信号处理基础总复习

合集下载

数字信号处理复习 (3)

数字信号处理复习 (3)

式。
4、正弦型序列
x(n) sin(n )
要求:会判断正弦型序列的周期性
四、正弦序列的周期性
x(n) sin(n ) 的周期有三种情况:
2 1 、 N 是整数,则x(n)是周期序列,周期为N;
2 P 2、 是有理数,(其中P、Q为互质整数), Q
则x(n)是周期序列,周期为P;
m
x ( m) h ( n m)

上式中,若序列x(n)和h(n)的长度分别是M和L,
则y(n)的长度为L+M-1。
三、几种常用序列 1、单位抽样序列δ(n) (1)定义式
1 (n 0) ( n) 0 (n 0)
1 (n m) ( n m) 0 (n m)
n
1.2 线性、移不变(LSI)系统 一、线性系统: 若y1(n)=T[x1(n)]、y2(n)=T[x2(n)], 则a1 y1(n)+ a2y2(n)=T[a1x1(n)+ a2x2(n)]
例:判断下列系统是否线性系统。
y(n)=x(n)+1 y(n)=x(n+5) y(n)=x(3n)
二、移不变系统:
当n<0时,h(n)=0,则系统是因果系统。
例:下列单位抽样响应所表示的系统是否因果系统? A.h(n)=δ(n) C.h(n)= R10(n) B.h(n)=u(n) D.h(n)=e-20nu(n)
五、稳定系统 1、稳定系统的定义: 稳定(BIBO)系统是指当输入有界时,输出也有界的系统。 例:判断下列系统是否稳定系统。 y(n)=x(n-2)
二、掌握用留数法求Z反变换的方法
例:已知
X( z) 1 (1 2 z 1 )(1 1.2 z 1 )

dsc考试复习题

dsc考试复习题

dsc考试复习题在准备DSC(Digital Signal Processing,数字信号处理)考试的复习题时,我们应当覆盖数字信号处理的基本概念、理论、方法和应用。

以下是一些可能的复习题,旨在帮助学生巩固和测试他们对DSC课程内容的理解。

1. 数字信号处理的基本概念- 简述数字信号处理的定义及其与模拟信号处理的区别。

- 解释采样定理,并给出其在实际应用中的重要性。

2. 离散时间信号- 描述离散时间信号的基本属性。

- 解释单位脉冲函数和单位阶跃函数在离散时间信号中的角色。

3. 离散时间信号的时域运算- 列出并解释常见的离散时间信号时域运算,如加法、减法、乘法、卷积等。

4. Z变换- 定义Z变换,并解释其在分析离散时间信号中的作用。

- 给出Z变换的基本性质和常见信号的Z变换公式。

5. 离散傅里叶变换(DFT)- 描述离散傅里叶变换的定义和数学表达式。

- 解释快速傅里叶变换(FFT)算法的重要性及其在DFT中的应用。

6. 数字滤波器设计- 区分FIR(有限脉冲响应)滤波器和IIR(无限脉冲响应)滤波器,并说明它们的设计方法。

- 解释滤波器设计中的频率响应和相位响应。

7. 数字滤波器的实现- 描述直接型、级联型和并行型滤波器实现的结构。

- 讨论滤波器实现中的稳定性和因果性问题。

8. 信号的谱分析- 解释周期图和功率谱密度的概念及其在信号分析中的应用。

- 讨论谱分析在实际问题中的重要性。

9. 多速率信号处理- 描述多速率信号处理的基本概念,如抽取和插值。

- 讨论多速率信号处理在数字通信和音频处理中的应用。

10. 数字信号处理的应用- 列举数字信号处理在不同领域的应用,如语音处理、图像处理、生物医学信号处理等。

结束语:通过上述复习题,学生应该能够对数字信号处理的基础知识有一个全面的回顾。

复习时,建议学生结合实际例子和练习题来加深理解。

数字信号处理是一个不断发展的领域,掌握其核心概念和技能对于未来的学习和工作都是非常重要的。

《数字信号处理的数学基础》复习

《数字信号处理的数学基础》复习

二、求连续信号的频谱:第12页,傅里叶变换公式; 几类基本信号频谱的计算P17表2-1;频谱基本性 质的证明P21表2-2. 参见24页8题。 第二章 离散信号和抽样定理
一、基本离散信号:离散 (n)函数,离散单位阶跃
信号u(n), 及二者之间的关系,离散周期信号。 二、截频及乃奎斯特频率的定义、计算:参见 39
一个图像窗口分割成6个子窗口后,接下来将在第 5
个子窗口绘图。
二、设
连续信号
s(t
)
et
,
0,
试求其频谱S( f ).
t 0,(其中 0), t 0,

S ( f ) s(t)ei2 ftdt
e( i2 f )tdt e( i2 f )t
0
i2 f
0
1
1 lim (et ei2 ft )
页例 2。 三、乃奎斯特抽样定理(抽样条件):第 37、39 页,
乃奎斯特抽样定理;参见 49 页,6 题。
四、离散信号频谱的抽样定理、重抽样定理、假频 现象:第 41 页,抽样定理;参见 49 页,8、10 题。
五、什么是假频与假频现象。
第三章 滤波与褶积
一、滤波的两种表现形式。 二、离散信号褶积的计算及 MATLAB 实现:参见 57 页例 1、例 2。 三、离散信号的能量,离散信号频谱的简化形式、 褶积的简化形式。 四、离散信号的 Z 变换及其性质,由 Z 变换展开式 求信号:70 页例 2-例 5;76 页例 2-例 3;79 页 11-13 题。
3,
h, n 5, 其他.
3 ) 取 抽 样 间 隔 1 s , 由 抽 样 公 式 500
X ( f
)
n
X(

数字信号处理复习大纲)

数字信号处理复习大纲)

1如果信号的自变量和函数值都取连续值,则称这种信号为模拟信号或者称为时域连续信号,例如语言信号、温度信号等;2如果自变量取离散值,而函数值取连续值,则称这种信号称为时域离散信号,这种信号通常来源于对模拟信号的采样;3如果信号的自变量和函数值均取离散值,则称为数字信号。

4数字信号是幅度量化了的时域离散信号。

5如果系统n 时刻的输出只取决于n 时刻以及n 时刻以前的输入序列,而和n 时刻以后的输入序列无关,则称该系统为因果系统。

6线性时不变系统具有因果性的充分必要条件是系统的单位脉冲响应满足下式:_h(n)=0 , n<0。

7序列x (n )的傅里叶变换X (e j ω)的傅里叶反变换为:x (n )=IFT[X (e j ω)]=————————8序列x (n )的傅里叶变换X (e j ω)是频率的ω的周期函数,周期是2π。

这一特点不同于模拟信号的傅里叶变换。

9序列x (n )分成实部与虚部两部分,实部对应的傅里叶变换具有共轭对称性,虚部和j 一起对应的傅里叶变换具有共轭反对称性。

10序列x (n )的共轭对称部分x e (n )对应着X (e j ω)的实部X R (e j ω),而序列x (n )的共轭反对称部分x o (n )对应着X (e j ω)的虚部(包括j)。

11时域离散信号的频谱也是模拟信号的频谱周期性延拓,周期为TF s s ππ22==Ω,因此由模拟信号进行采样得到时域离散信号时,同样要满足采样定理,采样频率必须大于等于模拟信号最高频率的2倍以上,否则也会差生频域混叠现象,频率混叠在Ωs/2附近最严重,在数字域则是在π附近最严重。

12因果(可实现)系统其单位脉冲响应h (n )一定是因果序列 ,那么其系统函数H (z )的收敛域一定包含∞点,即∞点不是极点,极点分布在某个圆内,收敛域在某个圆外。

13系统函数H (z )的极点位置主要影响频响的峰值位置及尖锐程度,零点位置主要影响频响的谷点位置及形状。

数字信号处理复习资料(答案)

数字信号处理复习资料(答案)

一、 填空题1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字 信号。

2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。

3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。

4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。

5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是()n h n ∞=-∞<∞∑6、巴特沃思低通滤波器的幅频特性与阶次N 有关,当N 越大时,通带内越_平坦______,过渡带越_窄___。

7、用来计算N =16点DFT ,直接计算需要__(N 2)16*16=256_ __次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32_____ 次复乘法。

8、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型____和 _并联型__四种。

9、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型 的运算速度最高。

10、数字信号处理的三种基本运算是: 延时、乘法、加法11、两个有限长序列和长度分别是和,在做线性卷积后结果长度是__N 1+N 2-1_____。

12、N=2M 点基2FFT ,共有__ M 列蝶形,每列有__ N/2 个蝶形。

13、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对14、数字信号处理的三种基本运算是: 延时、乘法、加法15、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。

16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。

17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。

数字信号处理主要知识点整理复习总结

数字信号处理主要知识点整理复习总结
16. 已知:
求出对应
的各种可能的序列的表达式。
解: 有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况: 三种收敛域对应三种不同的原序列。
时,
(1)当收敛域

,因为c内无极点,x(n)=0;
,C内有极点0,但z=0是一个n阶极点,改为求圆外极点留数,圆外极点有
数字信号处理课程 知识点概要
第1章 数字信号处理概念知识点
1、掌握连续信号、模拟信号、离散时间信号、数字信号的特点及相互关系(时间和幅度的连续性考量) 2、数字信号的产生; 3、典型数字信号处理系统的主要构成。
量化、编码 ——————
采样 ————
模拟信号
离散时间信号
数字信号
5、部分分式法进行逆Z变换 求极点 将X(z)分解成部分分式形式 通过查表,对每个分式分别进行逆Z变换 注:左边序列、右边序列对应不同收敛域 将部分分式逆Z变换结果相加得到完整的x(n)序列 6、Z变换的性质 移位、反向、乘指数序列、卷积
常用序列z变换(可直接使用)
7、DTFT与Z变换的关系
(a) 边界条件 时,是线性的但不是移不变的。
(b) 边界条件 时,是线性移不变的。

….
所以:
….
所以:
可见 是移一位的关系, 亦是移一位的关系。因此是移不变系统。
代入差分方程,得:
……..
所以:
因此为线性系统。
3. 判断系统是否是因果稳定系统。
Causal and Noncausal System(因果系统) causal system: (1) 响应不出现于激励之前 (2) h(n)=0, n<0 (线性、时不变系统) Stable System (稳定系统) (1) 有界输入导致有界输出 (2) (线性、时不变系统) (3) H(z)的极点均位于Z平面单位圆内(因果系统)

数字信号处理复习资料

数字信号处理复习资料

1.设计低通数字滤波器, 要求通带内频率低于0.2π rad 时, 容许幅度误差在1 dB 之内; 频率在0.3π到π之间的阻带衰减大于10 dB 。

试采用巴特沃斯型模拟滤波器进行设计, 用脉冲响应不变法进行转换, 采样间隔T =1 ms 。

解: 本题要求用巴特沃斯型模拟滤波器设计,所以由巴特沃斯滤波器的单调下降特性, 数字滤波器指标描述如下: ωp=0.2 π rad, αp=1 dB, ωs=0.3 π rad, αs=10 dB%用脉冲相应不变法设计数字滤波程序 T=1; %T=1swp=0.2*pi/T; ws=0.3*pi/T; rp=1; rs=10; %T=1s 的模拟滤波器指标 [N, wc]=buttord(wp,ws,rp,rs,’s ’); %计算相应的模拟滤波器阶数N 和3dB 截止频率wc[B, A]=butter(N,wc,’s ’); %计算相应的模拟滤波器系统函数[Bz, Az]=impinvar(B,A); %用脉冲响应不变法将模拟滤波器转换成数字滤波器%用双线性变换法设计数字滤波程序 T=1; Fs=1/T wpz=0.2; wsz=0.3;wp=2*tan(wpz*pi/2); ws=2*tan(wsz*pi/2); rp=1; rs=1; % 预畸变校正转换指标 [N, wc]=buttord(wp,ws,rp,rs,’s ’);% 设计过渡模拟滤波器 [B, A]=butter(N,wc,’s ’); % 计算相应的模拟滤波器系统函数 [Bz, Az]=bilinear(B,A,Fs); % 用双线性法转换成数字滤波器[Nd,wdc]=buttord(wpz,wsz,rp,rs) :%调用buttord 和butter 直接设计数字滤波器 [Bdz,Adz]=butter(Nd,wdc); %绘制滤波器的损耗函数曲线2因果序列(1)若序列h(n)是实因果序列, 其傅里叶变换的实部如下式: HR (ej ω)=1+cos ω 求序列h (n )及其傅里叶变换H (ej ω)。

现代信号处理复习要点总结

现代信号处理复习要点总结

《信号处理技术及应用》复习要点总结题型:10个简答题,无分析题。

前5个为必做题,后面出7个题,选做5个,每个题10分。

要点:第一章:几种变换的特点,正交分解,内积,基函数;第二章:信号采样中的窗函数与泄露,时频分辨率,相关分析及应用(能举个例子最好)第三章:傅里叶级数、傅里叶变换、离散傅里叶变换(DFT)的思想及公式,FFT校正算法、功率谱密度函数的定义,频谱细化分析,倒频谱、解调分析、时间序列的基本原理(可能考其中两个)第四章:一阶和二阶循环统计量的定义和计算过程,怎么应用?第五章:多分辨分析,正交小波基的构造,小波包的基本概念第六章:三种小波各自的优点,奇异点怎么选取第七章:二代小波提出的背景及其优点,预测器和更新器系数计算方法,二代小波的分解和重构,定量识别的步骤第八章:EMD基本概念(瞬时频率和基本模式分量)、基本原理,HHT的基本原理和算法。

看8.3小节。

信号的时域分析信号的预处理传感器获取的信号往往比较微弱,并伴随着各种噪声。

不同类型的传感器,其输出信号的形式也不尽相同。

为了抑制信号中的噪声,提高检测信号的信噪比,便于信息提取,须对传感器检测到的信号进行预处理。

所谓信号预处理,是指在对信号进行变换、提取、识别或评估之前,对检测信号进行的转换、滤波、放大等处理。

常用的信号预处理方法信号类型转换信号放大信号滤波去除均值去除趋势项理想低通滤波器具有矩形幅频特性和线性相位特性。

经典滤波器定义:当噪声和有用信号处于不同的频带时,噪声通过滤波器将被衰减或消除,而有用信号得以保留现代滤波器当噪声频带和有用信号频带相互重叠时,经典滤波器就无法实现滤波功能现代滤波器也称统计滤波器,从统计的概念出发对信号在时域进行估计,在统计指标最优的意义下,用估计值去逼近有用信号,相应的噪声也在统计最优的意义下得以减弱或消除将连续信号转换成离散的数字序列过程就是信号的采样,它包含了离散和量化两个主要步骤采样定理:为避免混叠,采样频率ωs必须不小于信号中最高频率ωmax的两倍,一般选取采样频率ωs为处理信号中最高频率的2.5~4倍量化是对信号采样点取值进行数字化转换的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 离散系统分析及离散傅里 叶变换
离散时间信号的傅里叶变换 (DTFT); 离散傅里叶变换及(DFT)其性质;

第八章 z变换
z变换的定义及其收敛域的确定; 典型序列的z变换;P123 z变换的性质(前4个); 逆z变换; 利用z变换解差分方程; 离散系统函数的概念与计算; 离散系统的幅度频率响应特性(画幅 频特性曲线)。
信号与系统总复习
各章知识点与考点

第一章信号与系统的基本概念
典型的连续信号、离散信号以及信号的 表示方法; 信号的移位、反褶与尺度运算; 冲激信号的性质及运算特性(包括卷积 性质); 系统的微分方程、差分方程与方框图的 转化; 系统的线性、时不变性、因果性的判断。

第二章 单输入单输出的时域分析
系统单位冲激响应及单位样值响应的 概念; 卷积的性质; 系统并联、级联的单位冲激响应(如 习题2-4(3))。

第三章 傅里叶变换



傅里叶变换的定义与计算; 典型信号的傅里叶变换(例如单边指数信 号); 傅里叶变换的性质(线性、尺度、时移、 频移、微分、卷积); 周期信号的傅里叶变换; 抽样信号及其傅里叶变换 时域抽样定理的内容。
相关文档
最新文档