)dy 0
l
l
l
证明:
f (z)dz udx vdy i vdx udy L

1 ;OAB路径 2

l
Re
zdz


1 2

i;
ODB路径
O
D

1 2

1 2
i; OB路径
A
O
思考:
B(3,4) D

7 2

12i;
OAB路径

l
zdz


7 2
12i; ODB路径


7 2
12i; OB路径
究竟哪些函数积分与路径有关,哪些无关?有什么规律?
3
z
2
dz
0
z
r
1
z3 z
2
dz

z3 z r 1 z2
dz
(1)
又Q
f
(z)

z3 1 z2
z3
1 z2
z3
1 z2
z3 1r2

1
r
3
r
2
M

z3 dz M dz M ds Ms (2)
z r 1 z2
z r
z r
z
0
例:计算圆弧积分:
z a rei
n为整数

i r n1
2
[
0
cos(n
-1) d

2
i
0
sin(n
-1)
d
]
3、复积分的性质
n
n
n
ck fk (z)dz ck fk (z)dz ck fk (z)dz
l k 1
k 1 l
k 1 l
例2
1
计算积分 | 1
z
| dz
积分路径是(1)直线段
y
(2)单位圆周的上半(3)单位圆周的下半
解:
(1)在-1到1的直线段= 上 l0
x
路径方程为y=0
z x2 y2 | x | dz=dx+idy=dx
所以
1
1
1
| z | dz | x | dz 2 xdx 1
1
1
0
y
2)在单位圆上半周上:

z ei
x

1
| z | dz
0 iei d 2
1

3) 在单位圆下半圆周上:
=
1
| z | dz
0 iei d 2
1

可见
0

| z | dz | z | dz 2 (2) 0

l
l
l

3
xdx

4
ydy i
3 4 xdxi
43 ydy
0
0
03
04
1 32 1 42 i 4 1 32 i 3 1 42
2
2
32
42
1 (9 16) i 1 (12 12) 7 12i
2
2
2
A
B
O
D
A
B(1,1)
x k 1n
lim i limu(xk , yk )( yk yk1) i
v(xk , yk )( xk xk1)
x k 1
x k 1
u(x, y)dx v(x, y)dy i u(x, y)dx i v(x, y)dy
相关文档
最新文档