PCB电路板PCB布线知识

合集下载

pcb布线规则及技巧

pcb布线规则及技巧

使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。

PCB设计基础知识

PCB设计基础知识

PCB设计基础知识PCB(Printed Circuit Board),中文名为印制电路板,是用于连接和支持各种电子元器件的一种基础组件。

PCB的设计是电子产品开发中非常重要的一部分,对于电路的性能、布局和可靠性都有很大的影响。

1.PCB的类型:PCB的类型主要分为单面板、双面板和多层板。

单面板只有一面可以进行电路布线,适合简单的电路设计;双面板则可以在两面都进行布线,适合复杂的电路设计;多层板则可以在多个电路层中进行布线,适合高密度的电路设计。

2.PCB的材料:PCB的主要材料包括基板、铜箔和覆盖层。

基板一般使用玻璃纤维增强的环氧树脂,有良好的绝缘性能和机械强度;铜箔用于制作导线和焊盘,一般有不同的厚度选择;覆盖层主要用于保护电路,常见的有有机胶覆盖层和漆覆盖层。

3.PCB的设计流程:PCB的设计流程包括原理图设计、库封装设计、PCB布局、布线、制造文件输出等步骤。

原理图设计是将电路设计成符号图,使用软件进行绘制;库封装设计是将元器件设计成符合标准的封装,也可以使用软件进行绘制;PCB布局是将元器件按照一定的规则摆放在基板上,并考虑电磁兼容性和散热等因素;布线是在布局的基础上进行线路的连接,保证良好的信号传输和阻抗匹配;制造文件输出是将设计好的PCB文件输出成Gerber文件等格式,用于制造。

4.PCB的布局原则:PCB的布局需要考虑电路性能、可靠性和成本等多方面的因素。

常见的布局原则包括:将主要的功能单元放在一起,减少连接线的长度;将高频和低频信号分离布局,减少干扰;注意散热和线路的位置关系,保证散热效果;避免并联的线路交叉,减少串扰等。

5.PCB的布线技巧:布线是PCB设计中非常关键的一步,直接影响电路的性能和可靠性。

常用的布线技巧包括:避免信号线和电源线的交叉,减少干扰;避免信号线和地线的平行布线,减少串扰;注意差分线对的长度保持一致,保证信号的相位一致;注意信号线的走向,避免过长和过曲;保证信号线的阻抗匹配,减少反射和损耗。

pcb印制作电路板布线的注意事项

pcb印制作电路板布线的注意事项

pcb印制作电路板布线的注意事项1. 电路布线时要遵循电线长度短、走线直等原则,尽量减少走线长度和交叉,以降低电路中的干扰和信号损耗。

2. 电路板布线要遵循信号、电源和地线分离的原则,将它们分布在不同层次的电气层上,以减少互相干扰。

3. 高频信号的走线要避免太长和弯曲,尽量采用直线路径,减少信号反射和衰减。

4. 电路布线时要考虑信号的特性阻抗匹配问题,尽量使信号线的阻抗与驱动和接收器的阻抗匹配。

5. 高速数字信号的走线要考虑时钟线和数据线的长度和相互之间的延迟问题,以保证信号的同步和准确传输。

6. 电路板布线要考虑到热量的扩散和散热问题,避免信号线或功率线与散热器、电池等热源相邻。

7. 电路布线时要考虑到整个系统的EMI/EMC的要求,避免信号线和功率线与其他干扰源相交或密集走线。

8. 布线时要注意保持良好的地平面,以减少环境噪声的干扰,可以使用大面积的地面铺铜来达到较好的地平面效果。

9. 对于复杂的电路板,可以采用分区布线的方式将信号分组并在不同区域内布线,以减少信号干扰。

10. 在布线之前,可以先进行仿真或模拟分析,通过软件工具来评估布线方案的性能、可靠性和可制造性。

11. 在进行布线前,应充分了解电路板设计规范和制造工艺要求,以确保布线符合相关标准和要求。

12. 对于高密度电路板布线,可以采用差分信号布线,以减少串扰和EMI干扰。

13. 在布线时,应尽量避免信号线和功率线或高电压线相交,以避免互相干扰和安全问题。

14. 注意电路板布线的布局和放置,合理利用电路板的有效空间,以确保布线路径的合理性和电路元件的排布。

15. 在布线过程中,应留出足够的间距和空位来容纳电路元件和连接器的安装,以方便后续的组装和维修。

16. 考虑到电路板的可维护性,布线时应避免将信号线和元件安排得过于拥挤,以方便信号的追踪或更换元件。

17. 在布线时应注意避免信号线和电源线或地线平行走线或相互交叉,以减少串扰和互相干扰。

PCB板布线技巧

PCB板布线技巧

PCB板布线布局一.PCB布局原则首先,要考虑PCB尺寸大小。

PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。

在确定PCB 尺寸后.再按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性,按工艺设计规范的要求进行尺寸标注。

最后,根据电路的功能单元,对电路的全部元器件进行布局。

1. 布局操作的基本原则A.位于电路板边缘的元器件,离电路板边缘一般不小于2mm。

电路板的最佳形状为矩形。

长宽比为3:2成4:3。

B. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.C. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.D. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.E. 以每个功能电路的核心元件为中心,围绕它来进行布局。

元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。

F.相同结构电路部分,尽可能采用“对称式”标准布局;同类型插装元器件在X或Y方向上应朝一个方向放置;同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。

2.布局操作技巧1. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。

2.元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。

3. IC去耦电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。

4.尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。

易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

5.某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。

比如,将稳压电路、放大电路、数字电路等放在不同的区域内。

-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。

因此,尽量把线路缩短,减少线路长度。

-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。

因此,尽量避免线路的交叉,使布局更加清晰。

-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。

-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。

2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。

-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。

-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。

-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。

-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。

总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。

通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项布线技巧:1.确定电路结构:在布线之前,需要先确定电路结构。

将电路分成模拟、数字和电源部分,然后分别布线。

这样可以减少干扰和交叉耦合。

2.分区布线:将电路分成不同的区域进行布线,每个区域都有自己的电源和地线。

这可以减少干扰和噪声,提高信号完整性。

3.高频和低频信号分离:将高频和低频信号分开布线,避免相互干扰。

可以通过设立地板隔离和电源隔离来降低电磁干扰。

4.绕规则:维持布线规则,如保持电流回路的闭合、尽量避免导线交叉、保持电线夹角90度等。

这样可以减少丢失信号和干扰。

5.简化布线:简化布线路径,尽量缩短导线长度。

短导线可以减少信号传输延迟,并提高电路稳定性。

6.差分线布线:对于高速信号和差分信号,应该采用差分线布线。

差分线布线可以减少信号的传输损耗和干扰。

7.用地平面:在PCB设计中,应该用地平面层绕过整个电路板。

地平面可以提供一个低阻抗回路,减少对地回路电流的干扰。

8.参考层对称布线:如果PCB板有多层,应该选择参考层对称布线。

参考层对称布线可以减少干扰,并提高信号完整性。

注意事项:1.信号/电源分离:要避免信号线与电源线共享同一层,以减少互相干扰。

2.减小射频干扰:布线时要特别注意射频信号传输的地方,采取屏蔽措施,如避免长线路、使用高频宽接地等。

3.避免过长接口线:如果接口线过长,则信号传输时间会增加,可能导致原始信号失真。

4.避免过短导线:过短的导线也可能引发一些问题,如噪声、串扰等。

通常导线长度至少应该为信号上升时间的三分之一5.接地技巧:为了减少地回路的电流噪声,应该尽量缩短接地回路路径,并通过增加地线来提高接地效果。

6.隔离高压部分:对于高压电路,应该采取隔离措施,避免对其他电路产生干扰和损坏。

7.注重信号完整性:对于高速和差分信号,应该特别注重信号完整性。

可以采用阻抗匹配和差分线布线等技术来提高信号传输的稳定性。

总结起来,PCB布线需要遵循一些基本原则,如简化布线、分区布线、差分线布线等,同时需要注意电源和信号的分离、射频干扰的减小等问题。

pcb布局布线技巧及原则(全面)

pcb布局布线技巧及原则(全面)

pcb布局布线技巧及原则[ 2020-11-16 0:19:00 | By: lanzeex ]PCB 布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。

定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8 mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。

pcb布线的术语解释

pcb布线的术语解释

PCB(Printed Circuit Board,印刷电路板)布线时涉及一些专业术语。

以下是几个常见的 PCB 布线术语及其解释:1.走线(Routing):指在 PCB 上布置电路连接的过程。

走线可以是手动进行的,也可以是通过自动布线工具实现的。

2.导线宽度(Trace Width):指 PCB 上导线的宽度。

导线宽度通常根据电流要求和 PCB 层数来确定,以确保足够的电流通过并避免过热。

3.间距(Spacing):指 PCB 上不同元件之间的距离。

间距通常是指导线之间或导线与元件之间的距离,用于确保电路的稳定性和可靠性。

4.平面(Plane):指 PCB 上连接到电源或地的大型铜区域。

平面通常用于提供稳定的电源和地连接,并作为信号屏蔽。

5.过孔(Via):指连接 PCB 不同层之间的通孔。

过孔可以是普通过孔,也可以是盲孔或埋孔,用于在多层 PCB 中进行信号传递。

6.阻抗控制(Impedance Control):指控制 PCB 中信号线的电阻。

阻抗控制在高速数字信号和射频电路设计中至关重要,可以确保信号传输的稳定性和可靠性。

7.差分对(Differential Pairs):指两条平行布线的信号线,用于传输差分信号。

差分对常用于高速数据传输和抗干扰设计。

8.盲孔(Blind Via):指连接 PCB 表面层和内部层的通孔,但不连接到 PCB的另一侧。

盲孔通常用于高密度的 PCB 布线设计。

9.埋孔(Buried Via):指完全位于 PCB 内部层中的通孔,不连接到 PCB 的任何一侧。

埋孔可以用于提高 PCB 布线的密度和可靠性。

这些术语是 PCB 布线设计过程中经常遇到的关键概念。

了解这些术语有助于工程师更好地理解 PCB 布线设计,并确保电路板的性能和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCB电路板PCB布线知识博客首页┆播客┆圈子┆美图┆专栏┆搜索┆帮助猪猪的BLOGhttp://blog.sina../homeofyanyan复制>收藏本页添加为友情链接博客首页个人首页┆管理博客┆我的文章┆我的相册┆我的圈子┆我的播客┆我的好友┆给我留言PROTEL元件封装2007-06-2316:38:49大中小电阻AXIAL0.30.4三极管TO-92AB电容RAD0.10.2发光二极管DZODE0.1单排针SIP+脚数双排针DIP+脚数电解电容RB.1.2。

}电阻AXIAL无极性电容RAD电解电容RB-电位器VR二极管DIODE三极管TO电源稳压块78和79系列TO-126H和TO-126V 场效应管和三极管一样整流桥D-44D-37D-46单排多针插座CONSIP双列直插元件DIP晶振XTAL1电阻:RES1,RES2,RES3,RES4;封装属性为axial系列无极性电容:cap;封装属性为RAD-0.1到rad-0.4电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0电位器:pot1,pot2;封装属性为vr-1到vr-5 二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率)三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有to126h和to126v整流桥:BRIDGE1,BRIDGE2:封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7其中0.4-0.7指电阻的长度,一般用AXIAL0.4瓷片电容:RAD0.1-RAD0.3。

其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8其中.1/.2-.4/.8指电容大小。

一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40,其中8-40指有多少脚,8脚的就是DIP8贴片电阻0603表示的是封装尺寸与具体阻值没有关系但封装尺寸与功率有关通常来说02011/20W04021/16W06031/10W08051/8W12061/4W电容电阻外形尺寸与封装的对应关系是: 0402=1.0x0.50603=1.6x0.80805=2.0x1.21206=3.2x1.61210=3.2x2.51812=4.5x3.22225=5.6x6.5零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。

是纯粹的空间概念因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装。

像电阻,有传统的针插式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD)这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD元件放上,即可焊接在电路板上了。

关于零件封装我们在前面说过,除了DEVICE。

LIB库中的元件外,其它库的元件都已经有了固定的元件封装,这是因为这个库中的元件都有多种形式:以晶体管为例说明一下:晶体管是我们常用的的元件之一,在DEVICE。

LIB库中,简简单单的只有NPN与PNP之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN的2N3054,则有可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-52等等,千变万化。

还有一个就是电阻,在DEVICE库中,它也是简单地把它们称为RES1和RES2,不管它是100Ω还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决定的我们选用的1/4W和甚至1/2W的电阻,都可以用AXIAL0.3元件封装,而功率数大一点的话,可用AXIAL0.4,AXIAL0.5等等。

现将常用的元件封装整理如下:电阻类及无极性双端元件AXIAL0.3-AXIAL1.0 无极性电容RAD0.1-RAD0.4有极性电容RB.2/.4-RB.5/1.0二极管DIODE0.4及DIODE0.7石英晶体振荡器XTAL1晶体管、FET、UJTTO-xxx(TO-3,TO-5)可变电阻(POT1、POT2)VR1-VR5当然,我们也可以打开C:\Client98\PCB98\library\advpcb.lib库来查找所用零件的对应封装。

这些常用的元件封装,大家最好能把它背下来,这些元件封装,大家可以把它拆分成两部分来记如电阻AXIAL0.3可拆成AXIAL和0.3,AXIAL翻译成中文就是轴状的,0.3则是该电阻在印刷电路板上的焊盘间的距离也就是300mil(因为在电机领域里,是以英制单位为主的。

同样的,对于无极性的电容,RAD0.1-RAD0.4也是一样;对有极性的电容如电解电容,其封装为R B.2/.4,RB.3/.6等,其中“.2”为焊盘间距,“.4”为电容圆筒的外径。

对于晶体管,那就直接看它的外形及功率,大功率的晶体管,就用TO—3,中功率的晶体管,如果是扁平的,就用TO-220,如果是金属壳的,就用TO-66,小功率的晶体管,就用TO-5 ,TO-46,TO-92A等都可以,反正它的管脚也长,弯一下也可以。

对于常用的集成IC电路,有DIPxx,就是双列直插的元件封装,DIP8就是双排,每排有4个引脚,两排间距离是300mil,焊盘间的距离是100mil。

SIPxx就是单排的封装。

等等。

值得我们注意的是晶体管与可变电阻,它们的包装才是最令人头痛的,同样的包装,其管脚可不一定一样。

例如,对于TO-92B之类的包装,通常是1脚为E(发射极),而2脚有可能是B极(基极),也可能是C(集电极);同样的,3脚有可能是C,也有可能是B,具体是那个,只有拿到了元件才能确定。

因此,电路软件不敢硬性定义焊盘名称(管脚名称),同样的,场效应管,MOS管也可以用跟晶体管一样的封装,它可以通用于三个引脚的元件。

Q1-B,在PCB里,加载这种网络表的时候,就会找不到节点(对不上)。

在可变电阻上也同样会出现类似的问题;在原理图中,可变电阻的管脚分别为1、W、及2,所产生的网络表,就是1、2和W,在PCB电路板中,焊盘就是1,2,3。

当电路中有这两种元件时,就要修改PCB与SCH之间的差异最快的方法是在产生网络表后,直接在网络表中,将晶博客|播客|论坛|圈子|相册体管管脚改为1,2,3;将可变电阻的改成与电路板元件外形一样的1,2,3即可。

文章引用自:引用阅读(12)圈子编辑打印有奖举报前一篇:相信未来后一篇:PROTEL原理图常用库文件:MiscellaneousDevices.ddb DallasMicroprocessor.ddb IntelDatabooks.ddb ProtelDOSSchematicLibraries.ddb PCB元件常用库:Advpcb.ddbGeneralIC.ddb Miscellaneous.ddb部分分立元件库元件名称及中英对照AND与门ANTENNA天线BATTERY直流电源BELL铃,钟BVC同轴电缆接插件BRIDEG1整流桥(二极管)BRIDEG2整流桥(集成块)BUFFER缓冲器BUZZER蜂鸣器CAP电容CAPACITOR电容CAPACITORPOL有极性电容CAPVAR可调电容CIRCUITBREAKER熔断丝COAX同轴电缆CON插口CRYSTAL晶体整荡器DB并行插口DIODE二极管DIODESCHOTTKY稳压二极管DIODEVARACTOR变容二极管DPY_3-SEG3段LEDDPY_7-SEG7段LEDDPY_7-SEG_DP7段LED(带小数点) ELECTRO电解电容FUSE熔断器INDUCTOR电感INDUCTORIRON带铁芯电感INDUCTOR3可调电感JFETNN沟道场效应管JFETPP沟道场效应管LAMP灯泡LAMPNEDN起辉器LED发光二极管METER仪表MICROPHONE麦克风MOSFETMOS管MOTORAC交流电机MOTORSERVO伺服电机NAND与非门NOR或非门NOT非门NPNNPN三极管NPN-PHOTO感光三极管OPAMP运放OR或门PHOTO感光二极管PNP三极管NPNDARNPN三极管PNPDARPNP三极管POT滑线变阻器PELAY-DPDT双刀双掷继电器RES1.2电阻RES3.4可变电阻RESISTORBRIDGE?桥式电阻RESPACK?电阻SCR晶闸管PLUG?插头PLUGACFEMALE三相交流插头SOCKET?插座SOURCECURRENT电流源SOURCEVOLTAGE电压源SPEAKER扬声器SW?开关SW-DPDY?双刀双掷开关SW-SPST?单刀单掷开关SW-PB按钮THERMISTOR电热调节器TRANS1变压器TRANS2可调变压器TRIAC?三端双向可控硅TRIODE?三极真空管VARISTOR变阻器ZENER?齐纳二极管DPY_7-SEG_DP数码管SW-PB开关74系列:74LS138TTL3-8线译码器/复工器74LS139TTL双2-4线译码器/复工器74LS14TTL六反相施密特触发器74LS145TTLBCD—十进制译码/驱动器74LS15TTL开路输出3输入端三与门74LS150TTL16选1数据选择/多路开关74LS151TTL8选1数据选择器74LS153TTL双4选1数据选择器74LS154TTL4线—16线译码器74LS155TTL图腾柱输出译码器/分配器74LS156TTL开路输出译码器/分配器74LS157TTL同相输出四2选1数据选择器74LS158TTL反相输出四2选1数据选择器74LS16TTL开路输出六反相缓冲/驱动器74LS160TTL可预置BCD异步清除计数器74LS161TTL可予制四位二进制异步清除计数器74LS162TTL可预置BCD同步清除计数器74LS163TTL可予制四位二进制同步清除计数器74LS164TTL八位串行入/并行输出移位寄存器74LS165TTL八位并行入/串行输出移位寄存器74LS166TTL八位并入/串出移位寄存器74LS169TTL二进制四位加/减同步计数器74LS17TTL开路输出六同相缓冲/驱动器74LS170TTL开路输出4×4寄存器堆74LS173TTL三态输出四位D型寄存器74LS174TTL带公共时钟和复位六D触发器74LS175TTL带公共时钟和复位四D触发器74LS180TTL9位奇数/偶数发生器/校验器74LS181TTL算术逻辑单元/函数发生器74LS185TTL二进制—BCD代码转换器74LS190TTLBCD同步加/减计数器74LS191TTL二进制同步可逆计数器74LS192TTL可预置BCD双时钟可逆计数器74LS193TTL可预置四位二进制双时钟可逆计数器74LS194TTL四位双向通用移位寄存器74LS195TTL四位并行通道移位寄存器74LS196TTL十进制/二-十进制可预置计数锁存器74LS197TTL二进制可预置锁存器/计数器74LS20TTL4输入端双与非门74LS21TTL4输入端双与门74LS22TTL开路输出4输入端双与非门74LS221TTL双/单稳态多谐振荡器74LS240TTL八反相三态缓冲器/线驱动器74LS241TTL八同相三态缓冲器/线驱动器74LS243TTL四同相三态总线收发器74LS244TTL八同相三态缓冲器/线驱动器74LS245TTL八同相三态总线收发器74LS247TTLBCD—7段15V输出译码/驱动器74LS248TTLBCD—7段译码/升压输出驱动器74LS249TTLBCD—7段译码/开路输出驱动器74LS251TTL三态输出8选1数据选择器/复工器74LS253TTL三态输出双4选1数据选择器/复工器74LS256TTL双四位可寻址锁存器74LS257TTL三态原码四2选1数据选择器/复工器74LS258TTL三态反码四2选1数据选择器/复工器74LS259TTL八位可寻址锁存器/3-8线译码器74LS26TTL2输入端高压接口四与非门74LS260TTL5输入端双或非门74LS266TTL2输入端四异或非门74LS27TTL3输入端三或非门74LS273TTL带公共时钟复位八D触发器74LS279TTL四图腾柱输出S-R锁存器74LS28TTL2输入端四或非门缓冲器74LS283TTL4位二进制全加器74LS290TTL二/五分频十进制计数器74LS293TTL二/八分频四位二进制计数器74LS295TTL四位双向通用移位寄存器74LS298TTL四2输入多路带存贮开关74LS299TTL三态输出八位通用移位寄存器74LS30TTL8输入端与非门74LS32TTL2输入端四或门74LS322TTL带符号扩展端八位移位寄存器74LS323TTL三态输出八位双向移位/存贮寄存器74LS33TTL开路输出2输入端四或非缓冲器74LS347TTLBCD—7段译码器/驱动器74LS352TTL双4选1数据选择器/复工器74LS353TTL三态输出双4选1数据选择器/复工器74LS365TTL门使能输入三态输出六同相线驱动器74LS365TTL门使能输入三态输出六同相线驱动器74LS366TTL门使能输入三态输出六反相线驱动器74LS367TTL4/2线使能输入三态六同相线驱动器74LS368TTL4/2线使能输入三态六反相线驱动器74LS37TTL开路输出2输入端四与非缓冲器74LS373TTL三态同相八D锁存器74LS374TTL三态反相八D锁存器74LS375TTL4位双稳态锁存器74LS377TTL单边输出公共使能八D锁存器74LS378TTL单边输出公共使能六D锁存器74LS379TTL双边输出公共使能四D锁存器74LS38TTL开路输出2输入端四与非缓冲器74LS380TTL多功能八进制寄存器74LS39TTL开路输出2输入端四与非缓冲器74LS390TTL双十进制计数器74LS393TTL双四位二进制计数器74LS40TTL4输入端双与非缓冲器74LS42TTLBCD—十进制代码转换器74LS352TTL双4选1数据选择器/复工器74LS353TTL三态输出双4选1数据选择器/复工器74LS365TTL门使能输入三态输出六同相线驱动器74LS366TTL门使能输入三态输出六反相线驱动器74LS367TTL4/2线使能输入三态六同相线驱动器74LS368TTL4/2线使能输入三态六反相线驱动器74LS37TTL开路输出2输入端四与非缓冲器74LS373TTL三态同相八D锁存器74LS374TTL三态反相八D锁存器74LS375TTL4位双稳态锁存器74LS377TTL单边输出公共使能八D锁存器74LS378TTL单边输出公共使能六D锁存器74LS379TTL双边输出公共使能四D锁存器74LS38TTL开路输出2输入端四与非缓冲器74LS380TTL多功能八进制寄存器74LS39TTL开路输出2输入端四与非缓冲器74LS390TTL双十进制计数器74LS393TTL双四位二进制计数器74LS40TTL4输入端双与非缓冲器74LS42TTLBCD—十进制代码转换器74LS447TTLBCD—7段译码器/驱动器74LS45TTLBCD—十进制代码转换/驱动器74LS450TTL16:1多路转接复用器多工器74LS451TTL双8:1多路转接复用器多工器74LS453TTL四4:1多路转接复用器多工器74LS46TTLBCD—7段低有效译码/驱动器74LS460TTL十位比较器74LS461TTL八进制计数器74LS465TTL三态同相2与使能端八总线缓冲器74LS466TTL三态反相2与使能八总线缓冲器74LS467TTL三态同相2使能端八总线缓冲器74LS468TTL三态反相2使能端八总线缓冲器74LS469TTL八位双向计数器74LS47TTLBCD—7段高有效译码/驱动器74LS48TTLBCD—7段译码器/内部上拉输出驱动74LS490TTL双十进制计数器74LS491TTL十位计数器74LS498TTL八进制移位寄存器74LS50TTL2-3/2-2输入端双与或非门74LS502TTL八位逐次逼近寄存器74LS503TTL八位逐次逼近寄存器74LS51TTL2-3/2-2输入端双与或非门74LS533TTL三态反相八D锁存器74LS534TTL三态反相八D锁存器74LS54TTL四路输入与或非门74LS540TTL八位三态反相输出总线缓冲器74LS55TTL4输入端二路输入与或非门74LS563TTL八位三态反相输出触发器74LS564TTL八位三态反相输出D触发器74LS573TTL八位三态输出触发器74LS574TTL八位三态输出D触发器74LS645TTL三态输出八同相总线传送接收器74LS670TTL三态输出4×4寄存器堆74LS73TTL带清除负触发双J-K触发器74LS74TTL带置位复位正触发双D触发器74LS76TTL带预置清除双J-K触发器74LS83TTL四位二进制快速进位全加器74LS85TTL四位数字比较器74LS86TTL2输入端四异或门74LS90TTL可二/五分频十进制计数器74LS93TTL可二/八分频二进制计数器74LS95TTL四位并行输入\\输出移位寄存器74LS97TTL6位同步二进制乘法器PCB布线技术今天刚到这里注册,看到不少弟兄的帖子,感觉没有对PCB有一个系统的、合理的设计流程。

相关文档
最新文档