四川省成都市中考数学试卷(含答案解析版)·优选.
2019年四川省成都市中考数学试题(含解析)

2019年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019四川省成都市,1,3)比-3大5的数是(A)-15 (B)-8 (C)2 (D)8【答案】C【解析】列式子计算:-3+5=2,故选C【知识点】有理数加法2.(2019四川省成都市,2,3)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是(A)(B)(C)(D)【答案】B【解析】从左面看,上层有1个,下层有2个,故选B.【知识点】三视图3.(2019四川省成都市,3,3)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年,将数据5500万用科学记数法表示为(A)5500×104(B)55×106(C)5.5×107(D)5.5×108【答案】C【解析】用科学记数法可以把一个数表示a×10n的形式,其中1≤a<10,n的值可由小数点移动情况来决定,若原数大于1,n为正整数;若原数小于1,则n为负整数;小数点移动几位,n的绝对值就是几.【知识点】科学记数法4.(2019四川省成都市,4,3)在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为(A)(2,3)(B)(-6,3)(C)(-2,7)(D)(-2,-1)【答案】A【解析】点的坐标向右(左)平移a个单位,则点的横坐标加(减)a,本题中点向右平移了4个单位,故横坐标加4,纵坐标不变,选A.【知识点】点平移的坐标变化规律5.(2019四川省成都市,5,3)将等腰直角三角形纸片和矩形纸片按如图方式叠放在一起,若∠1=30°,则∠2的度数为(A)10°(B)15°(C)20°(D)30°【答案】B【解析】由平行线的性质可得∠1的内错角也为30°,再用45°减去30°即得∠2度数,故选B . 【知识点】平行线的性质;等腰直角三角形的性质6.(2019四川省成都市,6,3)下列计算正确的是 (A )5ab-3a=2b (B )(-3a 2b )2=6a 4b 2 (C )(a-1)2=a 2-1 (D )2a 2b ÷b=2a 2 【答案】D【解析】选项A 不是同类项,不能合并;选项B 中-3的平方不能是6;选项C 中完全平方公式用错;D 选项符合单项式除法法则,故选D.【知识点】幂的乘方;积的乘方;合并同类项;单项式除法法则7.(2019四川省成都市,7,3)分式方程1215=+--xx x 的解为 (A )x=-1 (B )x=1 (C )x=2 (D )x=-2【答案】A【解析】通过去分母在方程两边同时乘以x (x-1),将分式方程转化为一元一次方程,通过解一元一次方程求得分式方程的解,通过检验验证是否有解. 【知识点】解分式方程8.(2019四川省成都市,8,3)某校开展了主题为“青春·梦想”的艺术作品征集活动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是 (A )42件 (B )45件 (C )46件 (D )50件 【答案】C【思路分析】将所有数据按照从小到大(或从大到小)排列,位于最中间的数或者位于最中间的两个数的平均数即为所求中位数.【解题过程】将5个数据按照从小到大排列:42,45,46,50,50.位于最中间的数是46,故选C. 【知识点】中位数9.(2019四川省成都市,9,3)如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则∠CPD 的度数为(A )30° (B )36° (C )60° (D )72°【答案】B【思路分析】求圆周角的度数,可以考虑求所对弧对的圆心角的度数,利用一条弧所对的圆周角等于它所对的圆心角的一半求解.【解题过程】连接OC 、OD ,∵五边形ABCDE 是正五边形,∴∠COD=72°,∴∠CPD=36°,故选B. 【知识点】正多边形与圆;圆周角定理E DCBOAP10.(2019四川省成都市,10,3)如图,二函数y=ax 2+bx+c 的图象经过点A (1,0),B (5,0),下列说法正确的是(A )c <0 (B )b 2-4ac <0 (C )a-b+c <0 (D )图象的对称轴是直线x=3【答案】D【思路分析】根据二次函数图象的性质及特征点的坐标判断选项的正确性.【解题过程】根据图象,显然c >0,故A 错;抛物线与x 轴有两个交点,则Δ>0,故B 错;当x=-1时,函数值y >0,所以a-b+c >0,故C 错;A 、B 两点的纵坐标相同,其中点横坐标为3,故D 正确. 【知识点】二次函数图象的性质二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2019四川省成都市,11,3)若m-1与-2互为相反数,则m 的值为_______. 【答案】1【解析】由两数互为相反数,其和为零列出方程:m+1-2=0,解m=1. 【知识点】相反数;一元一次方程应用 12.(2019四川省成都市,12,3)如图,在△ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 点长为_________.B【答案】9【解析】∵AB=AC ,∴∠B=∠C ,∵∠BAD=∠CAE ,∴△ABD ≌△AEC ,∴CE=BD=9. 【知识点】等腰三角形的性质;全等三角形的判定和性质 13.(2019四川省成都市,13,3)已知一次函数y=(k-3)x+1的图象经过一、二、四象限,则k 的取值范围是_______. 【答案】k <3【解析】一次函数同时经过了二、四象限,所以k-3<0,解得k <3. 【知识点】一次函数图象的性质14.(2019四川省成都市,14,3)如图,ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ′;③以点M ′为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ′;④过点N ′作射线ON ′交BC 于点E.若AB=8,则线段OE 的长为________.A【答案】4【解析】根据尺规作图可以判定∠COE=∠CAB ,所以OE ∥AB ,可得OE 为△CAB 的中位线,从而得到OE 等于AB 的一半.【知识点】尺规作图;三角形中位线三、解答题(本大题共6小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 15.(2019四川省成都市,15,12)(本小题满分12分,每题6分)(1)计算:(π-2)0-2cos30°-16+3-1. (2)解不等式组:⎪⎩⎪⎨⎧+--≤-②①(x x x x 21142554)23【思路分析】(1)利用零指数幂、特殊角三角函数值、二次根式化简、去绝对值等知识逐项求得各项结果,相加即可;(2)通过解不等式①和不等式②得到两个解集,求公共解集即可. 【解题过程】(1)原式=1-2×23-4+3-1=-4 (2)解不等式①得x ≥-1,解不等式②得x <2,故不等式组的解集为-1≤x <2. 【知识点】零指数幂;特殊角三角函数值;二次根式化简;绝对值;解不等式组16.(2019四川省成都市,16,6)(本小题满分6分)先化简,再求值:621234-12++-÷⎪⎭⎫ ⎝⎛+x x x x ,其中x=2+1.【思路分析】先利用分式的加减乘除运算法则将分式化简,再将x 值代入求解. 【解题过程】()()1213231)3(2)1(3433621234-1222-=-+⨯+-=+-÷⎪⎭⎫ ⎝⎛+-++=++-÷⎪⎭⎫ ⎝⎛+x x x x x x x x x x x x x x 当x=2+1时,原式=22=2【知识点】分式的加减;分式的乘除;二次根式化简 17.(2019四川省成都市,17,8)(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择,某校计划为学生提供以下四类在线学习方式:在线阅读,在线听课,在线答题和在线讨论,为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图. 根据图中信息解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对“在线阅读”最感兴趣的学生人数.3642483024181260在线答题在线讨论在线阅读在线听课人数【思路分析】(1)由在线答题的人数占总人数的百分比及人数求出总人数,再求出在线听课的人数,补充完整条形统计图;(2)用在线讨论的人数除以总人数求出百分比,用这个百分比乘以360°得到圆心角度数;(3)求出在线阅读人数的百分比,乘以该校总人数即可. 【解题过程】(1)18÷20%=90;90-24-18-12=36,补全图如下:361218243642483024181260在线答题在线讨论在线阅读在线听课人数方式(2)360×9012=48° (3)2100×9024=560答:估计该校对“在线阅读”最感兴趣的学生人数大约有560人. 【知识点】条形统计图;扇形统计图;用样本估计总体18.(2019四川省成都市,18,8)(本小题满分8分)2019年成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米:参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【思路分析】过点C 作CE ⊥AB 于点E ,在Rt △ADB 中求出BD ,在Rt △ACE 中求AE ,用AB 减去AE 即可. 【解题过程】过点C 作CE ⊥AB 于点E ,在RtABD 中,BD=45tan AB=20,∴CE=20,在Rt △ACE 中,AE=CE · tan35°=20×0.70=14,∴CD=BE=20-14=6.答:拱门高6米.【知识点】解直角三角形的应用19.(2019四川省成都市,19,10)(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数y=21x+5和Ey=-2x 的图象相交于点A ,反比例函数y=xk的图象经过点A. (1)求反比例函数的表达式; (2)设一次函数y=21x+5点图象与反比例函数y=xk的图象的另一个交点为B ,连接OB ,求△ABO 的面积.x【思路分析】(1)先通过一次函数y=21x+5和y=-2x 的图象求出交点A 的坐标,将点A 坐标代入y=xk求出k 值;(2) 通过一次函数y=21x+5与反比例函数组成的方程组求出B 点坐标,进而求△OAB 的面积. 【解题过程】解:(1)解方程组⎪⎩⎪⎨⎧-=+=x y x y 2521得⎩⎨⎧=-=42y x ,∴点A (-2,4),将点A 坐标代入y=x k 得k=-8,故反比例函数解析式为y=x8-(2)解方程组⎪⎪⎩⎪⎪⎨⎧-=+=x y x y 8521得⎩⎨⎧==1y 8-x ,∴点B (-8,1),设直线AB 与x 轴交于点F ,与y 轴交于点G ,当x=0时,y=5,当y=0时,x=-10,故F (-10,0),G (0,5),∴S △FOG =21×5×10=25,S △FBO =21×1×10=5,S △AOG =21×2×5=5,∴S △AOB =25-5-5=15.x【知识点】一次函数;反比例函数20.(2019四川省成都市,20,10)(本小题满分10分)如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E. (1)求证:=AC CD(2)若CE=1,EB=3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.BA【思路分析】(1)连接OD ,利用证明两条弧所对的圆心角相等证明弧等;(2)通过已知证明△CBA ∽△CAE 得比例式求CA ,再进一步利用勾股定理求解;(3)根据已知证明PC ∥AE ,得比例式求PA ,进而求PO ,再证△OHP ∽△ACB 列比例式求OH 、PH ,进而利用勾股定理求HQ ,得PQ.【解题过程】解:(1)连接OD ∵OC ∥BD , ∴∠OCB=∠DBC ∵OB=OC,∴∠OCB=∠OBC ∴∠OBC=∠DBC ∴∠AOC=∠COD ∴=AC CD(2)连接AC ,∵=AC CD ∴∠CBA=∠CAD ∵∠BCA=∠ACE ∴△CBA ∽△CAE ∴CA CBCE CA=∴CA 2=CE ·CB=CE ·(CE+EB )=1×(1+3)=4 ∴CA=2∵AB 为⊙O 的直径 ∴∠ACB=90°在Rt △ACB 中,由勾股定理,得2222=2+4=25CA CB +∴⊙O 5(3)如图,设AD 与CO 相交于点N. ∵AB 为⊙O 的直径, ∴∠ADB=90° ∵OC ∥BD ,∴∠ANO=∠ADB=90° ∵PC 为⊙O 的切线 ∴∠PCO=90° ∴∠ANO=∠PCO ∴PC ∥AE ∴1==3PA CE AB EB ∴PA=13AB=13×525∴25555 过点O 作OH ⊥PQ 于点H ,则∠OHP=90°=∠ACB∵PQ ∥CB∴∠BPQ=∠ABC ∴△OHP ∽△ACB ∴OP OH PHAB AC BC==∴OH=55253==325AC OP AB ⨯,PH 554103==325BC OP AB ⨯连接OQ在Rt △OHQ 中,由勾股定理,得HQ=()2222525-=5-=33OQ OH ⎛⎫ ⎪⎝⎭∴PQ=PH+HQ=10+253【知识点】圆中三组量关系;圆周角定理;切线的性质;相似三角形的判定和性质;勾股定理B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(2019四川省成都市,21,4) 估算:7.37≈________(结果精确到1).【答案】6【解析】从被开方数看,值在6~7之间,而6.5的平方为42.25,故其值在6~6.5之间,四舍五入,故精确后为6.【知识点】算术平方根 22.(2019四川省成都市,22,4)已知x 1、x 2是关于x 的一元二次方程x 2+2x+k-1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为________.【答案】-2【解题过程】利用根与系数关系可得x 1+x 2=-2,x 1·x 2=k-1,∴x 12+x 22-x 1x 2=(x 1+x 2)2-3x 1x 2=13,即(-2)2-3(k-1)=13,解得k=-2.【知识点】根与系数关系;解一元一次方程;配方 23.(2019四川省成都市,23,4)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为75,则盒子中原有的白球的个数为_______.【答案】20【解题过程】设原来有白球x 个,根据题意列方程5+51057x x =++,解x=20 【知识点】概率的求法24.(2019四川省成都市,24,4)如图,在边长为1的菱形ABCD 中,∠ABC=60°,将△ABD 沿射线BD 的方向平移得到△A ′B ′D ′,分别连接A ′C ,A ′D ,B ′C ,则A ′C+B ′C 的最小值为________.D′A'D AB C B′【答案】3【解题过程】解:∵在边长为1的菱形ABCD 中,∠ABC =60°,∴AB =1,∠ABD =30°,∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',∴A ′B ′=AB =1,∠A ′B ′D =30°,当B ′C ⊥A ′B ′时,A 'C +B 'C 的值最小,∵AB ∥A ′B ′,AB =A ′B ′,AB =CD ,AB ∥CD ,∴A ′B ′=CD ,A ′B ′∥CD ,∴四边形A ′B ′CD 是矩形,∠B ′A ′C =30°,∴B ′C =,A ′C =,∴A 'C +B 'C 的最小值为,故答案为:.D′A'D AB C B′F【知识点】菱形的性质;解直角三角形;矩形的性质25.(2019四川省成都市,25,4) 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为215,则△OAB 的内部(不含边界)的整点的个数为____________.【答案】4或5或6【解题过程】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA =5,∵△OAB 的面积=5•n =, ∴n =3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m =3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;【知识点】点的坐标二、解答题(本大题共三个小题,共30分,解答过程写在答题卡上)26.(2019四川省成都市,26,8)(本小题满分8分)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x (x 为整数)个销售周期每台的销售价格为x 元,y 与x 之间的满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p=21x+21来描述,根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【思路分析】(1)利用待定系数法求解即可;(2)设销售收入为w ,列出w 关于x 的函数关系式,利用二次函数顶点坐标公式求出最大销售收入时x 的值,再代入(1)中函数关系式求y 值即可.【解题过程】(1)设函数解析式为y=kx+b则700055000k b k b +=⎧⎨+=⎩解得5007500k b =-⎧⎨=⎩,∴函数关系式为y=-500x+7500 (2)设第x 个销售周期的销售收入为w ,则w=(-500x+7500)(21x+21)=-250x 2+3500x+3750 当x=7时,w 有最大值为4000答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元【知识点】一次函数;待定系数法;二次函数顶点坐标27.(2019四川省成都市,27,10)(本小题满分10分)如图1,在△ABC 中,AB=AC=20,tanB=43,点D 为BC 边上的动点(点D 不与点B 、C 重合),以D 为顶点作∠ADE=∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F ,连接CF.(1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF=CF ?若存在,求出此时BD 的长;若不存在,请说明理由.【思路分析】(1)利用一线三等角证明出∠BAD=∠CDE,再利用等腰三角形得到角等证明相似;(2)作AM⊥BC 于点M,解直角三角形求出BM,进而求得BC,易证∠BAD=∠ADE=∠EDC=∠B=∠ACB,从而得∴△ABD∽△CBA,通过比例式求BD,再利用平行线得比例式求AE长;(3)过点F作FH⊥BC于点H,过点A作AM⊥BC 于点M,AN⊥FH于点N,易得△AFN∽△ADM,从而利用AM、BM的值求得tanB的值,进而求得AN、CH,利用DF=CF条件求出CD,进而求BD长.【解题过程】解:(1)∵AB=AC∴∠B=∠ACB∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B∴∠BAD=∠CDE∴△ABD∽△DCE.(2)过点A作AM⊥BC于点M.在Rt△ABM中,设BM=4k,则AM=BM·tanB=4k·34=3k由勾股定理,得AB2=AM2+BM2∴202=(3k)2+(4k)2∴k=4∵AB=AC,AM⊥BC∴BC=2BM=2·4k=32∵DE∥AB∴∠BAD=∠ADE又∵∠ADE=∠B,∠B=∠ACB ∴∠BAD=∠ACB∵∠ABD=∠CBA∴△ABD∽△CBA∴AB DB CB AB=∴DB=222025322 ABCB==∵DE∥AB∴AE BD AC BC=∴AE=25202=32AC BDBC⨯=12516(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF.过点F 作FH ⊥BC 于点H ,过点A 作AM ⊥BC 于点M ,AN ⊥FH 于点N ,则∠NHM=∠AMH=∠ANH=90°.∴四边形AMHN 为矩形,∴∠MAN=90°,MH=AN ,∵AB=AC ,AM ⊥BC ,∴BM=CM=12BC=12×32=16 在Rt △ABM 中,由勾股定理,得AM=2222201612AB BM -=-= ∵AN ⊥FH ,AM ⊥BC∴∠ANF=90°=∠AMD∵∠DAF=90°=∠MAN∴∠NAF=∠MAD∴△AFN ∽△ADM∴3==tan =tan =4AN AF ADF B AM AD ∠∴AN=34AM=34×12=9 ∴CH=CM-MH=CM-AN=16-9=7当DF=CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形又∵FH ⊥DC∴CD=2CH=14∴BD=BC-CD=32-14=18所以,点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF ,此时BD=18【知识点】相似三角形的判定和性质;解直角三角形;矩形的性质和判定;等腰三角形的性质28.(2019四川省成都市,28,12)(本小题满分12分)如图,抛物线y=ax 2+bx+c 经过点A (-2,5),与x 轴相交于B (-1,0),C (3,0)两点.(1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△BC ′D ,若点C ′恰好落在抛物线的对称轴上,求点C ′和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式.【思路分析】(1)直接利用待定系数法求解;(2)设抛物线的轴对称性与x 轴交于点H ,可得BH=12BC=12BC ′,则利用三角函数易得∠ABC=60°,从而通过直角三角形和等腰三角形易得C ′和D 点坐标;(3)分类讨论:①当点P 在x 轴上方时,点Q 在x 轴上方,连接BQ ,C ′P ,利用(2)条件构造△BCQ ≌△C ′CP ,进而得到C ′P=CQ=CP ,从而得到BP 是CC ′垂直平分线,可得D 点在BP 上,利用B 、D 坐标求直线解析式;②当点P 在x 轴下方时,点Q 在x 轴下方同理可求.【解题过程】解:(1)由题意,得4250930a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的函数表达式为y=x 2-2x-3(2)∵抛物线与x 轴的交点为B (-1,0)、C (3,0)∴BC=4,抛物线的对称轴为直线x=1设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH=2由翻折得C ′B=CB=4在Rt △BHC ′中,由勾股定理,得C ′2222-=4-2=23C B BH ′∴点C ′的坐标为(3),tan ∠C ′BH=23=3C H BH ′∴∠C ′BH=60°由翻折得∠DBH=12∠C ′BH=30° 在Rt △BHD 中,DH=BH ·tan ∠DBH=2·tan30°=233∴点D的坐标为(1,233)(3)取(2)中的点C′,D,连接CC′∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形分类讨论如下:①当点P在x轴上方时,点Q在x轴上方连接BQ,C′P,∵△PCQ,△C′CB为等边三角形∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°∴∠BCQ=∠C′CP∴△BCQ≌△C′CP∴BQ=C′P∵点Q在抛物线的对称轴上,∴BQ=CQ∴C′P=CQ=CP又∵BC′=BC∴BP垂直平分CC′由翻折可知BD垂直平分CC′∴点D在直线BP上设直线BP的函数表达式为y=kx+b则0=-k+b23⎧解得3333kb⎧=⎪⎪⎨⎪=⎪⎩∴直线BP的函数表达式为33②当点P在x轴下方时,点Q在x轴下方∵△QCP,△C′CB为等边三角形∴CP = CQ,BC=C′C,∠C′CB=∠QCP=60°∴∠BCP=∠C′CQ∴△BCP≌△C′CQ∴∠CBP=∠CC′Q∵BC′=CC′,C′H⊥BC∴∠CC′Q=12∠CC′B=30°∴∠CBP=30°设BP与y轴相交于点E在Rt△BOE中,OE=OB·tan∠CBP=OB·tan30°=1×33=33∴点E的坐标为(0,-33)设直线BP的函数表达式为y=k′x+b′则0-+3-=3k bb=⎧⎪⎨⎪⎩′′解得3=-33=-3kb⎧⎪⎪⎨⎪⎪⎩′′∴直线BP的函数表达式为y=-33x-33综上所述,直线BP的函数表达式为y=33x+33或y=-33x-33【知识点】待定系数法;轴对称性;等边三角形的性质;全等三角形的判定和性质;解直角三角形。
成都市中考数学试卷附答案

成都市中考数学试卷附答案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分) 第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分)1. 计算2×(12-)的结果是(A)-1 (B) l (C)一2 (D) 2 2. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是(A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是左视图俯视图主视图(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上 (C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是(A)40° (B)80° (C)120° (D)150°9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 (A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是AB C DEA′(A)众数是6度 (B)平均数是度 (C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
2020年成都市中考数学试题、试卷(解析版)

2020年成都市中考数学试题、试卷(解析版)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×1044.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 36.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6 8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .10310.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x 2+3x = .12.(4分)(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大,则常数m的取值范围为 .13.(4分)(2020•成都)如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为 .14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 .三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9; (2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②. 16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有 人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)19.(10分)(2020•成都)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB =10,tan B =43,求⊙O 的半径;(3)若F 是AB 的中点,试探究BD +CE 与AF 的数量关系并说明理由.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 .22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 .23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 .25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为 ,线段DH 长度的最小值为 .五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件)12 13 14 15 16 y (件) 1200 1100 1000 900 800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC 的值.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值; (3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.2020年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 【解答】解:﹣2的绝对值为2.故选:C .2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .【解答】解:从左面看是一列2个正方形.故选:D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×104【解答】解:36000=3.6×104,故选:B .4.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)【解答】解:将点P (3,2)向下平移2个单位长度所得到的点坐标为(3,2﹣2),即(3,0),故选:A .5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 3【解答】解:A 、3a 与2b 不是同类项,不能合并,原计算错误,故此选项不符合题意;B 、a 3•a 2=a 5,原计算错误,故此选项不符合题意;C 、(﹣a 3b )2=a 6b 2,原计算正确,故此选项符合题意;D 、a 2b 3÷a =ab 3,原计算错误,故此选项不符合题意.故选:C .6.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6【解答】解:由作图知,MN 是线段BC 的垂直平分线,∴BD =CD ,∵AC =6,AD =2,∴BD =CD =4,故选:C .8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 【解答】解:把x =2代入分式方程得:k 2−1=1,解得:k =4.故选:B .9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .103【解答】解:∵直线l 1∥l 2∥l 3,∴AB BC =DE EF ,∵AB =5,BC =6,EF =4,∴56=DE 4,∴DE =103,故选:D .10.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9【解答】解:∵二次函数y =x 2+2x ﹣8=(x +1)2﹣9=(x +4)(x ﹣2),∴该函数的对称轴是直线x =﹣1,在y 轴的左侧,故选项A 错误;当x =0时,y =﹣8,即该函数与y 轴交于点(0,﹣8),故选项B 错误;当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(4分)(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为m>12.【解答】解:∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,∴2m﹣1>0,解得m>1 2.故答案为:m>1 2.13.(4分)(2020•成都)如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为30°.【解答】解:∵OB=OC,∠B=55°,∴∠BOC=180°﹣2∠B=70°,∵∠AOB=50°,∴∠AOC=∠AOB+∠BOC=70°+50°=120°,∵OA=OC,∴∠A=∠OCA=180°−120°2=30°,故答案为:30°.14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 {5x +2y =102x +5y =8 .【解答】解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9;(2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②.【解答】解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3 =3;(2){4(x −1)≥x +2,①2x+13>x −1.②,由①得,x ≥2; 由②得,x <4,故此不等式组的解集为:2≤x <4.16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 【解答】解:原式=x+3−1x+3•(x−3)(x+3)x+2=x ﹣3, 当x =3+√2时, 原式=√2.17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有180人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为126°;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【解答】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1﹣20%﹣15%﹣30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;(3)列表如下:甲乙丙丁甲一(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)一(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)一(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)一∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=212=16.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点D作DE⊥AB于点E,根据题意可得四边形DCBE是矩形,∴DE=BC,BE=DC=61,在Rt△ADE中,∵∠ADE=45°,∴AE=DE,∴AE=DE=BC,在Rt △BDE 中,∠BDE =22°, ∴DE =BEtan22°≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米). 答:观景台的高AB 的值约为214米.19.(10分)(2020•成都)在平面直角坐标系xOy 中,反比例函数y =mx (x >0)的图象经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【解答】解:(1)∵反比例函数y =mx(x >0)的图象经过点A (3,4), ∴k =3×4=12,∴反比例函数的表达式为y =12x ; (2)∵直线y =kx +b 过点A , ∴3k +b =4,∵过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点, ∴B (−bk,0),C (0,b ),∵△AOB 的面积为△BOC 的面积的2倍, ∴12×4×|−bk |=2×12×|−bk |×|b |,∴b =±2, 当b =2时,k =23, 当b =﹣2时,k =2,∴直线的函数表达式为:y=23x+2,y=2x﹣2.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=43,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.【解答】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tan B=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x 2+9x 2=100, ∴x =2, ∴BC =6,∵AC =AD =8,AB =10, ∴BD =2, ∵OB 2=OD 2+BD 2, ∴(6﹣OC )2=OC 2+4, ∴OC =83, 故⊙O 的半径为83;(3)连接OD ,DE ,由(1)可知:△ACO ≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD , 又∵CO =DO ,OE =OE , ∴△COE ≌△DOE (SAS ), ∴∠OCE =∠OED , ∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°﹣∠OEC ﹣∠OED =180°﹣2∠OCE , ∵点F 是AB 中点,∠ACB =90°, ∴CF =BF =AF , ∴∠FCB =∠FBC ,∴∠DFE =180°﹣∠BCF ﹣∠CBF =180°﹣2∠OCE , ∴∠DEF =∠DFE , ∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 49 . 【解答】解:∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 m ≤72.【解答】解:∵关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根, ∴△=(﹣4)2﹣4×2×(m −32)=16﹣8m +12≥0, 解得:m ≤72, 故答案为:m ≤72.23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 7π .【解答】解:FA1̂的长=60⋅π⋅1180=π3,A 1B 1̂的长=60⋅π⋅2180=2π3, B 1C 1̂的长=60⋅π⋅3180=3π3, C 1D 1̂的长=60⋅π⋅4180=4π3, D 1E 1̂的长=60⋅π⋅5180=5π3, E 1F 1̂的长=60⋅π⋅6180=6π3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π, 故答案为7π.24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 (√2,2√2)或(2√2,√2) .【解答】解:联立y =mx (m >0)与y =4x 并解得:{x =2√m y =±2√m,故点A 的坐标为(√m,2√m ),联立y =nx (n <0)与y =−1x 同理可得:点D (√−1n ,−√−n ),∵这两条直线互相垂直,则mn =﹣1,故点D (√m ,1√m ),则点B (−√m ,√m), 则AD 2=(√m−√m )2+(2√m √m )2=5m +5m ,同理可得:AB 2=5m +5m =AD 2,则AB =14×10√2,即AB 2=252=5m +5m , 解得:m =2或12,故点A 的坐标为(√2,2√2)或(2√2,√2), 故答案为:(√2,2√2)或(2√2,√2).25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为3√2,线段DH长度的最小值为√13−√2.【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD﹣OH,∴DH ≥√13−√2,∴DH 的最小值为√13−√2, 故答案为3√2,√13−√2.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件) 12 13 14 15 16 y (件)120011001000900800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润. 【解答】解:(1)∵y 与x 满足一次函数的关系, ∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b 1100=13k +b ,解得:{k =−100b =2400,∴y 与x 的函数关系式为:y =﹣100x +2400; (2)设线上和线下月利润总和为m 元,则m =400(x ﹣2﹣10)+y (x ﹣10)=400x ﹣4800+(﹣100x +2400)(x ﹣10)=﹣100(x ﹣19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元. 27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC的值.【解答】解:(1)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴BC =BF ,∠FBE =∠EBC , ∵BC =2AB , ∴BF =2AB , ∴∠AFB =30°, ∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠AFB =∠CBF =30°, ∴∠CBE =12∠FBC =15°;(2)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴∠BFE =∠C =90°,CE =EF , 又∵矩形ABCD 中,∠A =∠D =90°,∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°, ∴∠AFB =∠DEF , ∴△F AB ∽△EDF , ∴AF DE=AB DF,∴AF •DF =AB •DE ,∵AF •DF =10,AB =5, ∴DE =2,∴CE =DC ﹣DE =5﹣2=3, ∴EF =3,∴DF =√EF 2−DE 2=√32−22=√5, ∴AF =10√5=2√5, ∴BC =AD =AF +DF =2√5+√5=3√5. (3)过点N 作NG ⊥BF 于点G ,∵NF =AN +FD , ∴NF =12AD =12BC , ∵BC =BF , ∴NF =12BF ,∵∠NFG =∠AFB ,∠NGF =∠BAF =90°, ∴△NFG ∽△BF A , ∴NG AB=FG FA=NF BF=12,设AN =x ,∵BN 平分∠ABF ,AN ⊥AB ,NG ⊥BF , ∴AN =NG =x , 设FG =y ,则AF =2y , ∵AB 2+AF 2=BF 2,∴(2x )2+(2y )2=(2x +y )2, 解得y =43x .∴BF =BG +GF =2x +43x =103x . ∴AB BC=AB BF=2x103x =35.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2). (1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y =a (x +1)(x ﹣4). ∵将C (0,﹣2)代入得:4a =2,解得a =12,∴抛物线的解析式为y =12(x +1)(x ﹣4),即y =12x 2−32x ﹣2.(2)过点D 作DG ⊥x 轴于点G ,交BC 于点F ,过点A 作AK ⊥x 轴交BC 的延长线于点K ,∴AK ∥DG , ∴△AKE ∽△DFE , ∴DF AK =DEAE , ∴S 1S 2=S △BDE S △ABE=DE AE=DF AK,设直线BC 的解析式为y =kx +b ,∴{4k +b =0b =−2,解得{k =12b =−2, ∴直线BC 的解析式为y =12x ﹣2, ∵A (﹣1,0), ∴y =−12−2=−52, ∴AK =52,设D (m ,12m 2−32m ﹣2),则F (m ,12m ﹣2),∴DF =12m −2−12m 2+32m +2=−12m 2+2m . ∴S 1S 2=−12m 2+2m52=−15m 2+45m =−15(m −2)2+45.∴当m =2时,S 1S 2有最大值,最大值是45.(3)符合条件的点P 的坐标为(689,349)或(6+2√415,3+√415). ∵l ∥BC ,∴直线l 的解析式为y =12x ,设P (a ,a2),①当点P 在直线BQ 右侧时,如图2,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥直线PN 于点M ,∵A (﹣1,0),C (0,﹣2),B (4,0),∴AC =√5,AB =5,BC =2√5,∵AC 2+BC 2=AB 2,∴∠ACB =90°, ∵△PQB ∽△CAB ,∴PQ PB=AC BC=12,∵∠QMP =∠BNP =90°,∴∠MQP +∠MPQ =90°,∠MPQ +∠PBN =90°, ∴∠MQP =∠PBN ,∴△QPM ∽△PBN , ∴QM PN=PM BN=PQ PB =12,∴QM =a4,PM =12(a ﹣4)=12a ﹣2, ∴MN =a ﹣2,BN ﹣QM =a ﹣4−a4=34a ﹣4, ∴Q (34a ,a ﹣2),将点Q 的坐标代入抛物线的解析式得12×(34a)2−32×34a ﹣2=a ﹣2,解得a =0(舍去)或a =689. ∴P (689,349).②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为(54a ,2).此时点P 的坐标为(6+2√415,3+√415).。
2022年四川省成都市中考数学试卷(解析版)

2022年四川省成都市中考数学试卷(真题)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)(2022•成都)的相反数是()A.B.C.D.2.(4分)(2022•成都)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107 3.(4分)(2022•成都)下列计算正确的是()A.m+m=m2B.2(m﹣n)=2m﹣nC.(m+2n)2=m2+4n2D.(m+3)(m﹣3)=m2﹣94.(4分)(2022•成都)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D 5.(4分)(2022•成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56 B.60 C.63 D.726.(4分)(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.B.C.3 D.27.(4分)(2022•成都)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.B.C.D.8.(4分)(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是()A.a>0B.当x>﹣1时,y的值随x值的增大而增大C.点B的坐标为(4,0)D.4a+2b+c>0二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)(2022•成都)计算:(﹣a3)2=.10.(4分)(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是.11.(4分)(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是.12.(4分)(2022•成都)分式方程+=1的解为.13.(4分)(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B 和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为.三、解答题(本大题共5个小题,共48分)14.(12分)(2022•成都)(1)计算:()﹣1﹣+3tan30°+|﹣2|.(2)解不等式组:15.(8分)(2022•成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t(单位:分钟)人数所占百分比A0≤t<2 4 xB2≤t<4 20C4≤t<6 36%D t≥6 16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为,表中x的值为;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.(8分)(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)17.(10分)(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=,求BF及DE的长.18.(10分)(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC 被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为.20.(4分)(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是.21.(4分)(2022•成都)如图,已知⊙O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是.22.(4分)(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w的取值范围是;当2≤t≤3时,w的取值范围是.23.(4分)(2022•成都)如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC 于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为.二、解答题(本大题共3个小题,共30分)24.(8分)(2022•成都)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?25.(10分)(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k ≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y 轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.(12分)(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD 边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).2022年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)(2022•成都)的相反数是()A.B.C.D.【考点】相反数.菁优网版权所有【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:的相反数是.故选:A.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.(4分)(2022•成都)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【考点】科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:160万=1600000=1.6×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.3.(4分)(2022•成都)下列计算正确的是()A.m+m=m2B.2(m﹣n)=2m﹣nC.(m+2n)2=m2+4n2D.(m+3)(m﹣3)=m2﹣9【考点】平方差公式;合并同类项;完全平方公式.菁优网版权所有【分析】选项A根据合并同类项法则判断即可;选项B根据去括号法则判断即可;选项C根据完全平方公式判断即可;选项D根据平方差公式判断即可.【解答】解:A.m+m=2m,故本选项不合题意;B.2(m﹣n)=2m﹣2n,故本选项不合题意;C.(m+2n)2=m2+4mn+4n2,故本选项不合题意;D.(m+3)(m﹣3)=m2﹣9,故本选项符合题意;故选:D.【点评】本题考查了合并同类项,去括号法则,完全平方公式以及平方差公式,掌握相关公式与运算法则是解答本题的关键.4.(4分)(2022•成都)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D 【考点】全等三角形的判定;平行线的性质.菁优网版权所有【分析】先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断.【解答】解:∵AC∥DF,∴∠A=∠D,∵AC=DF,∴当添加∠C=∠F时,可根据“ASA”判定△ABC≌△DEF;当添加∠ABC=∠DEF时,可根据“AAS”判定△ABC≌△DEF;当添加AB=DE时,即AE=BD,可根据“SAS”判定△ABC≌△DEF.故选:B.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的根据,选用哪一种方法,取决于题目中的已知条件.5.(4分)(2022•成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56 B.60 C.63 D.72【考点】众数.菁优网版权所有【分析】根据众数的定义求解即可.【解答】解:由题意知,这组数据中60出现3次,次数最多,∴这组数据的众数是60,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.6.(4分)(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.B.C.3 D.2【考点】正多边形和圆.菁优网版权所有【分析】连接OB、OC,根据⊙O的周长等于6π,可得⊙O的半径OB=OC=3,而六边形ABCDEF是正六边形,即知∠BOC==60°,△BOC是等边三角形,即可得正六边形的边长为3.【解答】解:连接OB、OC,如图:∵⊙O的周长等于6π,∴⊙O的半径OB=OC==3,∵六边形ABCDEF是正六边形,∴∠BOC==60°,∴△BOC是等边三角形,∴BC=OB=OC=3,即正六边形的边长为3,故选:C.【点评】本题考查正多边形与圆的相关计算,解题的关键是掌握圆内接正六边形中心角等于60°,从而得到△BOC是等边三角形.7.(4分)(2022•成都)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.菁优网版权所有【分析】利用总价=单价×数量,结合用九百九十九文钱共买了一千个苦果和甜果,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵共买了一千个苦果和甜果,∴x+y=1000;∵共花费九百九十九文钱,且四文钱可以买苦果七个,十一文钱可以买甜果九个,∴x+y=999.∴可列方程组为.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是()A.a>0B.当x>﹣1时,y的值随x值的增大而增大C.点B的坐标为(4,0)D.4a+2b+c>0【考点】抛物线与x轴的交点;二次函数的性质;二次函数图象与系数的关系.菁优网版权所有【分析】由抛物线开口方向可判断A,根据抛物线对称轴可判断B,由抛物线的轴对称性可得点B的坐标,从而判断C,由(2,4a+2b+c)所在象限可判断D.【解答】解:A、由图可知:抛物线开口向下,a<0,故选项A错误,不符合题意;B、∵抛物线对称轴是直线x=1,开口向下,∴当x>1时y随x的增大而减小,x<1时y随x的增大而增大,故选项B错误,不符合题意;C、由A(﹣1,0),抛物线对称轴是直线x=1可知,B坐标为(3,0),故选项C错误,不符合题意;D、抛物线y=ax2+bx+c过点(2,4a+2b+c),由B(3,0)可知:抛物线上横坐标为2的点在第一象限,∴4a+2b+c>0,故选项D正确,符合题意;故选:D.【点评】本题考查二次函数图象与系数的关系,解题的关键是掌握二次函数图象的性质,数形结合解决问题.二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)(2022•成都)计算:(﹣a3)2=a6.【考点】幂的乘方与积的乘方.菁优网版权所有【分析】根据幂的乘方,底数不变指数相乘计算即可.【解答】解:(﹣a3)2=a6.【点评】本题考查幂的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号.10.(4分)(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是k<2 .【考点】反比例函数的性质.菁优网版权所有【分析】根据反比例函数的性质列不等式即可解得答案.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k﹣2<0,解得k<2,故答案为:k<2.【点评】本题考查反比例函数的性质,解题的关键是掌握当k<0时,y=的图象位于第二、四象限.11.(4分)(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是2:5 .【考点】位似变换.菁优网版权所有【分析】先根据位似的性质得到△ABC和△DEF的位似比为OA:OD,再利用比例性质得到OA:OD=2:5,然后利用相似比等于位似比和相似三角形的性质求解.【解答】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.【点评】本题考查了位似变换.位似变换的两个图形相似.相似比等于位似比.12.(4分)(2022•成都)分式方程+=1的解为x=3 .【考点】解分式方程.菁优网版权所有【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣1=x﹣4,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(4分)(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B 和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为7 .【考点】等腰直角三角形;作图—基本作图;线段垂直平分线的性质;勾股定理.菁优网版权所有【分析】设MN交BC于D,连接EC,由作图可知:MN是线段BC的垂直平分线,即得BE=CE=4,有∠ECB=∠B=45°,从而∠AEC=∠ECB+∠B=90°,由勾股定理得AE=3,故AB=AE+BE=7.【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE===3,∴AB=AE+BE=3+4=7,故答案为:7.【点评】本题考查尺规作图中的计算问题,解题的关键是掌握用尺规作线段垂直平分线的方法,得到MN是线段BC的垂直平分线.三、解答题(本大题共5个小题,共48分)14.(12分)(2022•成都)(1)计算:()﹣1﹣+3tan30°+|﹣2|.(2)解不等式组:【考点】特殊角的三角函数值;绝对值;算术平方根;估算无理数的大小;实数的运算;负整数指数幂;解一元一次不等式组.菁优网版权所有【分析】(1)根据负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值以及实数混合运算的方法进行计算即可;(2)利用解一元一次不等式组的解法进行解答即可.【解答】解:(1)原式=2﹣3+3×+2﹣=﹣1++2﹣=1;(2)解不等式①得,x≥﹣1,解不等式②得,x<2,把两个不等式的解集在同一条数轴上表示如下:所以不等式组的解集为﹣1≤x<2.【点评】本题考查负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算以及一元一次不等式组,掌握负整数指数幂的性质,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算的方法以及一元一次不等式组的解法是正确解答的前提.15.(8分)(2022•成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t(单位:分钟)人数所占百分比A0≤t<2 4 xB2≤t<4 20C4≤t<6 36%D t≥6 16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为50 ,表中x的值为8% ;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.【考点】列表法与树状图法;用样本估计总体;频数(率)分布表;条形统计图.菁优网版权所有【分析】(1)用D等级人数除以它所占的百分比得到调查的总人数,然后用4除以总人数得到x的值;(2)用500乘以B等级人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生总人数为8÷16%=50(人),所以x==8%;故答案为:50;8%;(2)500×=200(人),所以估计等级为B的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.16.(8分)(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【考点】解直角三角形的应用.菁优网版权所有【分析】利用平角定义先求出∠AOC=30°,然后在Rt△ACO中,利用锐角三角函数的定义求出AO的长,从而求出A′O的长,再利用平角定义求出∠A′OD的度数,最后在Rt△A′DO中,利用锐角三角函数的定义进行计算即可解答.【解答】解:∵∠AOB=150°,∴∠AOC=180°﹣∠AOB=30°,在Rt△ACO中,AC=10cm,∴AO=2AC=20(cm),由题意得:AO=A′O=20cm,∵∠A′OB=108°,∴∠A′OD=180°﹣∠A′OB=72°,在Rt△A′DO中,A′D=A′O•sin72°≈20×0.95=19(cm),∴此时顶部边缘A'处离桌面的高度A'D的长约为19cm.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.17.(10分)(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=,求BF及DE的长.【考点】圆的综合题.菁优网版权所有【分析】(1)利用等角的余角相等证明即可;(2)连接CD.解直角三角形求出AB,BC,利用面积法求出CD,再利用勾股定理求出DB,证明△DEF∽△BCF,利用相似三角形的性质求出DE即可.【解答】(1)证明:∵=,∴∠BCF=∠FBC,∵∠ACB=90°,∴∠A+∠FBC=90°,∠ACF+∠BCF=90°,∴∠A=∠ACF;(2)解:连接CD.∵∠A=∠ACF,∠FBC=∠BCF,∴AF=FC=FB,∴cos∠A=cos∠ACF==,∵AC=8,∴AB=10,BC=6,∵BC是直径,∴∠CDB=90°,∴CD⊥AB,∵S△ABC=•AC•BC=•AB•CD,∴CD==,∴BD===,∵BF=AF=5,∴DF=BF﹣BD=5﹣=,∵∠DEF+∠DEC=180°,∠DEC+∠B=180°,∴∠DEF=∠B=∠BCF,∴DE∥CB,∴△DEF∽△BCF,∴=,∴=,∴DE=.【点评】本题属于圆综合题,考查了解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.18.(10分)(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC 被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.【考点】反比例函数综合题.菁优网版权所有【分析】(1)将点A坐标分别代入一次函数解析式和反比例函数解析式可求解;(2)分两种情况讨论,由相似三角形的性质和勾股定理可求解;(3)分别求出BP,AP,BQ的解析式,联立方程组可求解.【解答】解:(1)∵一次函数y=﹣2x+6的图象过点A,∴4=﹣2a+6,∴a=1,∴点A(1,4),∵反比例函数y=的图象过点A(1,4),∴k=1×4=4;∴反比例函数的解析式为:y=,联立方程组可得:,解得:,,∴点B(2,2);(2)如图,过点A作AE⊥y轴于E,过点C作CF⊥y轴于F,∴AE∥CF,∴△AEH∽△CFH,∴,当=时,则CF=2AE=2,∴点C(﹣2,﹣2),∴BC==4,当=2时,则CF=AE=,∴点C(﹣,﹣8),∴BC==,综上所述:BC的长为4或;(3)如图,当∠AQP=∠ABP=90°时,设直线AB与y轴交于点E,过点B作BF⊥y轴于F,设BP与y轴的交点为N,连接BQ,AP交于点H,∵直线y=﹣2x+6与y轴交于点E,∴点E(0,6),∵点B(2,2),∴BF=OF=2,∴EF=4,∵∠ABP=90°,∴∠ABF+∠FBN=90°=∠ABF+∠BEF,∴∠BEF=∠FBN,又∵∠EFB=∠ABN=90°,∴△EBF∽△BNF,∴,∴FN==1,∴点N(0,1),∴直线BN的解析式为:y=x+1,联立方程组得:,解得:,,∴点P(﹣4,﹣1),∴直线AP的解析式为:y=x+3,∵AP垂直平分BQ,∴设BQ的解析式为y=﹣x+4,∴x+3=﹣x+4,∴x=,∴点H(,),∵点H是BQ的中点,点B(2,2),∴点Q(﹣1,5).【点评】本题是反比例函数综合题,考查了一次函数的应用,反比例函数的应用,相似三角形的判定和性质,待定系数法等知识,灵活运用这些性质解决问题是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为.【考点】代数式求值.菁优网版权所有【分析】先将代数式化简为a2﹣a,再由2a2﹣7=2a可得a2﹣a=,即可求解.【解答】解:原式=(﹣)×=×=a(a﹣1)=a2﹣a,∵2a2﹣7=2a,∴2a2﹣2a=7,∴a2﹣a=,∴代数式的值为,故答案为:.【点评】本题考查代数式求值,解题的关键是正确化简代数式,利用题干条件进行解答.20.(4分)(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是2.【考点】根的判别式;勾股定理.菁优网版权所有【分析】设直角三角形两条直角边分别为a、b,斜边为c,由一元二次方程根与系数的关系可得a+b=6,ab=4,再由勾股定理即可求出斜边长.【解答】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c====2,故答案为:2.【点评】本题考查一元二次方程根与系数的关系,涉及勾股定理、完全平方公式的应用,解题的关键是掌握一元二次方程根与系数的关系,得到a+b=6,ab=4.21.(4分)(2022•成都)如图,已知⊙O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是.【考点】几何概率;圆内接四边形的性质.菁优网版权所有【分析】作OD⊥CD,OB⊥AB,设⊙O的半径为r,根据⊙O是小正方形的外接圆,是大正方形的内切圆,可得OB=OC=r,△AOB、△COD是等腰直角三角形,即可得AE=2r,CF=r,从而求出答案.【解答】解:作OD⊥CD,OB⊥AB,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.【点评】本题考查几何概率,涉及正方形的外切圆与内接圆,解题的关键是用含r的代数式表示阴影部分的面积.22.(4分)(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w的取值范围是0≤w≤5 ;当2≤t≤3时,w的取值范围是5≤w≤20 .【考点】二次函数的应用.菁优网版权所有。
2020年四川省成都市中考数学试卷(有详细解析)

2020年四川省成都市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共10小题,共30.0分)1.−2的绝对值是()A. −2B. 1C. 2D. 122.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.3.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A. 3.6×103B. 3.6×104C. 3.6×105D. 36×1044.在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是()A. (3,0)B. (1,2)C. (5,2)D. (3,4)5.下列计算正确的是()A. 3a+2b=5abB. a3⋅a2=a6C. (−a3b)2=a6b2D. a2b3÷a=b36.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A. 5人,7人B. 5人,11人C. 5人,12人D. 7人,11人7.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A. 2B. 3C. 4D. 68.已知x=2是分式方程kx +x−3x−1=1的解,那么实数k的值为()A. 3B. 4C. 5D. 69.如图,直线l1//l2//l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A. 2B. 3C. 4D. 10310.关于二次函数y=x2+2x−8,下列说法正确的是()A. 图象的对称轴在y 轴的右侧B. 图象与y 轴的交点坐标为(0,8)C. 图象与x 轴的交点坐标为(−2,0)和(4,0)D. y 的最小值为−9二、填空题(本大题共9小题,共36.0分) 11. 分解因式:x 2+3x =______.12. 一次函数y =(2m −1)x +2的值随x 值的增大而增大,则常数m 的取值范围为______.13. 如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为______.14. 《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为______.15. 已知a =7−3b ,则代数式a 2+6ab +9b 2的值为______.16. 关于x 的一元二次方程2x 2−4x +m −32=0有实数根,则实数m 的取值范围是______.17. 如图,六边形ABCDEF 是正六边形,曲线FA 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA⏜1,A 1B 1⏜,B 1C 1⏜,C 1D 1⏜,D 1E 1⏜,E 1F 1⏜,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线FA 1B 1C 1D 1E 1F 1的长度是______.18. 在平面直角坐标系xOy 中,已知直线y =mx(m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx(n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为______.19. 如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH.若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为______,线段DH 长度的最小值为______. 三、计算题(本大题共1小题,共8.0分)20. 成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D 处测得塔A 处的仰角为45°,塔底部B 处的俯角为22°.已知建筑物的高CD 约为61米,请计算观景台的高AB 的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)四、解答题(本大题共8小题,共76.0分) 21. (1)计算:2sin60°+(12)−2+|2−√3|−√9;(2)解不等式组:{4(x −1)≥x +2, ①2x+13>x −1. ②.22. 先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2.23. 2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为______;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.(x>0)的图象经过点A(3,4),过点A 24.在平面直角坐标系xOy中,反比例函数y=mx的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.25.如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tanB=4,求⊙O的半径;3(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.26.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:x(元/件)1213141516y(件)120011001000900800(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求AB的值.BC28.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(−1,0),B(4,0)两点,与y轴交于点C(0,−2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1的最大值;S2(3)如图2,连接AC,BC,过点O作直线l//BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.C解:−2的绝对值为2.2.D解:从左面看是一列2个正方形.3.B解:36000=3.6×104,4.A解:将点P(3,2)向下平移2个单位长度所得到的点坐标为(3,2−2),即(3,0),5.C解:A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3⋅a2=a5,原计算错误,故此选项不符合题意;C、(−a3b)2=a6b2,原计算正确,故此选项符合题意;D、a2b3÷a=ab3,原计算错误,故此选项不符合题意.6.A解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人.7.C解:由作图知,MN是线段BC的垂直平分线,∴BD=CD,∵AC=6,AD=2,∴BD=CD=4,8.B解:把x=2代入分式方程得:k2−1=1,解得:k=4.9.D解:∵直线l1//l2//l3,∴ABBC =DEEF,∵AB =5,BC =6,EF =4, ∴56=DE 4, ∴DE =103,10. D解:∵二次函数y =x 2+2x −8=(x +1)2−9=(x +4)(x −2), ∴该函数的对称轴是直线x =−1,在y 轴的左侧,故选项A 错误; 当x =0时,y =−8,即该函数与y 轴交于点(0,−8),故选项B 错误;当y =0时,x =2或x =−4,即图象与x 轴的交点坐标为(2,0)和(−4,0),故选项C 错误;当x =−1时,该函数取得最小值y =−9,故选项D 正确;11. x(x +3)解:x 2+3x =x(x +3).12. m >12解:∵一次函数y =(2m −1)x +2中,函数值y 随自变量x 的增大而增大, ∴2m −1>0,解得m >12.13. 30°解:∵OB =OC ,∠B =55°, ∴∠BOC =180°−2∠B =70°, ∵∠AOB =50°,∴∠AOC =∠AOB +∠BOC =70°+50°=120°, ∵OA =OC , ∴∠A =∠OCA =180°−120°2=30°,14. {5x +2y =102x +5y =8解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,15. 49解:∵a =7−3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b)2=72 =49,16. m ≤72解:∵关于x 的一元二次方程2x 2−4x +m −32=0有实数根, ∴△=(−4)2−4×2×(m −32)=16−8m +12≥0, 解得:m ≤72,17. 7π解:FA ⏜1的长=60⋅π⋅1180=π3,A 1B 1⏜的长=60⋅π⋅2180=2π3,B 1C 1⏜的长=60⋅π⋅3180=3π3, C 1D 1⏜的长=60⋅π⋅4180=4π3,D 1E 1⏜的长=60⋅π⋅5180=5π3,E 1F 1⏜的长=60⋅π⋅6180=6π3,∴曲线FA 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π,18. (√2,2√2)或(2√2,√2)解:联立y =mx(m >0)与y =4x 并解得:{x =√my =±2√m,故点A 的坐标为(√m 2√m),联立y =nx(n <0)与y =−1x 同理可得:点D(√−1n,−√−n),∵这两条直线互相垂直,则mn =−1,故点D(√m,√m ),则点B(−√m,√m ),则AD 2=(√m √m)2+(2√m +√m )2=5m +5m , 同理可得:AB 2=5m +5m =AD 2, 则AB =14×10√2,即AB 2=252=5m +5m ,解得:m =2或12,故点A 的坐标为(√2,2√2)或(2√2,√2),19.3√2√13−√2解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD 于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ//PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF//ON//BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD−OH,∴DH≥√13−√2,∴DH的最小值为√13−√2,20.解:过点D作DE⊥AB于点E,根据题意可得四边形DCBE是矩形,∴DE=BC,BE=DC=61,在Rt△ADE中,∵∠ADE =45°,∴AE =DE ,∴AE =DE =BC ,在Rt △BDE 中,∠BDE =22°,∴DE =BE tan22∘≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米).答:观景台的高AB 的值约为214米.21. 解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3=3;(2){4(x −1)≥x +2, ①2x+13>x −1. ②, 由①得,x ≥2;由②得,x <4,故此不等式组的解集为:2≤x <4.22. 解:原式=x+3−1x+3⋅(x−3)(x+3)x+2=x −3,当x =3+√2时,原式=√2.23. 180 126°解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1−20%−15%−30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;2种, ∴P(选中甲、乙)=212=16.24.解:(1)∵反比例函数y=mx(x>0)的图象经过点A(3,4),∴k=3×4=12,∴反比例函数的表达式为y=12x;(2)∵直线y=kx+b过点A,∴3k+b=4,∵过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,∴B(−bk,0),C(0,b),∵△AOB的面积为△BOC的面积的2倍,∴12×4×|−bk|=2×12×|−bk|×|b|,∴b=±2,当b=2时,k=23,当b=−2时,k=2,∴直线的函数表达式为:y=23x+2,y=2x−2.25.解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tanB=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6−OC)2=OC 2+4,∴OC =83, 故⊙O 的半径为83;(3)连接OD ,DE ,由(1)可知:△ACO≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD ,又∵CO =DO ,OE =OE ,∴△COE≌△DOE(SAS),∴∠OCE =∠OED ,∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°−∠OEC −∠OED =180°−2∠OCE ,∵点F 是AB 中点,∠ACB =90°,∴CF =BF =AF ,∴∠FCB =∠FBC ,∴∠DFE =180°−∠BCF −∠CBF =180°−2∠OCE ,∴∠DEF =∠DFE ,∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .26. 解:(1)∵y 与x 满足一次函数的关系,∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b 1100=13k +b, 解得:{k =−100b =2400, ∴y 与x 的函数关系式为:y =−100x +2400;(2)设线上和线下月利润总和为m 元,则m =400(x −2−10)+y(x −10)=400x −4800+(−100x +2400)(x −10)=−100(x −19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.27. 解:(1)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴BC =BF ,∠FBE =∠EBC ,∵BC =2AB ,∴BF =2AB ,∴∠AFB =30°,∵四边形ABCD 是矩形,∴AD//BC,∴∠AFB=∠CBF=30°,∴∠CBE=12∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴AFDE =ABDF,∴AF⋅DF=AB⋅DE,∵AF⋅DF=10,AB=5,∴DE=2,∴CE=DC−DE=5−2=3,∴EF=3,∴DF=√EF2−DE2=√32−22=√5,∴AF=√5=2√5,∴BC=AD=AF+DF=2√5+√5=3√5.(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=12AD=12BC,∵BC=BF,∴NF=12BF,∵∠NFG=∠AFB,∠NGF=∠BAF=90°,∴△NFG∽△BFA,∴NGAB =FGFA=NFBF=12,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=43x.∴BF=BG+GF=2x+43x=103x.∴ABBC =ABBF=2x103x=35.28.解:(1)设抛物线的解析式为y=a(x+1)(x−4).∵将C(0,−2)代入得:4a=2,解得a=12,∴抛物线的解析式为y=12(x+1)(x−4),即y=12x2−32x−2.(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,∴AK//DG,∴△AKE∽△DFE,∴DFAK =DEAE,∴S1S2=S△BDES△ABE=DEAE=DFAK,设直线BC的解析式为y=kx+b,∴{4k+b=0b=−2,解得{k=12b=−2,∴直线BC的解析式为y=12x−2,∵A(−1,0),∴y=−12−2=−52,∴AK=52,设D(m,12m2−32m−2),则F(m,12m−2),∴DF=12m−2−12m2+32m+2=−12m2+2m.∴S1S2=−12m2+2m52=−15m2+45m=−15(m−2)2+45.∴当m=2时,S1S2有最大值,最大值是45.(3)符合条件的点P的坐标为(689,349)或(6+2√415,3+√415).∵l//BC,∴直线l的解析式为y=12x,设P(a,a2),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,∵A(−1,0),C(0,−2),B(4,0),∴AC=√5,AB=5,BC=2√5,∵AC2+BC2=AB2,∴∠ACB=90°,∵△PQB∽△CAB,∴PQPB =ACBC=12,∵∠QMP=∠BNP=90°,∴∠MQP+∠MPQ=90°,∠MPQ+∠PBN=90°,∴∠MQP=∠PBN,∴△QPM∽△PBN,∴QMPN =PMBN=PQPB=12,∴QM=a4,PM=12(a−4)=12a−2,∴MN=a−2,BN−QM=a−4−a4=34a−4,∴Q(34a,a−2),将点Q的坐标代入抛物线的解析式得12×(34a)2−32×34a−2=a−2,解得a=0(舍去)或a=689.∴P(689,34 9).②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(54a,2).此时点P的坐标为(6+2√415,3+√415).。
2021年四川省成都市中考数学真题试卷 解析版

2021年四川省成都市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.﹣7的倒数是()A.﹣B.C.﹣7D.72.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×1084.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)5.下列计算正确的是()A.3mn﹣2mn=1B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n26.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD 7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.408.分式方程+=1的解为()A.x=2B.x=﹣2C.x=1D.x=﹣19.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)因式分解:x2﹣4=.12.(4分)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.13.(4分)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.14.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.16.(6分)先化简,再求值:(1+)÷,其中a=﹣3.17.(8分)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021﹣2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.课程人数篮球m足球21排球30乒乓球n根据图表信息,解答下列问题:(1)分别求出表中m,n的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.18.(8分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D(结果精确到1米;参考数据sin33°与N在一条直线上),求电池板离地面的高度MN的长.≈0.54,cos33°≈0.84,tan33°≈0.65)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y =(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为,△ABC的面积为2,求CD的长;(3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.22.(4分)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.23.(4分)如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.24.(4分)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.25.(4分)我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.(8分)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?27.(10分)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C 的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.2021年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.﹣7的倒数是()A.﹣B.C.﹣7D.7【分析】根据倒数:乘积是1的两数互为倒数,即可得出答案.【解答】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.2.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:3亿=300000000=3×108.故选:D.4.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得出答案.【解答】解:点M(﹣4,2)关于x轴对称的点的坐标是(﹣4,﹣2).故选:C.5.下列计算正确的是()A.3mn﹣2mn=1B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n2【分析】分别根据合并同类项法则,积的乘方运算法则,同底数幂的乘法法则以及完全平方公式逐一判断即可.【解答】解:A.3mn﹣2mn=mn,故本选项不合题意;B.(m2n3)2=m4n6,故本选项符合题意;C.(﹣m)3•m=﹣m4,故本选项不合题意;D.(m+n)2=m2+2mn+n2,故本选项不合题意;故选:B.6.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD 【分析】由四边形ABCD是菱形可得:AB=AD,∠B=∠D,再根据每个选项添加的条件逐一判断.【解答】解:由四边形ABCD是菱形可得:AB=AD,∠B=∠D,A、添加BE=DF,可用SAS证明△ABE≌△ADF,故不符合题意;B、添加∠BAE=∠DAF,可用ASA证明△ABE≌△ADF,故不符合题意;C、添加AE=AD,不能证明△ABE≌△ADF,故符合题意;D、添加∠AEB=∠AFD,可用AAS证明△ABE≌△ADF,故不符合题意;故选:C.7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.40【分析】把所给数据按照由小到大的顺序排序,再求出中间两个数的平均数即可.【解答】解:把已知数据按照由小到大的顺序重新排序后为30,34,36,40,∴中位数为(34+36)÷2=35.故选:B.8.分式方程+=1的解为()A.x=2B.x=﹣2C.x=1D.x=﹣1【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:2﹣x﹣1=x﹣3,解得:x=2,检验:当x=2时,x﹣3≠0,∴分式方程的解为x=2.故选:A.9.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.【分析】设甲需持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【解答】解:设甲需持钱x,乙持钱y,根据题意,得:,故选:A.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正六边形的外角和为360°,∴每一个外角的度数为360°÷6=60°,∴正六边形的每个内角为180°﹣60°=120°,∵正六边形的边长为6,∴S阴影==12π,故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)因式分解:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.(4分)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为100.【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A所代表的正方形的面积A=36+64=100.【解答】解:由题意可知,直角三角形中,一条直角边的平方=36,一直角边的平方=64,则斜边的平方=36+64=100.故答案为100.13.(4分)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=1.【分析】由题意得:△=b2﹣4ac=4﹣4k=0,即可求解.【解答】解:由题意得:△=b2﹣4ac=4﹣4k=0,解得k=1,故答案为1.14.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为1+.【分析】由题目作图知,AD是∠CAB的平分线,则CD=DH=1,进而求解。
成都中考数学试题及答案word版

成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分) 第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分) 1. 计算2×(12-)的结果是 (A)-1 (B) l (C)一2 (D) 2 2. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是 (A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上 (C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k>- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150°AB CDEA′9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 (A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是度 (C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
成都中考数学试题解析版

成都市二○一六年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学 A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2小的数是( )(A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )(A) ×105(B) ×106(C) ×107(D) 181×1044. 计算()23x y -的结果是( )(A) 5x y - (B) 6x y (C) 32x y - (D) 62x y 5. 如图,2l l 1∥,∠1=56°,则∠2的度数为( )(A) 34° (B) 56° (C) 124° (D) 146°6. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2)7. 分式方程213xx =-的解为( )(A) x=-2 (B) x=-3 (C) x=2 (D) x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如下表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙 (D) 丁9. 二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) (A) 抛物线开口向下(B) 抛物线经过点(2,3)(C) 抛物线的对称轴是直线x=1 (D) 抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则BC ︵的长为( )(A)103π (B) 109π (C) 59π (D) 518π第Ⅱ卷(非选择题,共70分)二、填空题 (本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 已知|a+2|=0,则a = ______.12. 如图,△ABC ≌△'''A B C ,其中∠A =36°,∠C ′=24°,则∠B=__ _°. 13. 已知P 1(x 1,y 1),P 2(x 2 ,y 2)两点都在反比例函数2y x=的图象上,且x 1< x 2 < 0,则y 1 ____ y 2.(填“>”或“<”)14. 如图,在矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为_________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15. (本小题满分12分,每题6分)(1)计算:()()322sin302016π-+-o(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分) 化简:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m. 根据测量数据,求旗杆CD 的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108 B.6.47×109 C.6.47×1010 D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10 B.a7÷a=a6 C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60 70 80 90 100人数(人)7 12 10 8 3则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共14小题,共104分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A 落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米)8 9 10 11.5 13y1(分钟)18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD ⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【解答】解:从上边看一层三个小正方形,故选:C.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108 B.6.47×109 C.6.47×1010 D.6.47×1011【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.4.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)5.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.6.(3分)下列计算正确的是()A.a5+a5=a10 B.a7÷a=a6 C.a3•a2=a6 D.(﹣a3)2=﹣a6【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.7.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60 70 80 90 100人数(人)7 12 10 8 3则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.2【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)10.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=1.【解答】解:(﹣1)0=1.故答案为:1.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.(6分)化简求值:÷(1﹣),其中x=﹣1.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.21.(4分)如图,数轴上点A表示的实数是﹣1.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【解答】解:设⊙O的半径为1,则AD=,故S圆O=π,阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB===(b﹣a)=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A 落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米)8 9 10 11.5 13y1(分钟)18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,ymin==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD ⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【解答】解:(1)由题意抛物线的顶点C(0,4),A(﹣2,0),设抛物线的解析式为y=ax2+4,把A(﹣2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣3或6.最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。