基坑工程的信息化施工
基坑监测与信息化施工在合肥某深基坑工程中的应用

钢支撑 的部位地表沉降值较小 ,累计值远小 于设计控制 值, 场地南 、 北两侧 采用悬臂桩 + 内暗墩的部位地表沉 坑 降值较大 , 地表局部 出现裂缝北侧 D ~ 5 2 D 号点累计值 已 接近设 计控制值 ,南侧 D ~ 1 号点 累计值超过了设计 8D 0 控制值 ,南侧地表沉降过大的原 因主要是止水帷幕效果 较差 ,因受场地条件 限制该部位仅施工 了单排水泥土搅 拌桩 , 由于多处出现坑外水的渗漏情况造成 的 , 后经排查 渗漏点 , 统一采取注浆封堵后稍有缓解 。 地表道路沉降在 前期土方开挖速度不快 的条件下 , 沉降速率不大 , 累计沉 降量缓慢增长 ,待土体开挖深度大于 5 至接近基坑底 m 部时 , 、 南 北两侧 的沉 降速率迅速增长 , 主要 原因是土方 开挖速度过快 , 外侧 土体的主动土压力迅速增大 , 悬臂排 桩 围护结构 的抵抗 变形能力较差 ,排桩侧向变形 的随之
最后施工 , 并加快地板浇筑速度 , 以上措施实施后经监测 ①南侧及北侧分 别采用桩径 1 0 m 0 m、 缓解了沉降和水平位移变化 , 0m @l 0m 0 2 排除了险情 。 桩径 l 0 m 0 / 0m @l 0/ 2 4 l m悬臂式钻孔灌注桩进行支 护 , 1 . 支撑轴力监测结果 .2 5 本工程钢支撑共有 3 处监测点 , 根据监测结果 , 支撑 0k 。 5 支撑 作者简介 : 进 (9 8 ) 男 , 徽合 肥 人 , 徐 17 - , 安 中级职 称 , 主要 从 事施 受力值最大为 1 0 N 随着基坑开挖深度 的增加 , 轴力逐渐增加 ,直至开挖至基坑底部 ,轴力接近其最大 工技 术 的应 用与 管理 工作 。
基坑工程信息化施工实例

[ ] 吴文雪, 3 刘
耕. 三峡 库区危岩稳 定性分析 [] 重庆 交通 学 [ ] 哈秋龄 , J. 5 张永兴 . 岩石边坡 工程—— 长江三峡链 子崖危岩体
设置 2 4个 观测 点 , 号 为 ( 1 G 4 。从 表 1 以 看 出 , 2 编 3 ~ 2) 0 可 G1 ~
G 4在 F 2( G段 内) 累计 沉降 变化量较 大 , 均小 于设计 累计沉 降 但
2 信息 化施工
2 1 施 工 监 测 .
变 形 值 1 5mm。通 过 监 测 单 位 认 真 、 细 的收 集 此 段 施 工 监 测 数 仔
摘 要 : 以南 京 某 基 坑 工 程 为 例 , 述 了基 坑 工 程 信 息 化 施 工 过 程 中 的设 计 调 整情 况 , 而提 高深 基 坑 工 程 概 况
本 工 程 的深 基 坑 施 工 受 到 了项 目各 层 的 高 度 重 视 , 为 深 基 因
NI in z o g XI U Ja -h n ONG i h Ka・ i z Ab t a t s r c :Th a e n lz s t esa i t f h a g r u o k / n tr e an i a g o o fW uo g c u t h n qn e p p ra ay e h t b l y o ed n e o s rc , ea i rd r n Xin k u t wn o ln o n y i C o g ig.c l — i t o v n ac u lt h tb l y o h e p c l a g r u o k y a o t g t - i n in l t aa c h o y p i t U h a g d l o h a g r ae t es a it ft r et ia d n eo sr sb d p i wo d me s i ln et e r s i y c n o mi b o n so t ed ma emo es f ed n e — t t
基坑工程的信息化施工(一)

基坑工程的信息化施工(一)一、监测和预报的作用从许多起基坑工程事故的分析中,我们可以得出这样一个结论,那就是任何一起基坑工程事故无一例外的与监测不力或险情预报不准确相关。
换言之,如果基坑的环境监测与险情预报准确而及时,就可以防止重大事故的发生。
或者说,可以将事故所造成的损失减少到最小。
基坑工程的环境监测既是检验设计正确性的重要手段,又是及时指导正确施工、避免事故发生的必要措施。
基坑工程的监测技术是指基坑在开挖施工过程中,用科学仪器、设备和手段对支护结构、周边环境(如土体、建筑物、道路、地下设施等)的位移、倾斜、沉降、应力、开裂、基底隆起以及地下水位的动态变化、土层孔隙水压力变化等进行综合监测。
然后,根据前一段开挖期间监测到的岩土变位等各种行为表现,及时捕捉大量的岩土信息,及时比较勘察、设计所预期的性状与监测结构的差别,对原设计成果进行评价并判断事故方案的合理性。
通过反分析方法计算和修正岩土力学参数,预测下一段工程实践可能出现的新行为、新动态,为施工期间进行设计优化和合理组织施工提供可靠的信息,对后续的开挖方案与开挖步骤提出建议,对施工过程中可能出现的险情进行及时的预报,当有异常情况时立即采取必要的措施,将问题抑制在萌芽状态,以确保工程安全。
二.监测系统设计原则施工监测工作是一项系统工程,监测工作的成败与监测方法的选取及测点的布设有关。
监测系统的设计原则,可归纳为以下5条:1.可靠性原则可靠性原则是监测系统设计中所要考虑的最重要的原则。
为了确保其可靠,必须做到:第一,系统需要采用可靠的仪器。
一般而言,机测式的可靠性高于电测式仪器,所以如果使用电测式仪器,则通常要求具有目标系统或与其他机测式仪器互相校核;第二,应在监测期间内保护好测点。
2.多层次监测原则多层次监测原则的具体含义有4点:A.在监测对象上以位移为主,但也考虑其他物理量监测。
B.在监测方法上以仪器监测为主,并辅以巡检的方法。
C.在监测仪器选型上以机测式仪器为主,辅以电测式仪器;为了保证监测的可靠性,监测系统还应采用多种原理不同的方法和仪器。
路基数字化施工工法

路基数字化施工工法
1. 数据采集与设计,路基数字化施工工法的第一步是进行数据
采集和设计。
通过激光雷达、GPS定位、无人机航拍等技术手段,
可以快速准确地获取道路地形、土壤性质、地下管线等相关数据,
并利用计算机辅助设计软件进行道路设计和施工方案制定。
2. 数字化施工管理,数字化施工工法还包括施工过程中的数字
化管理。
通过建立数字化施工管理平台,监测施工进度、材料使用、人力资源配置等信息,实现施工过程的实时监控和数据分析,从而
提高施工效率和质量。
3. 智能化施工设备,数字化施工工法还依赖于智能化的施工设备,如全自动挖掘机、智能摊铺机等。
这些设备能够通过激光或
GPS定位实现精准施工,提高施工精度和效率。
4. 数据化验收与维护,路基数字化施工工法还包括施工后的数
据化验收和维护。
利用数字化技术对路基施工质量进行检测和评估,及时发现和解决问题,保障道路使用安全和持久。
总的来说,路基数字化施工工法通过数字化技术的应用,实现
了施工过程的信息化、智能化和精准化,可以提高施工效率、节约成本,同时也有利于保障道路施工质量和安全。
深基坑工程信息化施工

深基坑工程信息化施工
深基坑工程信息化施工
1、本基坑采用动态施工,根据施工现场的地质状况,施工情况和变形、对原施工方案及时校核、修改和补充。
本基坑施工采用信息施工方法,应特别注意施工质量。
2、建设单位在施工前,应当邀请市政、供电、供水、供气、通讯、城建档案等有关单位,就设计施工方案征询相关各方意见;对可能受影响的相邻建筑物、构筑物、道路、地下管线等作进一步检查;对可能发生争议的部位应拍照或摄像,布设记号,作好原始记录,并经双方确认。
在建设过程中要确保相邻建筑物、构筑物、道路、地下管线等的安全及正常使用。
3、配合监测单位实施监测,掌握基坑边坡工程的监测情况。
4、编录施工现场揭示的地层现状与原地质资料对比变化图。
5、建立信息反馈制度,当监测值达到报警值时,应立即向设计、监理、业主汇报,并根据设计处理措施调整施工方案。
6、施工中出现险情时应做好边坡支护结构和边坡环境异常情况收集、整理及汇编等工作,并应查清原因,制定施工抢险方案。
7、当由于基坑内降水,导致坑外水位急剧下降,应查明原因,并确定位置,在基坑外采用钻机引孔,并采用浓浆注浆止渗,浆体材料为:粘土粉、水泥浆,比例为5:1,水灰比为1.5:1,注浆压力在0.5MPa左右;采用分段注浆,直至基本无渗漏为止。
感谢您的阅读!。
基坑工程的信息化施工(三篇)

基坑工程的信息化施工一、监测和预报的作用从许多起基坑工程事故的分析中,我们可以得出这样一个结论,那就是任何一起基坑工程事故无一例外的与监测不力或险情预报不准确相关。
换言之,如果基坑的环境监测与险情预报准确而及时,就可以防止重大事故的发生。
或者说,可以将事故所造成的损失减少到最小。
基坑工程的环境监测既是检验设计正确性的重要手段,又是及时指导正确施工、避免事故发生的必要措施。
基坑工程的监测技术是指基坑在开挖施工过程中,用科学仪器、设备和手段对支护结构、周边环境(如土体、建筑物、道路、地下设施等)的位移、倾斜、沉降、应力、开裂、基底隆起以及地下水位的动态变化、土层孔隙水压力变化等进行综合监测。
然后,根据前一段开挖期间监测到的岩土变位等各种行为表现,及时捕捉大量的岩土信息,及时比较勘察、设计所预期的性状与监测结构的差别,对原设计成果进行评价并判断事故方案的合理性。
通过反分析方法计算和修正岩土力学参数,预测下一段工程实践可能出现的新行为、新动态,为施工期间进行设计优化和合理组织施工提供可靠的信息,对后续的开挖方案与开挖步骤提出建议,对施工过程中可能出现的险情进行及时的预报,当有异常情况时立即采取必要的措施,将问题抑制在萌芽状态,以确保工程安全。
二.监测系统设计原则施工监测工作是一项系统工程,监测工作的成败与监测方法的选取及测点的布设有关。
监测系统的设计原则,可归纳为以下5条:1.可靠性原则可靠性原则是监测系统设计中所要考虑的最重要的原则。
为了确保其可靠,必须做到:第一,系统需要采用可靠的仪器。
一般而言,机测式的可靠性高于电测式仪器,所以如果使用电测式仪器,则通常要求具有目标系统或与其他机测式仪器互相校核;第二,应在监测期间内保护好测点。
2.多层次监测原则多层次监测原则的具体含义有4点:A.在监测对象上以位移为主,但也考虑其他物理量监测。
B.在监测方法上以仪器监测为主,并辅以巡检的方法。
C.在监测仪器选型上以机测式仪器为主,辅以电测式仪器;为了保证监测的可靠性,监测系统还应采用多种原理不同的方法和仪器。
基坑信息化施工监测

构造 . 上部 岩溶 裂 隙较 发育 , 下部 较完 整 。 揭露 层厚
0 . 9 0 ~ 9 . 5 0 m。
中1 次, 2 天. 其它 时间1 次/ 7 天, 内支撑 梁轴 力观测 , 土 方开挖过 程 中1 次/ 2 天. 其 它时间观测 1 7  ̄ . / 4 天。
土方 开挖 过程 中沉 降观测 每 1 0 z / 1 天. 水平 位移 观测 及 深层倾斜 变形观测 每1 次, 2 天 .其它 时间 1 次, 7 天,
有事故征 兆时应连续 监测 。水 位观测土方 开挖过 程
场地地层 自上而下依次为 : ①杂填土 , 松散 , 厚
O . 3 0 3 . 3 0 m; ②粉细砂 , 松散 , 厚0 . 8 0 ~ 9 . 2 0 m; ③中粗 砂, 松散 , 厚1 . 0 0 ~ 6 . 0 0 m。④ 圆砾 , 稍密一 密实 , 厚 2 . 4 0 ~ 1 1 . 1 0 m ⑤ 含 圆砾 粉 质粘土 , 可 塑一 软塑状 , 厚
道路 , 某楼 盘 采 用信 息化施 工监 测 , 从 土 方开挖 到 基础 、 地 下 室完工 直 至土 方回 填全过 程 , 对 基坑 顶 水平位 移 、 周 边建 筑物沉 降 、 支护 结构深层 位移 、 内支撑 结构 轴 力等 实施监 测 。每 次监测 结果 经 数 据处理 和预 测 , 将 信 息反 馈 , 做 到 有效指 导基坑 安全 施 工。
7. 5m 6 2
基准 点 ( 沉 降水 准基 点 和水平 位移 基 点均 在 同一观
测墩) , 3 个 工 作基 点 , 基 准 点 编号 为J l 、 J 2 、 J 3 , 工 作
大型基坑工程信息化施工中的监测技术与实例分析

中圈分类号: U 7 T 4
文献标识码 : A
近再填充泥球 , 以防止地表水 的渗入 , 其原理与围 护墙 体侧 向位移 监测 相 同。
收稿 日 :0 ̄1- 期 20 ・ 0 01 作者简介i ( 8 )女 , 邹莉 1 一 , 辽宁新金人 。 实验师 , 工程测量教学与 从事
科研_ T作。
维普资讯
维普资讯
第2 9卷
第 4期
东
华
理
Байду номын сангаас
工 学
院 学
报
Vo. 9 N . 12 o 4 D c 06 e .2 0
20 0 6年 l 2月
J OURNA OF E T CHI A I . " TE OF T C I OL L AS N NS 1 1l U E } N 0GY
文章编号 : 0 — 2 l 2 o )4— 7 — 3 l 0 2 5 (0 6 o 3 3 0 0
工程建设 中, 要实现工程设计 , 就必须根据施
12 围护墙体 侧 向位移 监测 .
工现场情况 , 收集信息, 调整设计 , 解决设计 与施工 之间的矛盾 , 使工程项 目在保证质量和安全的前提 下在预算内如期完成。要做到这一点, 施工信息化
筑混 凝 土 时 , 由于混 凝 土 在挂 帘 的 内侧 , 用 流态 利
混凝 土 的侧 向挤 压 力 将 挂 帘 连 同 土应 力 计 一 起 压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编订:__________________审核:__________________单位:__________________基坑工程的信息化施工Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-3875-70 基坑工程的信息化施工使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
一、监测和预报的作用从许多起基坑工程事故的分析中,我们可以得出这样一个结论,那就是任何一起基坑工程事故无一例外的与监测不力或险情预报不准确相关。
换言之,如果基坑的环境监测与险情预报准确而及时,就可以防止重大事故的发生。
或者说,可以将事故所造成的损失减少到最小。
基坑工程的环境监测既是检验设计正确性的重要手段,又是及时指导正确施工、避免事故发生的必要措施。
基坑工程的监测技术是指基坑在开挖施工过程中,用科学仪器、设备和手段对支护结构、周边环境(如土体、建筑物、道路、地下设施等)的位移、倾斜、沉降、应力、开裂、基底隆起以及地下水位的动态变化、土层孔隙水压力变化等进行综合监测。
然后,根据前一段开挖期间监测到的岩土变位等各种行为表现,及时捕捉大量的岩土信息,及时比较勘察、设计所预期的性状与监测结构的差别,对原设计成果进行评价并判断事故方案的合理性。
通过反分析方法计算和修正岩土力学参数,预测下一段工程实践可能出现的新行为、新动态,为施工期间进行设计优化和合理组织施工提供可靠的信息,对后续的开挖方案与开挖步骤提出建议,对施工过程中可能出现的险情进行及时的预报,当有异常情况时立即采取必要的措施,将问题抑制在萌芽状态,以确保工程安全。
二.监测系统设计原则施工监测工作是一项系统工程,监测工作的成败与监测方法的选取及测点的布设有关。
监测系统的设计原则,可归纳为以下5条:1. 可靠性原则可靠性原则是监测系统设计中所要考虑的最重要的原则。
为了确保其可靠,必须做到:第一,系统需要采用可靠的仪器。
一般而言,机测式的可靠性高于电测式仪器,所以如果使用电测式仪器,则通常要求具有目标系统或与其他机测式仪器互相校核;第二,应在监测期间内保护好测点。
2. 多层次监测原则多层次监测原则的具体含义有4点:A.在监测对象上以位移为主,但也考虑其他物理量监测。
B.在监测方法上以仪器监测为主,并辅以巡检的方法。
C.在监测仪器选型上以机测式仪器为主,辅以电测式仪器;为了保证监测的可靠性,监测系统还应采用多种原理不同的方法和仪器。
D.考虑分别在地表、基坑上体内部及邻近受影响建筑物与设施内布点以形成具有一定测点覆盖率的监测网。
3. 重点监测关键区的原则据研究,在不同支护方法的不同部位,其稳定性是各不相同的。
一般地说,稳定性差的部位容易失稳塌方,甚至影响相邻建筑物的安全。
因此,应将易出问题而且一旦出问题就将带来很大损失的部分,列为关键区进行重点监测,并尽早实施。
4. 方便实用原则为了减少监测与施工之间的相互干扰,监测系统的安装和测读应尽量做到方便实用。
5. 经济合理原则考虑到多数基坑都是临时工程,因此其监测时间较短,另外,监测范围不大,量测者容易到达测点,所以在系统设计时应尽量考虑实用低价的仪器,不必过分追求仪器的“先进性”,以降低监测费用。
三.监测内容基坑工程的现场监测主要包括对支护结构的监测,对周围环境的监测和对岩土性状受施工影响而引起的变化的监测。
其监测方法如下:1.支护结构顶部水平位移监测,这是最重要的一项监测。
一般每间隔5~8m布设一个仪器监测点,在关键部位适当加密点。
基坑开挖期间,每隔2~3天监测一次,位移较大者每天监测1~2次。
考虑到施工场地狭窄,测点常被阻挡的实际情况,可用多种方法进行监测。
一是用位移收敛计对支护结构顶部进行收敛量测。
该方法测定布设灵活方便,仪器结构不复杂,操作方便,读数可靠,测量精度为0.05mm,从而可准确地捕捉支护结构细微的变位动态,并尽早对未来可能出现的新行为、新动态进行预测预报。
二是用精密光学经纬仪进行观测。
在基坑长直边的延长线上两端静止的构筑物上设观察点和基准点,并在观察点位置旋转一定角度的方向上设置校正点,然后监测基坑长直边上若干测点的水平位移。
三是用伸缩仪进行量测。
仪器的一端放在支护结构顶部,另一端放在稳定的地段上并与自动记录系统相联,可连续获得水平位移曲线和位移速率曲线。
2.支护结构倾斜监测。
根据支护结构受力及周边环境等因素,在关键的地方钻孔布设测斜管,用高精度测斜仪定期进行监测,以掌握支护结构在各个施工阶段的倾斜变化情况,及时提供支护结构深度——水平位移——时间的变化曲线及分析计算结果。
也可在基坑开挖过程中及时在支护结构侧面布设测点,用光学经纬仪观测支护结构的倾斜。
3.支护结构沉降观测。
可按常规方法用精密水准仪对支护结构的关键部位进行沉降观测。
4.支护结构应力监测。
用钢筋应力计对桩顶圈梁钢筋中较大应力断面处的应力进行监测,以防止支护结构的结构性破坏。
5.支撑结构受力监测。
施工前应进行锚杆现场抗拔试验以求得锚杆的容许拉力;施工过程中用锚杆测力计监测锚杆的实际承受力。
对钢管内支撑,可用测压应力传感器或应变仪等监测其受力状态的变化。
6.基坑开挖前去进行支护结构完整性检测。
例如,用低应变动测法检测支护桩桩身是否断裂、严重缩颈、严重离析和夹泥等,并判定缺陷在桩身的部位。
7.邻近建筑物的沉降、倾斜和裂缝的发生时间和发展的监测。
8.邻近构筑物、道路、地下管网设施的沉降和变形监测。
9.对岩土性状受施工影响而引起变化的监测,包括对表层沉降和水平位移的观测,以及深层降和倾斜的监测。
监测范围着重在距离基坑位1.5~2倍的基坑开挖深度范围之内。
该项监测可及时掌握基坑边坡的整体稳定性,及时查明土体中可能存在的潜在滑移面的位置。
10.桩侧土压力测试。
桩侧土压力是支护结构设计计算中重要的参数,常常要求进行测试。
可用钢弦频率接收仪进行测试。
11.基坑开挖后的基底隆起观测。
这里包括由于开挖卸载基底回弹的隆起和由于支护结构变形或失稳引起的隆起。
12.土层孔隙水压力变化的测试。
一般用震弦式孔隙压力计、电测式侧压计和数字式钢弦频率接收仪进行测试。
13.当地下水位的升降对基坑开挖有较大影响时,应进行地下水位动态监测,以及渗漏、冒水、管涌和冲刷的观测。
14.肉眼巡视与裂缝观测。
经验表明,由有经验的工程师每日进行的肉眼巡视工作有重要意义。
肉眼巡视主要是对桩顶圈梁、邻近建筑物、邻近地面的裂缝、塌陷以及支护结构工作失常、流土渗漏或局部管涌的功能不良现象的发生和发展进行记录、检查和分析。
肉眼巡视包括用裂缝读数显微镜量测裂缝宽度和使用一般的度、量、衡手段。
上述监测项目中,水平位移监测、沉降观测、基坑隆起观测、肉眼巡视和裂缝观测等是必不可少的,其余项目可根据工程特点、施工方法以及可能对环境带来的危害的功能综合确定。
当无地区经验时,可参考下表来确定。
现场监测项目的选择见表注:△——必测项目;○——选测项目;╳——可不测项目四.监测结果的分析和评价基坑支护工程监测的特点是在通过监测获得准确数据之后,十分强调定量分析与评价,强调及时进行险情预报,提出合理化措施与建议,并进一步检验加固处理后的效果,直至解决问题。
任何没有仔细深入分析的监测工作,充其量只是施工过程的客观描述,决不能起到指导施工进程和实现信息施工的作用。
对监测结果的分析评价主要包括下列方面:1.对支护结构顶部的水平位移进行细致深入的定量分析,包括位移速率和累积位移量的计算,及时绘制位移随时间的变化曲线,对引起位移速率增大的原因(如开挖深度、超挖现象、支撑不及时、暴雨、积水、渗漏、管涌等)进行准确记录和仔细分析。
2.对沉降和沉降速率进行计算分析。
沉降要区分是由支护结果水平位移引起还是由地下水位变化等原因引起。
一般由支护结构水平位移引起相邻地面的最大沉降与水平位移之比在0.65~1.00,沉降发生时间比水平位移发生时间滞后5~10d左右;而地下水位降低会较快地引起地面较大幅度的沉降,应予以重视。
邻近建筑物的沉降观测结果可与有关规范中的沉降限值相比较。
3.对各项监测结果进行综合分析并相互验证和比较。
用新的监测资料与原设计预计情况进行对比,判断现有设计和施工方案的合理性,必要时,及早调整现有设计和施工方案。
4.根据监测结果,全面分析基坑开挖对周围环境的影响和基坑支护的工程效果。
通过分析,查明工程事故的技术原因。
5.用数值模拟法分析基坑施工期间各种情况下支护结构的位移变化规律性进行稳定性分析,推算岩土体的特性参数,检验原设计计算方法的适宜性,预测后续开挖工程可能出现的新行为和新动态。
五.报警险情预报是一个极其严肃的技术问题,必须根据具体情况,认真综合考虑各种因素,及时作出决定。
但是,报警标准目前尚未统一,一般为设计容许值和变化速率两个控制指标。
例如,当出现下列情形之一,应考虑报警:1. 支护结构水平位移速率连续几天急剧增大,如达到2.5~5.5mm/d。
2. 以护结构水平位移累积值达到设计容许值。
如最大位移与开挖深度的比值达到0.35%~0.70%,其中周边环境复杂时取较小值。
3.任一项实测应力达到设计容许值。
4.邻近地面及建筑物的沉降达到设计容许值。
如地面最大沉降与开挖深度的比值达到0.5%~0.7%,且地面裂缝急剧扩展。
建筑物的差异沉降达到有关规范的沉降限值。
例如,某开挖基坑邻近的六层砖混结构,当差异沉降达到20mm左右时,墙体出现了十余条长裂缝。
5.煤气管、水管等设施的变位达到设计容许值。
例如,某开挖基坑邻近的煤气管局部沉降达30mm时,出现了漏气事故。
6.肉眼巡视检查到的各种严重不良现象,如桩顶圈梁裂缝过大,邻近建筑物的裂缝不断扩展,严重的基坑渗漏、管涌等。
险情发生时刻,预报的实现途径可归纳如下:A.首先进行场地工程地质、水文地质、基坑周围环境、基坑周边地形地貌及施工方案的综合分析。
从险情的形成条件入手,找出险情发生的必要条件(如岩土特性、支护结构、有效临空面、邻近建筑物及地下设施等)和某些相关的诱发条件(如地下水、气象条件、地震、开挖施工等),再结合支护结构稳定性分析计算,得出是否会发生险情的初步结论。
B.现场监测是实现险情预报的必要条件。
现场监测的目的是运用各种有效有监测手段,及时捕捉险情发生前所暴露出的各种前兆信息,以及诱发险情的各种相关因素。