无线充电系统的实现及设计指南
无线充电方案设计

无线充电方案设计随着科技的不断进步,无线充电技术在近年来得到了广泛的关注和应用。
无线充电方案的设计是实现这一技术的关键。
本文将介绍一种高效、可行的无线充电方案设计,使用户能够更加便捷地进行充电操作。
一、方案概述本方案采用基于电磁感应原理的无线充电技术,通过发射端和接收端之间的电磁耦合实现能量传输,实现电子设备的无线充电功能。
该方案具有以下特点:1. 高效性:采用高频率的电磁场传输能量,减小了能量损耗,提高了充电效率。
2. 稳定性:通过电磁耦合实现能量的传输,能够有效地抵抗外部环境的干扰,保证传输的稳定性。
3. 安全性:采用电磁感应原理,能够避免使用传统有线充电中可能出现的电击风险。
二、发射端设计发射端主要由发射线圈、功率放大器、控制电路等组成。
以下是其中各部分的具体设计要点:1. 发射线圈设计发射线圈是传输能量的核心组件,其设计应考虑以下几个方面:- 线圈材料选择:采用高导磁率的材料,如铁氧体,以提高线圈的感应能力。
- 线圈结构设计:采用多层绕组结构,提高线圈电感,并通过合适的屏蔽措施减小电磁泄漏。
- 发射线圈大小:要根据充电设备的尺寸和功率需求来确定发射线圈的大小,以最大限度地提高能量传输效率。
2. 功率放大器设计功率放大器用于提供足够的能量驱动发射线圈工作。
在设计该部分时,应注意以下几点:- 高效性:选择高效率的功率放大器芯片,以减小能量转化的损耗。
- 功率输出稳定性:采用负反馈控制技术,使功率输出稳定在预设范围内。
- 温度控制:设计合适的散热系统,确保功率放大器在长时间工作时温度不会过高。
3. 控制电路设计控制电路用于管理整个充电系统的工作状态,包括发射端与接收端的通信控制、功率调节等功能。
以下是控制电路的设计要点:- 通信协议选择:选择合适的通信协议,实现发射端与接收端之间的信息传输,确保充电系统的正常工作。
- 功率调节:根据接收端信号反馈,调节发射端的输出功率,以满足不同设备的充电需求。
电动汽车无线充电技术实现方案设计

电动汽车无线充电技术实现方案设计随着环境保护意识的提高和对能源消耗的担忧,电动汽车作为一种清洁、高效的交通工具,越来越受到人们的关注和青睐。
然而,传统有线充电方式存在充电速度慢、充电埋地线缺乏安全性、需手动操作等问题。
为了解决这些问题,无线充电技术成为电动汽车充电领域的研究热点之一。
本文将针对电动汽车无线充电技术的实现方案进行设计,从充电效率、安全性以及操作便捷性三个方面进行探讨。
首先,为了提高电动汽车无线充电的效率,我们可以采用谐振式无线充电技术。
该技术利用谐振电路的特性,在发射端和接收端之间实现高效的能量传输。
具体实现方案包括以下几个步骤:第一步,设计发射端的谐振电路。
通过合适的电容、电感和电阻参数选择,使得发射端谐振电路的谐振频率与接收端相匹配,从而实现最大功率传输。
发射端还需要安装一个高频振荡器,用于产生高频电磁场。
第二步,设计接收端的谐振电路。
接收端谐振电路中的电容和电感参数需要与发射端相同,以便实现能量的高效接收和转换。
同时,接收端还需要安装一个电能变换器,将接收到的高频电能转换成低频直流电能,供电给电动汽车进行充电。
第三步,设计完整的无线充电系统。
通过合理布置发射端和接收端的位置,保证电磁场的传输和接收的准确性和稳定性。
此外,还需考虑系统的功率管理和安全控制,确保充电过程的安全性和稳定性。
其次,为了保证电动汽车无线充电过程的安全性,我们需要采取一系列措施来防止潜在的安全风险。
具体方案包括以下几个方面:首先,采用闭环反馈控制系统。
通过在发射端和接收端分别安装传感器,实时监测电力传输过程中的各项参数,如电流、电压、功率等。
一旦检测到异常情况,如电流过大或电压异常波动,系统将自动停止充电,以避免潜在的安全事故。
其次,加密和身份验证。
在无线充电系统中引入加密和身份验证技术,保证只有经过授权的电动汽车才能接收能量。
这样可以避免非法使用和不当操作,进一步提高充电过程的安全性。
再次,定期维护和检测。
手机无线充电系统设计_毕业论文

手机无线充电系统设计目录内容摘要 (1)关键词 (1)Abstract (1)Key words (1)第一章绪论 (2)1.1 手机无线充电系统的概述 (2)1.2 手机无线充电系统的特点 (3)1.3 手机无线充电系统的目前状况 (4)第二章手机无线充电的分类 (5)2.1 电磁感应充电 (5)2.2 无线电波充电 (5)2.3 电磁共振充电 (6)第三章手机无线充电系统原理与结构 (7)3.1 手机无线充电系统原理 (7)3.2 手机无线充电系统设计 (9)第四章手机无线充电系统的展望 (14)4.1 手机无线充电系统标准化 (14)4.2 手机无线充电系统的未来市场 (15)结束语 (17)参考文献 (18)致谢 (19)内容摘要:随着现在科学技术的不断进步,手机等通讯设备的功能越来越多。
但是每款手机都有一款与之匹配的充电器。
这样既会因为循环使用导致插头的损坏或者不牢固,产生漏电的危险,还会浪费资源,增加产品的成本,不环保,给人们的生活带来很多不便。
虽然目前手机无线充电系统已经上市,但是有很多不足之处。
基于此,本论文通过对手机无线充电系统的分析与展望,让读者对手机无线充电系统的了解更进一步。
关键词:手机无线;充电系统;分析;展望。
Abstract:With the continuous advancement of science and technology, mobile phones and other communication devices more and more powerful.But every phone has a matching charger. So not only because of recycled lead to damage to the plug or not securely, resulting in the risk of leakage, but also a waste of resources to increase the cost of the product, environmental damage, caused much inconvenience to people's lives. Although wireless charging system for mobile phones already on the market, but there are a lot of inadequacies. Based on this, the paper by phone wireless charging system analysis and Prospects readers phone wireless charging system further.Keywords: Mobile wireless; charging system; analysis; outlook.第一章绪论1.1 手机无线充电系统的概述1.1.1引言随着社会的不断发展和信息化的加快,随时随地保持沟通交流对人们来说越来越重要,同时对移动通信设备的质量和服务要求也越来越高。
简易无线充电系统diy设计方案

简易无线充电系统diy设计方案设计简易无线充电系统的方案如下:1. 确定充电器的原理:无线充电系统可以通过电磁感应原理实现。
充电器中的发射线圈产生交变电流,形成交变磁场。
接收线圈放置在需要充电的设备上,接收交变磁场并转换为电流供设备充电。
2. 设计发射线圈:选用导线的匝数和形状来设计发射线圈。
较多匝数的线圈能够产生更强的磁场,并增加电流的传输效率。
3. 设计接收线圈:接收线圈的设计需要根据需要充电的设备的特点来确定。
接收线圈应该能够与发射线圈配对,以获取尽可能高的接收效率。
4. 选择发射和接收电路:为了实现无线充电,我们需要选择合适的发射和接收电路。
发射电路将电源的直流电转换为交流电,供发射线圈产生磁场。
接收电路将接收线圈接收到的磁场转换为直流电,供设备充电。
5. 添加保护措施:为了确保充电过程的安全性,可以添加一些保护措施,如过流保护、过热保护等。
这可以通过添加相应的传感器和保护电路来实现。
6. 调试和测试:完成设计后,需要对系统进行调试和测试。
可以使用多种方法和设备测量充电效率、输出电流等参数,以确保系统的正常运行和满足设计要求。
7. 制作和安装:根据设计图纸和材料清单,制作充电器和接收器的物理结构。
注意遵循安全操作规程,谨慎连接电路和部件。
8. 使用和维护:完成安装后,可以使用该无线充电系统为设备进行充电。
在使用过程中,要注意保持充电器和接收器的清洁,并定期检查和维护系统。
需要说明的是,以上方案只是针对简易的无线充电系统设计的。
如果需要设计更为复杂和高效的无线充电系统,可能涉及更多方面的知识和技术,如功率传输、频率选择、电磁辐射控制等。
因此,在实际设计过程中,需要根据具体需求和预算进行合理选择。
无线充电系统的设计与优化

无线充电系统的设计与优化引言:无线充电系统的发展是现代科技进步的产物,它使得人们可以不再依赖有线连接,从而更加便利地享受电子设备带来的便捷。
然而,无线充电系统的设计和优化却成为现在研究的热点。
本文将探讨无线充电系统的设计原则和优化方法。
1. 无线充电技术背景无线充电技术是一种能够将电能传输到电子设备中的技术,通过电磁场或者射频技术实现。
传统有线充电存在线缆连接、构造复杂以及使用不便等问题,而无线充电技术解决了这些问题。
目前,无线充电技术已经广泛应用于电动车、移动智能设备以及医疗器械等领域。
2. 无线充电系统的设计原则2.1 电磁场设计无线充电系统中的电磁场设计是十分重要的。
良好的电磁场设计能够提高能量传输的效率和稳定性。
首先,需要合理选择电磁场的频率和功率。
过高的频率可能会导致能量损失过大,而过低的频率则会增加系统体积和功耗。
其次,需要根据传输距离和功率需求进行电磁场的调整,以确保能量传输的有效性。
2.2 电能转化效率电能转化效率指的是从充电器传输到接收器端的能量转化效率。
提高电能转化效率是设计无线充电系统时需要解决的核心问题。
一方面,可以通过优化传输距离和电磁场参数来提高电能转化效率。
另一方面,优化接收端和发射端的电子电路设计也可以提高电能转化效率。
2.3 安全性设计无线充电系统的安全性设计不容忽视。
高频电磁场对人体健康可能造成一定的影响,因此需要采取一定的防护措施。
目前,有些无线充电系统在电磁场辐射方面已经进行了优化设计,例如增加电磁屏蔽和限制电磁辐射的范围。
3. 无线充电系统的优化方法3.1 电磁场优化方法为了提高无线充电系统的效率和稳定性,可以采用一些电磁场优化方法。
例如,通过使用高效的电磁感应材料来提高电磁场的传输效率;通过精确控制电磁场的频率和功率,将其与接收器进行匹配,以提高能量传输的效果。
3.2 系统构架优化无线充电系统的构架优化可以使得系统更加紧凑和高效。
例如,可以使用更小尺寸的电磁场发射器和接收器,以便更好地集成到电子设备中。
无线充电器电路原理及设计

无线充电器电路原理及设计引言无线充电器是一种方便的充电设备,它通过电磁感应实现无线充电,不需要插入充电线即可对充电设备进行充电。
本文将介绍无线充电器的电路原理和设计。
电路原理无线充电器的电路主要由两个部分组成:发射器和接收器。
发射器原理发射器是无线充电器的核心组件,它负责产生并传输电磁场。
发射器电路由以下几个部分组成:1. 电源模块:负责提供电源给发射器电路。
2. 信号发生器:产生高频交流信号。
3. 驱动电路:将高频交流信号放大并传输到发射线圈。
4. 发射线圈:通过电流在线圈中产生磁场。
发射器原理是利用信号发生器产生高频交流信号,并经过驱动电路放大后,传输到发射线圈。
发射线圈中的电流会产生磁场,这个磁场会传输到接收器中。
接收器原理接收器是无线充电器的另一个重要部分,它用于接收发射器传输的电磁场并将其转化为电能供给充电设备。
接收器电路由以下几个部分组成:1. 接收线圈:接收发射器传输的磁场并将其转化为电流。
2. 整流电路:将接收到的交流电流转化为直流电流。
3. 电源管理模块:对转化后的直流电流进行管理和分配。
接收器原理是接收发射器传输的磁场,通过接收线圈将其转化为交流电流,并经过整流电路转化为直流电流。
电源管理模块对直流电流进行管理和分配,以供给充电设备使用。
电路设计无线充电器的电路设计需要考虑以下几个关键因素:1. 电流和电压要匹配:发射器和接收器之间的电流和电压需要匹配,以确保能够有效传输电能。
2. 效率和损耗控制:设计时要考虑电能的传输效率和损耗,减少能量的浪费。
3. 安全性:在设计过程中要考虑充电器的安全性,防止电流过大或其他安全事故发生。
4. 尺寸和成本:设计时要考虑充电器的尺寸和成本,选择合适的元件和材料。
电路设计需要综合考虑以上因素,并根据实际需求进行调整和优化。
总结本文介绍了无线充电器的电路原理和设计。
通过了解发射器和接收器的原理,可以更好地理解无线充电器的工作原理,并在设计过程中考虑各种关键因素。
无线充电系统设计与实现

无线充电系统设计与实现“充电,让电池永不断电”是目前我国智能设备的普遍需求。
随着科技的不断发展,无线充电技术逐渐成为一种新兴的技术趋势,相较于传统有线充电方式,无线充电方式无需耗费电线等物品,且操作简单方便,不易断线,深受消费者喜爱。
为此,本文将详细介绍一款基于无线充电技术的充电系统的设计与实现。
一、基于无线充电技术的充电系统设备1. 硬件设备无线充电系统主要由两个硬件设备组成,分别是无线充电器和无线接收器。
无线充电器通过自身的电源模块提供待充电设备所需的电能,而无线接收器则接收无线充电器的电能并将其转换为待充电设备的电能。
在满足基本功耗需求的同时,需要注意减少损耗、提高充电效率。
2. 软件平台软件平台主要由安卓系统或IOS系统的手机应用程序和微信小程序两个部分组成。
用户可以通过手机应用程序或微信小程序实现在远程控制无线充电器和无线接收器,方便快捷。
二、基于无线充电技术的充电系统原理1. 基本原理基于无线充电技术的充电系统是通过电磁感应成环路传导的原理实现的。
传输线圈一般由空气磁场和电场成的交叉垂直的电子场构成。
一般来说,空气磁场等效于交流磁场,电场等效于直流电场。
其中,允许不同频率的电磁波传输,不仅对充电效率有很大的影响,更会对直流及其它特殊负载有很大的影响。
2. 充电系统电路原理涉及的部分基于无线充电技术的充电系统电路大致分为以下三部分:电源部分、功率换算部分、载波调制和系统控制分析等。
三、基于无线充电技术的充电系统实现步骤1. 接口处理首先,需要通过调试软件对相关设备进行接口的预处理,包括发射端与接收端的控制操作。
在此过程中,需要开发相应驱动程序,实现发射端和接收端之间的数据传输,并集成控制功能模块。
2. 系统硬件实现基于无线充电技术的充电系统需要匹配电感和磁芯,需要确保两种部件的选择能够使充电系统的电感值达到一个良好的匹配。
在电路上,还需要对功率换算模块进行设计,将输入电流转换为适当的电压。
无线充电设备设计

无线充电设备设计随着科技的不断进步,无线充电设备成为了人们日常生活中不可或缺的一部分。
无线充电设备设计的关键在于提供便捷、高效、安全的充电体验。
本文将从硬件、软件和安全方面三个方面对无线充电设备的设计进行探讨。
一、硬件设计1. 充电器技术:无线充电设备主要通过电磁感应实现充电功能。
在硬件设计中,需要考虑充电器的功率、频率和效率。
高功率能够提供更快的充电速度,但也可能导致产品发热或损坏;适当的频率选取可以减少互应干扰,提高传输效率。
2. 发射器与接收器设计:发射器和接收器是无线充电设备的核心组件。
发射器产生电磁场并传输能量,接收器接收电磁场并将能量转化为电能。
在设计上,需要考虑发射功率、接收灵敏度和充电距离等因素,以保证传输效率和充电的可靠性。
3. 充电设备布局:设计无线充电设备时,需要考虑充电设备的布局,以提供更好的充电覆盖范围。
布局要充分考虑用户使用习惯和设备放置位置。
合理布置充电器和接收器的位置,可以在无需人工干预的情况下实现充电。
二、软件设计1. 充电管理系统:无线充电设备不仅需要实现充电功能,还需要进行充电管理。
软件设计中,可以考虑添加充电计时、电量监控等功能,方便用户了解充电情况。
同时,也可以为设备添加智能化控制,实现自动开关充电等功能。
2. 兼容性与适配性:无线充电设备设计中,需要考虑多种设备的兼容性和适配性。
可以采用主流的无线充电标准,如Qi标准,以保证与其他设备的兼容性。
同时,还可以根据不同设备的充电需求进行适配,提供多种供电方式以满足用户的多样化需求。
三、安全设计1. 电磁辐射与电池管理:无线充电设备在使用过程中会产生一定的电磁辐射。
为了确保用户的健康与安全,设计中需要合理控制辐射水平,并通过电池管理实现过充、过放、过流等情况的监控和保护。
2. 防止过热和短路:充电过程中,设备可能会出现过热和短路等安全问题。
为了避免这些问题,设计中需要添加温控装置和短路保护装置,确保设备在充电过程中的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(多图)10W无线充电系统的实现及设计指南
作者: Norelis Medina UpalSengupta TI上网日期: 2015年04月28日评论[ 1 ]
关键字:充电10W无线电源收发器接收器
在手机和其它小型便携式应用中,无线电源系统不断得到认可。
现有标准受限于5W电力传输,但是智能手机、平板电脑和便携式工业及医疗应用不断增长的电力需求对供电能力提出了更高的要求。
随着输出功率的增加,必须在系统设计最初就将效率和热性能考虑在内。
这篇文章回顾了可批量生产的10W无线充电系统的实现方式,并提供了与系统性能优化有关的系统设计指南。
我们还给出了一些已经在10W应用中成功测试的收发器 (TX) 和接收器(RX) 线圈的示例。
无线电源多年前就已经出现,形式也有多种,不过最近才由于行业标准的出现而变得更为普遍。
智能手机和小型平板电脑是目前使用无线充电的主要产品类别。
然而,这项技术也开始扩展到
可穿戴设备以及医疗和工业应用。
当无线电源与无线连通技术配合使用时,就可以使无外部接头、
完全密闭设备的设计成为可能。
这使得无线电源成为所有需要在室外或潮湿环境中运行的便携式
系统的理想选择。
现有的工业标准只有有限的功率输出能力通,常在5W范围内。
更高功率标准的开发正在进行当
中,截至2014年12月,还未完全确定。
因此,那些需要更高功率水平来为较大容量电池充电
的器件就需要定制或专有设计。
虽然系统设计人员有可能使用标准组件“从零开始”,但是这种方
法就很难实现终端产品快速投放市场的这一目标。
现在市面上的互补发射器和接收器芯片组可实
现针对便携式应用的10W无线电源系统的即刻设计,其中包括一个和两个电池节电池组架构。
图1:典型无线电源系统架构图
无线电源系统架构
图1中显示的是一张紧密耦合智能无线电源系统的简化图。
如果从原理图的角度来看,它看起来很像一款变压器耦合隔离式电源转换电路。
然而在这里, 初级线圈和次级线圈是完全分离开来,而不是绕在同一磁芯上的。
电能从发射器(初级,或TX)端传输到接收器(次级,或RX)端,而接收器电路以数字脉冲的形式将反馈发送回磁耦合器件。
图1:典型无线电源系统架构图
将功率性能扩展至10W就不得不有几点额外的考虑。
首先,必须将硅功率元件设计成能够处理所需的峰值和持续功率水平。
在发射器端,功率FET元件在发射控制器的外部,所以可按照需要将它们升级为能够处理峰值电流。
在接收器端,解决方案的小尺寸是十分重要的,集成FET 器件被用来提供单芯片器具。
为了提供高效率并改进热性能,与之前的5W接收器相比,RX控制器中的FET具有更低的RDS(on)。
磁性元件,即TX和RX线圈也必须具有能够处理10W电源传输所需的更高峰值电流的额定值。
最后,由于10W系统的磁场强度更高,相对于5W系统来说,接收器端的屏蔽范围就需要扩大。
这对于为系统中的金属元件提供更好的屏蔽,最大限度地降低接收器端的“临近、接触金属”损耗,并尽可能地提高系统效率也是有必要的。
现在再来参考一下图1,我们注意到RX控制器提供到TX控制器的反馈,要求TX根据不同负载条件,以及线圈对齐/耦合效率等的需求来改变其输出功率。
一种改变输出功率的常见方法是用恒定振幅/可变频率ac信号来激励线圈。
另外一个替代方法是用可变振幅/固定频率激励。
可变频控制免除了对于TX端上可调前置稳压级的需要,而是依靠TX/RX谐振电路的共振调谐。
当TX工作频率接近共振点时,最大可能功率从TX传输到RX。
为了减少传递到RX端的功率,TX控制器增加其频率,使其远远高于共振峰值。
在RX需要较少的功率等较轻负载情况下,TX 频率往往会增加。
然而,这个方法使得电力传输/控制过程在很大程度上取决于线圈调节。
当在较高功率水平下使用时,一个可变频率架构在电磁干扰(EMI) 控制方面也会提出一些问题。
10W发射器系统运行在固定频率下,但是却使用一个可调前置稳压器来改变用于线圈激励的直流电压轨。
一个全桥电路被用来生成用于TX线圈的交流激励电流。
图2中显示的是一个定频(10W) 无线充电发射器系统的基本方框图。
当RX需要更多的输出功率时,直流电压轨为TX线圈功率级提供的电压会增加。
直流电压随着RX负载的下降而减少。
图2. 具有一个无线数字控制的10W无线充电发射器
10W系统的可调输出电压和热性能
第一代5W无线电源系统通常在接收器端产生一个固定的5V输出电压。
这已经足够为一个充电率在1A范围内的单节锂离子电池充电了,而从本质上讲,这个电源系统与随处可见的USB类型电源很相似。
然而,随着便携式器件内电池容量的增加,要保持快速的充电时间就需要更高的电流。
bq51025 10W无线接收器输出电压可在5V至10V的范围内用外部反馈电阻器进行调节。
这样就可实现对一节或两节串联电池配置的充电,并且在与一个宽输入电压范围开关模式NVDC类型充电器组合在一起时,能够保持单节电池充电情况下的高效率。
在诸如无线RX输出情况下,NVDC充电器架构在减少较高电压电源所需的输入电流的同时,可实现低压电池的高效充电。
图3显示的是无线接收器电路板在为负载提供一个10W电源的同时,在5V,7V和10V输出设置下的热响应(分别为图. 3a,b和c)。
很明显,10V输出情况下产生的热量最少,应该在高频开关模式充电器可用于电池充电的情况下使用。
图3. 无线接收器在10W负载条件下的散热测量。
接收器电路上的串联谐振电容器(图4中的C1)对于优化热性能也同样关键。
实际操作中,将多个电容器并连在一起来提供所需的总电容值。
图4. 无线充电接收器和关键谐振电容器
在使用C0G(较大封装,低串联等效电阻(ESR))和X7R(较小封装,较高ESR)时的热性能差异是十分可观的(图5)。
图5.电容器对热性能的影响
较小的、高ESR电容器会成为RX印刷电路板(PCB) 上温度最高的地方。
由这些电容器所导致的PCB温度上升,会阻碍其散发集成电路(IC) 本身产生的热量,这也就意味着IC和PCB 的总体温度都会增加。
又由于使用了较小的谐振电容器,总效率从80%下降到74%。
图6显示的是使用一个无线电源发射器(bq500215) 与一个无线电源接收器(bq51025) 、评估板(EVM) 和适当组件选择组合配置的10W无线电力传输的总体系统效率。
图6. 在5V,7V和10V输出设置时,10W电源系统的端到端效率
线圈选择指南
bq500215发射器评估模块使用一个无线充电联盟(WPC) 类型的29,10μH,30mΩ线圈,其额定电流为9A。
除了10W接收器之外,这个线圈确保了与之前5W WPC类型接收器的兼容性。
在接收器端,应该对线圈参数进行优化,以匹配应用的目标输出电压。
在需要5V输出的情况下,RX线圈的标称电感值应该在10μH范围内;对于7V或10V的较高输出电压,RX线圈应该在15μH的范围内。
虽然理想状态是最大限度地减少线圈的直流电阻(DCR),但是在较高的输出电压情况下,允许稍微地增加DCR来应对较低的电流。
图7显示的是两个典型RX端线圈。
所有RX和TX线圈组装时需要背面屏蔽材料。
图7. 针对5V,7V和10V输出要求的典型RX线圈技术规格
电池充电时间比较
最后,执行一个10W无线电源系统的原因是减少高容量电池的充电时间。
图8显示了与bq24261 NVDC开关模式充电器组合使用时,使用5W和10W无线电源系统时针对3.1Ah锂离子电池的充电时间。
充电时间被大幅减少—从使用5W充电器时接近4个小时减少到使用10W充电器时的少于3小时。
由于锂离子电池充电算法的逐渐降低“渐止”属性,总充电时间的减少值与提供的电源不直接成比例。
然而,代表满充电状态大约70%的恒定电流到恒定电压模式的转换点减小到了原来的一半(图8)。
图8. 用10W无线电源系统减少电池充电时间
在设计一个完整的10W电源系统时,还有很多需要考虑在内的其它细节。