命题及其关系
命题及其关系

命题及其关系、充分条件与必要条件专项训练自主梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q(p⇒q);逆命题:若q则p(q⇒p);否命题:若綈p则綈q(綈p⇒綈q);逆否命题:若綈q则綈p(綈q⇒綈p).(2)四种命题间的关系(3)四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p⇒q,则p叫做q的充分条件;若q⇒p,则p叫做q的必要条件;如果p⇔q,则p 叫做q的充要条件.自我检测1.(2010·湖南)下列命题中的假命题是()A.∃x∈R,lg x=0 B.∃x∈R,tan x=1C.∀x∈R,x3>0 D.∀x∈R,2x>0答案 C解析对于C选项,当x=0时,03=0,因此∀x∈R,x3>0是假命题.2.(2010·陕西)“a>0”是“|a|>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析a>0⇒|a|>0,|a|>0 a>0,∴“a>0”是“|a|>0”的充分不必要条件.3.(2009·浙江)“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析对于“x>0”⇒“x≠0”,反之不一定成立,因此“x>0”是“x≠0”的充分而不必要条件.4.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题答案 C解析由四种命题逆否关系知,s是p的逆命题t的否命题.5.(2011·宜昌模拟)与命题“若a∈M,则b∉M”等价的命题是()A.若a∉M,则b∉MB.若b∉M,则a∈MC.若a∉M,则b∈MD.若b∈M,则a∉M答案 D解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.探究点一四种命题及其相互关系例1写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)弦的垂直平分线经过圆心,并平分弦所对的弧.解题导引给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题.(3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.变式迁移1有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.答案①③解析①的逆命题是“若x,y互为相反数,则x+y=0”,真;②的否命题是“不全等的三角形的面积不相等”,假;③若q≤1,则Δ=4-4q≥0,所以x2+2x+q=0有实根,其逆否命题与原命题是等价命题,真;④的逆命题是“三个内角相等的三角形是不等边三角形”,假.探究点二充要条件的判断例2给出下列命题,试分别指出p是q的什么条件.(1)p:x-2=0;q:(x-2)(x-3)=0.(2)p:两个三角形相似;q:两个三角形全等.(3)p :m <-2;q :方程x 2-x -m =0无实根.(4)p :一个四边形是矩形;q :四边形的对角线相等.解 (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0x -2=0.∴p 是q 的充分不必要条件.(2)∵两个三角形相似两个三角形全等;但两个三角形全等⇒两个三角形相似.∴p 是q 的必要不充分条件.(3)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根m <-2.∴p 是q 的充分不必要条件.(4)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形,∴q p .∴p 是q 的充分不必要条件.变式迁移2 (2011·邯郸月考)下列各小题中,p 是q 的充要条件的是( )①p :m <-2或m >6;q :y =x 2+mx +m +3有两个不同的零点;②p :f (-x )f (x )=1;q :y =f (x )是偶函数; ③p :cos α=cos β;q :tan α=tan β;④p :A ∩B =A ;q :∁U B ⊆∁U A .A .①②B .②③C .③④D .①④答案 D解析 ①q :y =x 2+mx +m +3有两个不同的零点⇔q :Δ=m 2-4(m +3)>0⇔q :m <-2或m >6⇔p ;②当f (x )=0时,由q p ;③若α,β=k π+π2,k ∈Z 时,显然cos α=cos β,但tan α≠tan β;④p :A ∩B =A ⇔p :A ⊆B ⇔q :∁U A ⊇∁U B .故①④符合题意.探究点三 充要条件的证明例3 设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.解题导引 有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证明命题的充分性,由“结论”⇒“条件”是证明命题的必要性.证明要分两个环节:一是充分性;二是必要性.证明 (1)必要性:设方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根x 0,则x 20+2ax 0+b 2=0,x 20+2cx 0-b 2=0,两式相减可得x 0=b 2c -a,将此式代入x 20+2ax 0+b 2=0, 可得b 2+c 2=a 2,故∠A =90°,(2)充分性:∵∠A =90°,∴b 2+c 2=a 2,b 2=a 2-c 2.①将①代入方程x 2+2ax +b 2=0,可得x 2+2ax +a 2-c 2=0,即(x +a -c )(x +a +c )=0.将①代入方程x 2+2cx -b 2=0,可得x 2+2cx +c 2-a 2=0,即(x +c -a )(x +c +a )=0.故两方程有公共根x =-(a +c ).所以方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.变式迁移3 已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.证明 (1)必要性:∵a +b =1,∴a +b -1=0.∴a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2)=0.(2)充分性:∵a 3+b 3+ab -a 2-b 2=0,即(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,∴a ≠0且b ≠0.∵a 2-ab +b 2=(a -b 2)2+34b 2>0. ∴a +b -1=0,即a +b =1.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.转化与化归思想的应用 例 (12分)已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,且m ∈Z .求两方程的根都是整数的充要条件.【答题模板】解 ∵mx 2-4x +4=0是一元二次方程,∴m ≠0. [2分] 另一方程为x 2-4mx +4m 2-4m -5=0,两方程都要有实根,∴⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0, 解得m ∈[-54,1]. [6分] ∵两根为整数,故和与积也为整数, ∴⎩⎪⎨⎪⎧ 4m ∈Z 4m ∈Z 4m 2-4m -5∈Z ,∴m 为4的约数, [8分]∴m =-1或1,当m =-1时,第一个方程x 2+4x -4=0的根为非整数,而当m =1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m =1. [12分]【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想Δ≥0.求出m 的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数.【易错点剖析】易忽略一元二次方程这个条件隐含着m ≠0,不易把方程的根都是整数转化为两根之和与两根之积都是整数.1.研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果……,那么……”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性.2.在解决充分条件、必要条件等问题时,要给出p 与q 是否可以相互推出的两次判断,同时还要弄清是p 对q 而言,还是q 对p 而言.还要分清否命题与命题的否定的区别.3.本节体现了转化与化归的数学思想.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·天津模拟)给出以下四个命题:①若ab ≤0,则a ≤0或b ≤0;②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .④答案 C解析 对命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对命题②,其原命题和逆否命题为假,但逆命题和否命题为真;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④,其原命题、逆命题、否命题、逆否命题全部为假.2.(2010·浙江)设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 ∵0<x <π2,∴0<sin x <1. ∴x sin x <1⇒x sin 2x <1,而x sin 2x <1x sin x <1.故 选B.3.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos 2α=12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由α=π6+2k π(k ∈Z )可得到cos 2α=12. 由cos 2α=12得2α=2k π±π3(k ∈Z ). ∴α=k π±π6(k ∈Z ). 所以cos 2α=12不一定得到α=π6+2k π(k ∈Z ). 4.(2011·威海模拟)关于命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题,下列结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真答案 D解析 本题考查四种命题之间的关系及真假判断.对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上.因此否命题也是假命题.5.(2011·枣庄模拟)集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 A ={x |-4≤x ≤4},若A ⊆B ,则a >4,a >4a >5,但a >5⇒a >4.故选B.二、填空题(每小题4分,共12分)6.“x 1>0且x 2>0”是“x 1+x 2>0且x 1x 2>0”的________条件.答案 充要7.(2011·惠州模拟)已知p :(x -1)(y -2)=0,q :(x -1)2+(y -2)2=0,则p 是q 的 ____________条件.答案 必要不充分解析 由(x -1)(y -2)=0得x =1或y =2,由(x -1)2+(y -2)2 =0得x =1且y =2,所以由q 能推出p ,由p 推不出q, 所以填必要不充分条件.8.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又因为p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是3≤m <8.三、解答题(共38分)9.(12分)(2011·许昌月考)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若q <1,则方程x 2+2x +q =0有实根;(2)若ab =0,则a =0或b =0;(3)若x 2+y 2=0,则x 、y 全为零.解 (1)逆命题:若方程x 2+2x +q =0有实根,则q <1,为假命题.否命题:若q ≥1,则方程x 2+2x +q =0无实根,为假命题.逆否命题:若方程x 2+2x +q =0无实根,则q ≥1,为真命题.(4分)(2)逆命题:若a =0或b =0,则ab =0,为真命题.否命题:若ab ≠0,则a ≠0且b ≠0,为真命题.逆否命题:若a ≠0且b ≠0,则ab ≠0,为真命题.(8分)(3)逆命题:若x 、y 全为零,则x 2+y 2=0,为真命题.否命题:若x 2+y 2≠0,则x 、y 不全为零,为真命题.逆否命题:若x 、y 不全为零,则x 2+y 2≠0,为真命题.(12分)10.(12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},(2分)B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.(4分)∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p 綈q .则{x |綈q }Ø{x |綈p },(6分)而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0},∴{x |-4≤x <-2}Ø{x |x ≤3a 或x ≥a ,a <0},(10分)则⎩⎪⎨⎪⎧ 3a ≥-2,a <0或⎩⎪⎨⎪⎧a ≤-4,a <0.(11分) 综上,可得-23≤a <0或x ≤-4.(12分)11.(14分)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.(2分)当n ≥2时,a n =S n -S n -1=p n -1(p -1).当n =1时也成立.(4分)于是a n +1a n =p n (p -1)p n -1(p -1)=p (n ∈N *), 即数列{a n }为等比数列.(6分)必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1).∵p ≠0,p ≠1,∴a n +1a n =p n (p -1)p n 1(p -1)=p .(10分) ∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,即p (p -1)p +q=p , 即p -1=p +q .∴q =-1.(13分)综上所述,q =-1是数列{a n }为等比数列的充要条件.(14分)。
四种命题及其关系

对所有x, 存在某x, 对任何x 对所有x, 存在某 , 对任何x, 成立 不成立 不成立 P且 q
┐p或┐q 或
P或 q
┐p且┐q 且
条
原命题 逆命题 否命题
件
结论
两直线平行 同位角相等
同位角相等, 同位角相等, 两直线平行, 两直线平行,
同位角不相等, 两直线不平行 同位角不相等,
两直线不平行, 逆否命题 两直线不平行, 同位角不相等 互为逆否命题:一个命题的条件 结论分别是另一个 互为逆否命题:一个命题的条件和结论分别是另一个 条件和 命题的结论的否定 条件的否定, 结论的否定和 命题的结论的否定和条件的否定, 互为逆否命题。 这两个命题叫做互为逆否命题 这两个命题叫做互为逆否命题。 其中一个命题叫做原命题。 原 命 题:其中一个命题叫做原命题。 另一个命题叫做原命题的逆否命题。 逆否 命 题:另一个命题叫做原命题的逆否命题。 逆否命题:若 逆否命题 若┐q ,则┐ p 则 原命题: p,则 原命题:若p,则q
条
原命题 逆命题 否命题
件
结论
若f(x)是正弦函数,则f(x)是周期函数; f(x)是正弦函数 是正弦函数, f(x)是周期函数 是周期函数; 若f(x)是周期函数,则f(x)是正弦函数; f(x)是周期函数 是周期函数, f(x)是正弦函数 是正弦函数; 若f(x)不是正弦函数,则f(x)不是周期函数; f(x)不是正弦函数 不是正弦函数, f(x)不是周期函数 不是周期函数;
例: “若x2+y2≠0,则x,y至少有一个不为0” ≠0, 至少有一个不为0” 是命题A的否命题,写出命题A及其逆命题、 是命题A的否命题,写出命题A及其逆命题、 逆否命题并判断它们的真假。 逆否命题并判断它们的真假。
命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.考点一 四种命题及其真假判断[典例] (2019·菏泽模拟)有以下命题: ①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的两个三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题是( ) A .①② B .②③ C .④D .①②③[解析] ①原命题的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;②原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;③若m ≤1,Δ=4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A ∩B =B ,得B ⊆A ,所以原命题是假命题,故其逆否命题也是假命题,故①②③正确.[答案] D [题组训练]1.(2019·长春质监)命题“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1解析:选D 命题的形式是“若p ,则q ”,由逆否命题的知识,可知其逆否命题是“若非q ,则非p ”的形式,所以“若x 2<1,则-1<x <1”的逆否命题是“若x ≥1或x ≤-1,则x 2≥1”.2.已知集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k +12,k ∈Z ,Q =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k2,k ∈Z ,记原命题:“x ∈P ,则x ∈Q ”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 因为P =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k +12,k ∈Z =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =2k +12,k ∈Z ,Q =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k2,k ∈Z ,所以P Q ,所以原命题“x ∈P ,则x ∈Q ”为真命题,则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题, 则原命题的否命题为假命题,所以真命题的个数为2.考点二 充分、必要条件的判断[典例] (1)(2019·湖北八校联考)若a ,b ,c ,d ∈R ,则“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件(3)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[解析] (1)定义法当a =-1,b =0,c =3,d =4时,a +d =b +c ,但此时a ,b ,c ,d 不成等差数列;而当a ,b ,c ,d 依次成等差数列时,由等差数列的性质知a +d =b +c .所以“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的必要不充分条件,故选B.(2)集合法由⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1, 当x ≤0时,⎪⎪⎪⎪x -12≥12, 即“x 3<1”“⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件. (3)等价转化法因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以非p :x +y =-2,非q :x =-1且y =-1,因为非q ⇒非p 但非p非q ,所以非q 是非p 的充分不必要条件,即p 是q 的充分不必要条件.[答案] (1)B (2)A (3)A[提醒] 判断条件之间的关系要注意条件之间关系的方向,要注意“A 是B 的充分不必要条件”与“A 的充分不必要条件是B ”的区别,要正确理解“p 的一个充分不必要条件是q ”的含义.[题组训练]1.[集合法]已知x ∈R ,则“x <1”是“x 2<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若x 2<1,则-1<x <1,∵(-∞,1)⊇(-1,1),∴“x <1”是“x 2<1”的必要不充分条件.2.[定义法](2018·南昌调研)已知m ,n 为两个非零向量,则“m·n <0”是“m 与n 的夹角为钝角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 设m ,n 的夹角为θ,若m ,n 的夹角为钝角,则π2<θ<π,则cos θ<0,则m·n <0成立;当θ=π时,m·n =-|m |·|n |<0成立,但m ,n 的夹角不为钝角.故“m·n <0”是“m 与n 的夹角为钝角”的必要不充分条件.3.[等价转化法]“xy ≠1”是“x ≠1或y ≠1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 设p :xy ≠1,q :x ≠1或y ≠1, 则非p :xy =1,非q :x =1且y =1. 可知非q ⇒非p ,非p非q ,即非q 是非p 的充分不必要条件.故p 是q 的充分不必要条件,即“xy ≠1”是“x ≠1或y ≠1”的充分不必要条件.考点三 根据充分、必要条件求参数的范围[典例] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围是________.[解析] 由x 2-8x -20≤0,得-2≤x ≤10,所以P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [答案] [0,3][变透练清]1.[变结论]若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S , 所以{ 1-m =-2,+m =10,解得{ m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.(变条件)若本例将条件“若x ∈P 是x ∈S 的必要条件”变为“若非P 是非S 的必要不充分条件”,其他条件不变,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10}, ∵非P 是非S 的必要不充分条件, ∴S 是P 的必要不充分条件,∴P ⇒S 且S P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10. ∴m ≥9,即m 的取值范围是[9,+∞).[课时跟踪检测]1.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定解析:选B 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.2.命题“若x 2+3x -4=0,则x =4”的逆否命题及其真假性为( ) A .“若x =4,则x 2+3x -4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.3.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假解析:选B当z1,z2互为共轭复数时,设z1=a+b i(a,b∈R),则z2=a-b i,则|z1|=|z2|=a2+b2,所以原命题为真,故其逆否命题为真.取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,所以其逆命题为假,故其否命题也为假.4.(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.5.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③解析:选A本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.6.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选C由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b .因为a ,b 均为单位向量,所以a 2=b 2=1, 所以a ·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 7.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.8.(2019·湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1解析:选C 若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0.9.在△ABC 中,“A =B ”是“tan A =tan B ”的________条件.解析:由A =B ,得tan A =tan B ,反之,若tan A =tan B ,则A =B +k π,k ∈Z.∵0<A <π,0<B <π,∴A =B ,故“A =B ”是“tan A =tan B ”的充要条件.答案:充要10.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:311.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3. 又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围为[3,8). 答案:[3,8)12.(2019·齐鲁名校调研)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 以上说法正确的是________(填序号).解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y=π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p ∨q 真⇔p ,q 至少一个真⇔(非p )∧(非q)假. (2)p ∨q 假⇔p ,q 均假⇔(非p )∧(非q)真. (3)p ∧q 真⇔p ,q 均真⇔(非p )∨(非q)假. (4)p ∧q 假⇔p ,q 至少一个假⇔(非p )∨(非q)真. 考点一 判断含有逻辑联结词命题的真假[典例] (1)(2017·山东高考)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧非qC .非p ∧qD .非p ∧非q(2)(2019·安徽安庆模拟)设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的是( )A .p ∧(非q )B .(非p )∧qC .p ∧qD .(非p )∨q[解析] (1)当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.由复合命题的真假性,知B 为真命题.(2)对于命题p ,当x 0=4时,x 0+1x 0=174>3,故命题p 为真命题;对于命题q ,当x =4时,24=42=16,即∃x0∈(2,+∞),使得2x0=x20成立,故命题q为假命题,所以p∧(非q)为真命题,故选A.[答案](1)B(2)A[题组训练]1.(2019·惠州调研)已知命题p,q,则“非p为假命题”是“p∧q是真命题”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B充分性:若非p为假命题,则p为真命题,由于不知道q的真假性,所以推不出p∧q是真命题.必要性:p∧q是真命题,则p,q均为真命题,则非p为假命题.所以“非p为假命题”是“p∧q是真命题”的必要不充分条件.2.已知命题p:“若x2-x>0,则x>1”;命题q:“若x,y∈R,x2+y2=0,则xy=0”.下列命题是真命题的是()A.p∨(非q) B.p∨qC.p∧q D.(非p)∧(非q)解析:选B若x2-x>0,则x>1或x<0,故p是假命题;若x,y∈R,x2+y2=0,则x =0,y=0,xy=0,故q是真命题.则p∨q是真命题.考点二全称命题与特称命题[典例](1)命题∀x∈R,e x-x-1≥0的否定是()A.∀x∈R,e x-x-1≤0B.∀x∈R,e x-x-1≥0C.∃x0∈R,e x0-x0-1≤0D.∃x0∈R,e x0-x0-1<0(2)对命题∃x0>0,x20>2x0,下列说法正确的是()A.真命题,其否定是∃x0≤0,x20≤2x0B.假命题,其否定是∀x>0,x2≤2xC.真命题,其否定是∀x>0,x2≤2xD.真命题,其否定是∀x≤0,x2≤2x[解析](1)改全称量词为存在量词,把不等式中的大于或等于改为小于.故选D.(2)已知命题是真命题,如32=9>8=23,其否定是∀x>0,x2≤2x.故选C.[答案](1)D(2)C[题组训练]1.命题“∀x∈R,∃n∈N*,使得n≤x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n>x2B.∀x∈R,∀n∈N*,使得n>x2C.∃x0∈R,∃n∈N*,使得n>x20D.∃x0∈R,∀n∈N*,使得n>x20解析:选D∀改写为∃,∃改写为∀,n≤x2的否定是n>x2,则该命题的否定形式为“∃x0∈R,∀n∈N*,使得n>x20”.2.已知命题p:∃n∈R,使得f(x)=nxn2+2n是幂函数,且在(0,+∞)上单调递增;命题q:“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2<3x”.则下列命题为真命题的是()A.p∧q B.(非p)∧qC.p∧(非q) D.(非p)∧(非q)解析:选C当n=1时,f(x)=x3为幂函数,且在(0,+∞)上单调递增,故p是真命题,则非p是假命题;“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2≤3x”,故q是假命题,非q是真命题.所以p∧q,(非p)∧q,(非p)∧(非q)均为假命题,p∧(非q)为真命题,选C.考点三根据命题的真假求参数的取值范围[典例]已知p:存在x0∈R,mx20+1≤0,q:任意x∈R,x2+mx+1>0.若p或q为假命题,求实数m的取值范围.[解]依题意知p,q均为假命题,当p是假命题时,则mx2+1>0恒成立,则有m≥0;当q是真命题时,则Δ=m2-4<0,-2<m<2.因此由p,q均为假命题得{m≥0,m≤-2或m≥2,即m≥2.所以实数m的取值范围为[2,+∞).[变透练清]1.(变条件)若本例将条件“p或q为假命题”变为“p且q为真命题”,其他条件不变,则实数m的取值范围为________.解析:依题意,当p 是真命题时,有m <0;当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 所以m 的取值范围为(-2,0).答案:(-2,0)2.(变条件)若本例将条件“p 或q 为假命题”变为“p 且q 为假,p 或q 为真”,其他条件不变,则实数m 的取值范围为________.解析:若p 且q 为假,p 或q 为真,则p ,q 一真一假.当p 真q 假时⎩⎪⎨⎪⎧ m <0,m ≥2或m ≤-2,所以m ≤-2; 当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2. 所以m 的取值范围为(-∞,-2]∪[0,2).答案:(-∞,-2]∪[0,2)3.(变条件)若本例将条件q 变为:存在x 0∈R ,x 20+mx 0+1<0,其他条件不变,则实数m的取值范围为________.解析:依题意,当q 是真命题时,Δ=m 2-4>0,所以m >2或m <-2.由⎩⎪⎨⎪⎧m ≥0,-2≤m ≤2,得0≤m ≤2, 所以m 的取值范围为[0,2].答案:[0,2][课时跟踪检测]1.(2019·西安摸底)命题“∀x >0,x x -1>0”的否定是( ) A .∃x 0≥0,x 0x 0-1≤0 B .∃x 0>0,0≤x 0≤1 C .∀x >0,x x -1≤0 D .∀x <0,0≤x ≤1解析:选B ∵x x -1>0,∴x <0或x >1,∴x x -1>0的否定是0≤x ≤1, ∴命题的否定是“∃x 0>0,0≤x 0≤1”.2.下列命题中,假命题的是( )A .∀x ∈R,21-x >0 B .∃a 0∈R ,y =xa 0的图象关于y 轴对称C .函数y =x a 的图象经过第四象限D .直线x +y +1=0与圆x 2+y 2=12相切 解析:选C 对于A ,由指数函数的性质可知为真命题;对于B ,当a =2时,其图象关于y 轴对称;对于C ,当x >0时,y >0恒成立,从而图象不过第四象限,故为假命题;对于D ,因为圆心(0,0)到直线x +y +1=0的距离等于12,等于圆的半径,命题成立. 3.(2019·陕西质检)已知命题p :对任意的x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .(非p )∧(非q)C .(非p )∧qD .p ∧(非q)解析:选D 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 为假命题.由复合命题真值表可知p ∧(非q)为真命题.4.(2018·湘东五校联考)下列说法中正确的是( )A .“a >1,b >1”是“ab >1”成立的充分条件B .命题p :∀x ∈R,2x >0,则非p :∃x 0∈R,2x0<0C .命题“若a >b >0,则1a <1b”的逆命题是真命题 D .“a >b ”是“a 2>b 2”成立的充分不必要条件解析:选A 对于选项A ,由a >1,b >1,易得ab >1,故A 正确.对于选项B ,全称命题的否定是特称命题,所以命题p :∀x ∈R,2x >0的否定是非p :∃x 0∈R,2x 0≤0,故B 错误.对于选项C ,其逆命题:若1a <1b,则a >b >0,可举反例,如a =-1,b =1,显然是假命题,故C 错误.对于选项D ,由“a >b ”并不能推出“a 2>b 2”,如a =1,b =-1,故D 错误.故选A.5.(2019·唐山五校联考)已知命题p :“a >b ”是“2a >2b ”的充要条件;命题q :∃x 0∈R ,|x 0+1|≤x 0,则( )A .(非p )∨q 为真命题B .p ∧(非q)为假命题C .p ∧q 为真命题D .p ∨q 为真命题 解析:选D 由题意可知命题p 为真命题.因为|x +1|≤x 的解集为空集,所以命题q 为假命题,所以p ∨q 为真命题.6.下列说法错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若命题p :存在x 0∈R ,x 20+x 0+1<0,则非p :对任意x ∈R ,x 2+x +1≥0C .若x ,y ∈R ,则“x =y ”是“xy ≥⎝⎛⎭⎫x +y 22”的充要条件D .已知命题p 和q ,若“p 或q ”为假命题,则命题p 与q 中必一真一假解析:选D 由原命题与逆否命题的关系,知A 正确;由特称命题的否定知B 正确;由xy ≥⎝⎛⎭⎫x +y 22⇔4xy ≥(x +y )2⇔4xy ≥x 2+y 2+2xy ⇔(x -y )2≤0⇔x =y ,知C 正确;对于D ,命题“p 或q ”为假命题,则命题p 与q 均为假命题,所以D 不正确.7.(2019·长沙模拟)已知命题“∀x ∈R ,ax 2+4x +1>0”是假命题,则实数a 的取值范围是( )A .(4,+∞)B .(0,4]C .(-∞,4]D .[0,4)解析:选C 当原命题为真命题时,a >0且Δ<0,所以a >4,故当原命题为假命题时,a ≤4.8.下列命题为假命题的是( )A .存在x >y >0,使得ln x +ln y <0B .“φ=π2”是“函数y =sin(2x +φ)为偶函数”的充分不必要条件 C .∃x 0∈(-∞,0),使3x 0<4x 0成立D .已知两个平面α,β,若两条异面直线m ,n 满足m ⊂α,n ⊂β且m ∥β,n ∥α,则α∥β解析:选C 对于A 选项,令x =1,y =1e,则ln x +ln y =-1<0成立,故排除A.对于B 选项,“φ=π2”是“函数y =sin(2x +φ)为偶函数”的充分不必要条件,正确,故排除B.对于C 选项,根据幂函数y =x α,当α<0时,函数单调递减,故不存在x 0∈(-∞,0),使3x 0<4x 0成立,故C 错误.对于D 选项,已知两个平面α,β,若两条异面直线m ,n 满足m ⊂α,n ⊂β且m ∥β,n ∥α,可过n 作一个平面与平面α相交于直线n ′.由线面平行的性质定理可得n ′∥n ,再由线面平行的判定定理可得n ′∥β,接下来由面面平行的判定定理可得α∥β,故排除D ,选C.9.若命题p 的否定是“∀x ∈(0,+∞),x >x +1”,则命题p 可写为________________________.解析:因为p 是非p 的否定,所以只需将全称量词变为特称量词,再对结论否定即可. 答案:∃x 0∈(0,+∞),x 0≤x 0+110.已知命题p :x 2+4x +3≥0,q :x ∈Z ,且“p ∧q ”与“非q ”同时为假命题,则 x =________.解析:若p 为真,则x ≥-1或x ≤-3,因为“非q ”为假,则q 为真,即x ∈Z ,又因为“p ∧q ”为假,所以p 为假,故-3<x <-1,由题意,得x =-2.答案:-211.已知p :a <0,q :a 2>a ,则非p 是非q 的________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).解析:由题意得非p :a ≥0,非q :a 2≤a ,即0≤a ≤1.因为{a |0≤a ≤1}{a |a ≥0},所以非p 是非q 的必要不充分条件.答案:必要不充分12.已知命题p :a 2≥0(a ∈R),命题q :函数f (x )=x 2-x 在区间[0,+∞)上单调递增,则下列命题:①p ∨q ;②p ∧q ;③(非p )∧(非q);④(非p )∨q.其中为假命题的序号为________.解析:显然命题p 为真命题,非p 为假命题.∵f (x )=x 2-x =⎝⎛⎭⎫x -122-14, ∴函数f (x )在区间⎣⎡⎭⎫12,+∞上单调递增.∴命题q 为假命题,非q 为真命题.∴p ∨q 为真命题,p ∧q 为假命题,(非p )∧(非q)为假命题,(非p )∨q 为假命题. 答案:②③④13.设t ∈R ,已知命题p :函数f (x )=x 2-2tx +1有零点;命题q :∀x ∈[1,+∞), 1x-x ≤4t 2-1.(1)当t =1时,判断命题q 的真假;(2)若p ∨q 为假命题,求t 的取值范围.解:(1)当t =1时,⎝⎛⎭⎫1x -x max =0,1x-x ≤3在[1,+∞)上恒成立,故命题q 为真命题. (2)若p ∨q 为假命题,则p ,q 都是假命题.当p 为假命题时,Δ=(-2t )2-4<0,解得-1<t <1;当q 为真命题时,⎝⎛⎭⎫1x -x max ≤4t 2-1,即4t 2-1≥0, 解得t ≤-12或t ≥12, ∴当q 为假命题时,-12<t <12, ∴t 的取值范围是⎝⎛⎭⎫-12,12.。
四种命题及其关系

四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。
2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。
对于上面的例子,其逆命题为“若x^2=1,则x = 1”。
3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。
对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。
4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。
对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。
二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。
原命题为真时,逆命题不一定为真。
例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。
2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。
例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。
3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。
例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。
4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。
例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。
高中数学常用逻辑用语:命题及其关系

常用逻辑用语:命题及其关系要求层次重难点 “若p ,则q ”形式的命题及其逆命题、否命题与逆否命题A 理解四种命题的相互关系;掌握充要条件的判定四种命题的相互关系B 充要条件C(一) 知识内容1.对于“如果p ,则q ”形式的命题,p 称为命题的条件,q 称为命题的结论.定理:经过证明为真的命题.当命题“如果p ,则q ”经过推理证明断定是真命题时,我们就说则p 可以推出q ,记作p q ,读作“p 推出q ”.2.命题的四种形式:命题“如果p ,则q ”是由条件p 和结论q 组成的,对p q ,进行“换位”和“换质(否定)”后,可以构成四种不同形式的命题. ⑴原命题:如果p ,则q ; ⑵原命题的逆命题:如果q ,则p ; ⑶原命题的否命题:如果非p ,则非q ; ⑷原命题的逆否命题:如果非q ,则非p .否逆为互逆为互否互否互逆互否互逆如果非q ,则非p如果非p ,则非q如果 q,则 p如果 p,则 q3.命题“如果p ,则q ”的四种形式之间有如下关系:⑴互为逆否命题的两个命题等价(同真或同假).因此证明原命题,也可以改证它的逆否命题.例题精讲高考要求常用逻辑用语:命题及其关系板块一:命题的四种形式⑵互逆或互否的两个命题不等价.<教师备案>注意命题的否定与否命题之间的区别,前者是命题的反面,且与命题的真假恰好相反;后者是对条件与结论同时进行否定,它的真假与原命题的真假没有绝对的联系.(二)典例分析【例1】 判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】 判断下列命题的真假.⑴空间中两条不平行的直线一定相交; ⑵垂直于同一个平面的两个平面互相垂直; ⑶每一个周期函数都有最小正周期; ⑷两个无理数的乘积一定是无理数; ⑸若A B ,则A B B ≠;⑹若1m >,则方程220x x m -+=无实数根. ⑺已知a b c d ∈R ,,,,若a c ≠或b d ≠,则a b c d +≠+; ⑻已知a b c d ∈R ,,,,a b c d +≠+,则a c ≠或b d ≠.【例3】 设语句()p x :πcos()sin 2x x +=-,写出π()3p ,并判断它是不是真命题;【例4】 下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( ) A .0个 B .1个 C .2个 D .3个【例5】 如果两个三角形全等,那么它们的面积相等; ①如果两个三角形的面积相等,那么它们全等; ② 如果两个三角形不全等,那么它们的面积不相等; ③ 如果两个三角形的面积不相等,那么它们不全等; ④ 命题②、③、④与命题①有何关系?【例6】 写出下列命题的否命题,并判断否命题的真假.⑴命题p :“若0,ac ≥则二次方程20ax bx c ++=没有实根”; ⑵命题q :“若x a ≠且x b ≠,则2()0x a b x ab -++≠”; ⑶命题r :“若(1)(2)0x x --=,则1x =或2x =”.⑷命题l :“ABC ∆中,若90C ︒∠=,则A ∠、B ∠都是锐角”; ⑸命题s :“若0abc =,则a b c ,,中至少有一个为零”.【例7】 下列命题中正确的是( )①“若220x y +≠,则x y ,不全为零”的否命题 ②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题④“若x x 是无理数”的逆否命题A .①②③④B .①③④C .②③④D .①④【例8】 写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例9】 ⑴命题:“若220(),a b a b +=∈R ,则“0a b ==”的逆否命题是( ) A .若0(),a b a b ≠≠∈R ,则220a b +≠ B .若0a ≠且0(),b a b ≠∈R ,则220a b +≠ C .若0(),a b a b =≠∈R ,则220a b +≠ D .若0a ≠或0(),b a b ≠∈R ,则220a b +≠ ⑵有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题.其中是真命题的是 (填上你认为正确的命题的序号).【例10】 ⑴ “在ABC ∆中,若90C ∠=︒,则A ∠、B ∠都是锐角”的否命题为;⑵(2007重庆)命题:“若21x <,则11x -<<”的逆否命题是( ) A .若21≥x ,则1≥x 或1≤x - B .若11x -<<,则21x < C .若1x >或1x <-,则21x > D .若1≥x 或1≤x -,则21≥x【例11】 下列命题中_________为真命题.①“A B A =”成立的必要条件是“A B ”;②“若220x y +=,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【例12】 已知命题“如果1≤a ,那么关于x 的不等式22(4)(2)10≥a x a x -++-的解集为∅”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .2个C .3个D .4个【例13】 已知等比数列{}n a 的前n 项和为n S .⑴若m S ,2m S +,1m S +成等差数列,证明m a ,2m a +,1m a +成等差数列; ⑵写出⑴的逆命题,判断它的真伪,并给出证明.【例14】 ⑴命题p :奇函数一定有(0)0f =;命题q :函数1y x x=+的单调递减区间是[10)(01],,-.则下列四个判断中正确的是( )A .p 真q 真B . p 真q 假C . p 假q 真D . p 假q 假 ⑵设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号是 ____ .(写出所有真命题的序号)【例15】 设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题: ①设f 是平面M 上的线性变换,则(0)0f =;②对a V ∈,设()2f a a =,则f 是平面M 上的线性变换; ③若e 是平面M 上的单位向量,对a V ∈设()f a a e =-,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则()(),f a f b 也共线. 其中真命题是 (写出所有真命题的序号)【例16】 对于四面体ABCD ,下列命题正确的是 (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面; ④分别作三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例17】 设直线系:cos (2)sin 1(02π)M x y θθθ+-=≤≤,对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).【例18】 关于x 的方程()222110x x k ---+=,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是( ) A .0 B .1C .2D .3【例19】 命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例20】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题;其中真命题的个数为( ) A .1 B .2 C .3 D .4【例21】 原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.A .0B .1C .2D .4【例22】 下面有五个命题:①函数44sin cos y x x =-的最小正周期是π. ②终边在y 轴上的角的集合是π|2k a a k ⎧⎫=∈⎨⎬⎩⎭Z ,. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点.④把函数π3sin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6得到3sin 2y x =的图象.⑤函数πsin 2y x ⎛⎫=- ⎪⎝⎭在()0π,上是减函数. 其中真命题的序号是 .【例23】 设a ,b 是两条直线,α,β是两个平面,则a b ⊥的一个充分条件是( )A .a α⊥,b β∥,αβ⊥B .a α⊥,b β⊥,αβ∥C .a α⊂,b β⊥,αβ∥D .a α⊂,b β∥,αβ⊥【例24】 命题“若ABC ∆不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 .【例25】 给出以下四个命题:①“若0x y +=,则x y ,互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q -≤,则20x x q ++=有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是( )A .①②B .②③C .①③D .③④【例26】 对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【例27】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题.其中真命题为( )A .①②B .②③C .①③D .③④【例28】 已知三个不等式:000,,c dab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是( ) A .0 B .1 C .2 D .3【例29】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥【例30】 已知m n ,是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的是( ) A .若m n αα∥,∥,则m n ∥ B .若αγβγ⊥⊥,,则αβ∥ C .若m m αβ∥,∥,则αβ∥D .若m n αα⊥⊥,,则m n ∥【例31】 已知直线m 、n 与平面α、β,给出下列三个命题:①若m α∥,n α∥,则m n ∥;②若m α∥,n α⊥,则n m ⊥;③若m α⊥,m β∥,则αβ⊥. 其中真命题的个数是( )A .0B .1C .2D .3。
命题及其关系

命题及其关系知识点:1. 命题:1.1 概念:用语言、符号或式子表达的,可以判断真假的陈述句 1.2 分类:真命题 假命题 1.3 关系: 原命题逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题。
若原命题为“若p,则q",它的逆命题为“若q ,则p” 否命题:对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题 若原命题为“若p ,则q",则它的否命题为“若 p ,则 q”逆否命题:对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题若原命题为“若 ,则 ”,则它的逆否命题为“若 ,则 ” 1,4 四种命题的真假性:(有且仅有一下四种情况)原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假规律:1)两个命题互为逆否命题,它们有相同的真假性2)两个命题为互逆命题或互否命题,它们的真假性没有关系2. 充分必要条件: 2。
1 概念:若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).全称量词:“∀” 短语“对所有的”、“对任意一个"在逻辑中通常称为全称量词 存在量词:“∃” 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词 全称命题:含有全称量词的命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ” 特称命题:含有特称量词的命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.2。
2 命题之间关系: 1)“且” p q ∧ 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 2)“或” p q ∨当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题; 当p 、q 两个命题都是假命题时,p q ∨是假命题 3)“非” p ⌝若p 是真命题,则p ⌝必是假命题若p 是假命题,则p ⌝必是真命题2.3 全称命题的否定 全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝. 全称命题的否定是特称命题.练习:1。
高中数学知识点精讲精析 命题及其关系

1.1 命题及其关系1.命题的构成――条件和结论定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.2.命题的分类――真命题、假命题的定义.真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.强调:(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。
3.定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.小结:(1)交换原命题的条件和结论,所得的命题就是它的逆命题:(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
4.四种命题的形式原命题:若P,则q.则:逆命题:若q,则P.否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)逆否命题:若¬q,则¬P.5.①原命题为真,它的逆命题不一定为真。
命题及其关系

3.(2009·重庆)命题“若一个数是负数,则它的平方是正数”的逆命题是( A.“若一个数是负数,则它的平方不是正数” B.“若一个数的平方是正数,则它是负数” C.“若一个数不是负数,则它的平方不是正数” D.“若一个数的平方不是正数,则它不是负数” 答案:B
)
4.“ω=2”是“函数y=sin(ωx+φ)的最小正周期为π”的( A.充分非必要条件 C.充分必要条件 B.必要非充分条件 D.既不充分也不必要条件
解答:(1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0为真命题.
用反证法证明:假设a+b<0,则a<-b,b<-a.
∵f(x)是(-∞,+∞)上的增函数,则f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b),这与题设相矛盾,所以逆命题为真.
变式2.已知a、b是实数,求证:a4-b4-2b2=1成立的充分条件是a2-b2=1.该条件
是否为必要条件?试证明你的结论. 证明:∵a2-b2=1,∴a4-b4-2b2=(a2-b2)(a2+b2)-2b2=(a2+b2)-2b2= a2-b2=1. 即a4-b4-2b2=1成立的充分条件是a2-b2=1. 另一方面又a4-b4-2b2=1,即为a4-(b4+2b2+1)=0.a4-(b2+1)2=0, (a2-b2-1)(a2+b2+1)=0,又a2+b2+1≠0,∴a2-b2-1=0,即a2-b2=1. 因此a2-b2=1既是a4-b4-2b2=1的充分条件,也是a4-b4-2b2=1的必要条件.
(2)如果p⇒q,q⇒p,则p是q的 充要条件 (sufficient and necessary condition). 4.反证法与证命题的逆否命题 反证法首先 否定结论,即假定结论不成立 .由此出发直至推出 与题设、定义 、 定理相矛盾 ;证命题的逆否命题,即由 结论 的否定推出 题设 的 否定 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题及其关系
知识点:
1. 命题:
1.1 概念:用语言、符号或式子表达的,可以判断真假的陈述句 1.2 分类:
真命题 假命题 1.3 关系: 原命题
逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则
这两个命题称为互逆命题。
若原命题为“若p ,则q”,它的逆命题为“若q ,则p” 否命题:对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结
论的否定,则这两个命题称为互否命题
若原命题为“若p ,则q”,则它的否命题为“若 p ,则 q” 逆否命题:对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和
条件的否定,则这两个命题称为互为逆否命题
若原命题为“若 ,则 ”,则它的逆否命题为“若 ,则 ” 1,4 四种命题的真假性:(有且仅有一下四种情况)
规律:
1)两个命题互为逆否命题,它们有相同的真假性
2)两个命题为互逆命题或互否命题,它们的真假性没有关系
2. 充分必要条件: 2.1 概念:
若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).
全称量词:“∀” 短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词 存在量词:“∃” 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词 全称命题:含有全称量词的命题
“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ” 特称命题:含有特称量词的命题
“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 2.2 命题之间关系: 1)“且” p q ∧ 当p 、q 都是真命题时,p q ∧是真命题;
当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 2)“或” p q ∨
当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题; 当p 、q 两个命题都是假命题时,p q ∨是假命题 3)“非” p ⌝
若p 是真命题,则p ⌝必是假命题
若p 是假命题,则p ⌝必是真命题
2.3 全称命题的否定 全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝. 全称命题的否定是特称命题.
练习:
1. 给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 (A)3
(B)2
(C)1
(D)0
2. 设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是 ( ) A.若方程x2+x-m=0有实根,则m>0 B.若方程x2+x-m=0有实根,则m≤0 C.若方程x2+x-m=0没有实根,则m>0 D.若方程x2+x-m=0没有实根,则m≤0
3. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件 4. 设x∈R,则“2-x≥0”是“|x -1|≤1”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
5. 命题“对任意的32
10x x x ∈-+R ,≤”的否定是( ) A .不存在3
2
10x R x x ∈-+,≤ B .存在32
10x R x x ∈-+,≤ C . 存在3
210x R x x ∈-+>,
D .对任意的3
2
10x R x x ∈-+>,
6. (2017北京,7,5分)设m,n 为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的 ( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
7. (2015北京,6,5分,0.44)设a,b 是非零向量.“a·b=|a|·|b|”是“a∥b”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
8. (2014北京,5,5分,0.66)设a,b 是实数,则“a>b”是“a2>b2”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
9. (2013北京,3,5分)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
答案:
2. 答案 D 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则
m≤0”,故选D.
4.答案 B 本题考查不等式的解法及充分、必要条件的判断.
由2-x≥0,得x≤2;由|x-1|≤1,得-1≤x-1≤1,即0≤x≤2,因为[0,2]⫋(-∞,2],所以“2-x ≥0”是“|x-1
|≤1”的必要而不充分条件,故选B.
6. 答案 A 由存在负数λ,使得m=λn,可得m、n共线且反向,夹角为180°,则m·n=-|m||n|<0,故充分性
成立.由m·n<0,可得m,n的夹角为钝角或180°,故必要性不成立.故选A.
7. 答案A∵a·b=|a|·|b|·cos<a,b>,
∴a·b=|a|·|b|时,有cos<a,b>=1,即<a,b>=0,∴a∥b.
而当a∥b时,a,b的夹角为0或π,
此时a·b=|a|·|b|或a·b=-|a|·|b|.
综上,“a·b=|a||b|”是“a∥b”的充分而不必要条件,故选A.
8. 答案 D a>b不能推出a2>b2,例如a=-1,b=-2;a2>b2也不能推出a>b,例如a=-2,b=1.故“a>b”是
“a2>b2”的既不充分也不必要条件.
9. 答案 A 当φ=π时,y=sin(2x+π)=-sin 2x,此时曲线过坐标原点;但曲线y=sin(2x+φ)过坐标原点时,
φ=kπ(k∈Z),∴“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件,故选A.。