信号与系统考试知识点梳理
(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。
信号与系统知识点

Y (z) 3z1Y (z) 2z2Y (z) z1X (z) 2z2 X[z],
H (z)
Y (z) X (z)
1
z 1 3z
1
2 z 2 2z
2
1 (z 1)
Yx
(z)
H
(z)X
(z)
(z
1 1)
(z
z 1)
(z
z 1)2
yx[n] nu[n]
(c)、全响应:y[n] y0[n] yx[n] (1 n)u[n]
x(n1) (0 )
复习范围:
6)
常
用
拉
氏
t u(t )
变
tu(t)
换
t eat u (t )
对
teatu(t)
1 s2 1 s2
1 (s a)2
1 (s a)2
Re{s} 0 Re{s} 0 Re{s} a Re{s} a
复习范围:
7) Z 变 换 的 性 质
Z{x[n m]u[n]} zm X (z) zm1x[1] zm2x[2] x[m]
m
最小抽样率:
2
T1
rad
/ s,或f
1 T1
s
2m
4
T1
rad / s,或f
2 T1
最大抽样间隔:
Ts
T1 2
s,
信号的频谱包络:
X (k0 ) T0ck
AT1 sin
c k0T1
2
复习范围:
三、调制、解调、滤波的分析计算
调制
x(t)
g(t)
p(t)
解调
g(t)
r(t) 低通滤波 y(t)=x(t)
k 0 n
信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。
下面是信号与系统的知识点整理。
1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。
-离散信号:在时间上是离散的信号,如数字音频、数字图像等。
-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。
-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。
2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。
-冲击信号:在其中一时刻瞬间出现并消失的信号。
-正弦信号:以正弦函数表示的周期信号。
-方波信号:由高电平和低电平构成的周期信号。
3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。
-线性系统:满足叠加性质的系统。
-因果系统:输出仅依赖于当前和过去的输入的系统。
-稳定系统:有界的输入产生有界的输出的系统。
4.线性时不变系统的特性:-线性性质:满足叠加性质。
-时不变性:系统的输出只取决于输入信号的当前和过去的值。
-冲激响应:线性时不变系统对单位冲激信号的响应。
5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。
-传输函数:用传输函数表示系统的输入和输出之间的关系。
6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。
-序列的频率表示:幅度谱、相位谱和角频率。
7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。
-传递函数:用传递函数表示系统的输入和输出之间的关系。
8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。
-傅里叶变换:将连续时间非周期信号从时域变换到频域。
9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。
-图像处理:对图像进行滤波、增强、压缩等处理。
-音频处理:对音频信号进行降噪、消除回声、变声等处理。
-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。
(完整版)信号与系统复习知识点

第一章
1.信号的运算:时移、反褶、尺度变换、微分、积分等;
2.LTI系统的基本性质:叠加性、时不变特性、微分特性、因果性、可分解线性;
3.阶跃型号与冲激信号及其特性。
单位冲激信号的性质:
1.
2.
3.
4.
5.
6.
7.
例、求下列积分
例、已知信号 的波形如下图1所示,试画出下列各信号的波形
抽样信号的拉氏变换
求半波整流和全波整流周期信号的拉氏变换
(1)
(2)
4-29求下列波形的拉氏变换
(1)
解题思路:单对称方波 ——周期方波——乘
—— ——
(2)
第一周期:
周期信号的拉氏变换:
第五章
1.频域系统函数 ,理想低通滤波器频谱特性;
2.无失真传输条件:幅频特性为常数,相频特性是过原点的直线;
3.系统的物理可实现性判断(1)佩利-维纳准则;(2)系统可实现性的本质是因果性。
被理想抽样信号的傅立叶变换:
被非理想抽样信号傅立叶变换:
第四章
1.典型信号的拉氏变换及拉氏变换的基本性质;
2.S域元件模型、系统函数、系统函数与激励信号极点分布与电响应的关系、系统函数与输入输出方程的关系(利用拉氏变换求解电系统响应);
3.线性系统的稳定性分析。
周期信号的拉氏变换
为信号第一个周期 的拉氏变换;整个周期信号 的拉氏变换为:
第七章
1.离散系统和信号的描述方法、基本性质
2.差分方程的经典解法
3.卷积和定义及其求解方法
第八章
1. z变换的定义、收敛域和基本性质,常用序列的z变换
2.逆z变换的求解方法
3. 的定义、零极点分布与信号/系统性质的关系
信号与系统知识点详细总结

信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。
连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。
系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。
线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。
时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。
2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。
3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。
信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。
时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。
冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。
4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。
频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。
傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。
傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。
信号与系统知识点总结

信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。
2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。
二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。
2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。
3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。
三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。
四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。
2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。
3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。
五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。
2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。
信号与系统知识点总结

信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。
信号分为连续信号和离散信号两种类型。
连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。
2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。
系统分为线性系统和非线性系统两种类型。
线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。
3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。
例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。
二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。
对信号进行时域分析,可以揭示信号的变化规律和特征。
例如,信号的幅度、频率、相位等特征。
2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。
连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。
3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。
线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。
三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。
它可以将信号转换为频谱,揭示信号的频率成分和能量分布。
傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。
2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。
3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。
根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。
四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。
信号与系统定义知识点总结

信号与系统定义知识点总结一、信号的基本概念1. 信号的定义:信号是指随时间或空间变化的某一物理量,它可以是电压、电流、声压、光强等。
信号可以是连续的,也可以是离散的。
2. 基本信号类型:常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号等。
3. 基本信号操作:信号的加法、乘法、平移、缩放等操作对信号的表示和分析非常有用。
二、连续时间信号的表示和分析1. 连续时间信号的表示:连续时间信号可以用数学函数来表示,如正弦函数、余弦函数、指数函数等。
2. 连续时间信号的性质:连续时间信号的周期性、奇偶性、能量和功率等性质对信号的分析和处理至关重要。
3. 连续时间信号的分析方法:傅里叶级数和傅里叶变换是分析连续时间信号最常用的方法,它可以将信号分解成一系列正弦、余弦函数的和,方便对信号进行分析。
三、离散时间信号的表示和分析1. 离散时间信号的表示:离散时间信号可以用序列来表示,如离散单位冲激函数、阶跃函数等。
2. 离散时间信号的性质:离散时间信号的周期性、能量和功率等性质对信号的分析和处理同样十分重要。
3. 离散时间信号的分析方法:离散傅里叶变换和Z变换是分析离散时间信号最常用的方法,它可以将离散时间信号转换成频域表示,方便对信号进行分析。
四、系统的基本概念1. 系统的定义:系统是对信号进行输入输出转换的装置或过程,它可以是线性系统、非线性系统,时变系统、时不变系统等。
2. 系统的性质:系统的稳定性、因果性、线性性、时不变性等性质对系统的分析和设计至关重要。
3. 系统的表示和分析:系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示和分析。
五、线性时不变系统的性质与分析1. 线性时不变系统的特点:线性时不变系统具有线性性质和时不变性质,这使得对其进行分析和设计更加方便。
2. 线性时不变系统的表示:线性时不变系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示。
3. 线性时不变系统的分析方法:冲激响应、频域分析、零极点分析等方法对线性时不变系统的分析非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统——考试知识点梳理
第1章信号与系统的概述
1.1 了解信号的概念和信号的类型
1.2 掌握信号的基本运算,重点掌握信号的尺度变换和信号的正交分解1.3 了解系统的概念、模型、性质及其分类,重点掌握线性时不变因果系统的性质
1.4 掌握线性系统的方框图表示
1.5 掌握线性系统的方框图表示。
第2章线性时不变连续系统的时域分析
2.1了解线性时不变连续系统的经典时域解法,重点掌握系统的零输入响应与零状态响应的概念
2.2掌握连续时间系统的冲激响应与阶跃响应,重点掌握冲激响应与阶跃响应的关系
2.3掌握卷积积分的概念、图解法,卷积运算的性质,用卷积积分法求系统的零状态响应,重点掌握卷积的图解法
2.4掌握相关的概念及其性质,相关与卷积的关系,重点相关的概念和物理性质
第3章傅立叶变换与连续系统的频域分析
3.1掌握周期信号的频谱及其特点,熟练掌握常用周期信号的频谱和特点3.2掌握非周期信号的频域描述,熟练掌握常用非周期信号的频谱和特点3.3 熟练掌握傅立叶变换的性质与应用
3.4 掌握系统的频域特性及响应问题,熟练掌握系统的频率响应函数和正弦稳态响应
3.6了解系统的无失真传输和理想滤波,掌握系统无失真传输的条件
第4章拉普拉斯变换与连续系统复频域分析
4.1掌握拉氏变换的定义和拉普拉斯变换的收敛性判定,重点掌握常用函数的拉普拉斯变换
4.2重点掌握拉氏变换的性质与应用。
4.3掌握利用拉氏变换对系统进行分析,熟练掌握利用部分分式展开法求拉氏逆变换。
4.4熟练掌握系统的零极点分布与系统的关系,重点掌握系统的稳定性分析
4.5掌握拉普拉斯变换与傅立叶变换的关系,系统函数的表示法
4.6了解系统函数零点、极点分布与系统时域和频域特性的关系
第5章抽样
5.1熟练掌握时域抽样定理
5.2掌握抗混叠滤波处理
5.3了解频域抽样定理
5.4了解减小皱波的措施
5.5了解信号的恢复
第6章线性时不变离散系统的时域分析
6.1了解离散时间信号的时域解法
6.2掌握离散时间的冲激响应与阶跃响应
6.3熟练掌握离散卷积和的概念及性质,利用卷积和求系统的零状态响应,3离散系统的线性和周期卷积
6.4熟练掌握离散系统因果性与稳定性的判断
6.5熟练掌握离散相关函数的定义、性质和应用
第7章离散时间系统的Z域分析
7.1掌握Z变换的定义和收敛域
7.2熟练掌握求Z反变换的方法
7.4熟练掌握Z变换的基本性质和定理
7.5 熟练掌握Z变换与拉氏变换、傅氏变换的关系
7.6 熟练掌握离散系统的系统函数及频率响应和系统稳定性判断。