信号与系统知识点
信号与系统知识点总结

信号与系统知识点总结信号与系统是电子信息科学与技术专业中的一门重要课程,它研究的是信号的产生、传输、处理和系统的分析、设计与控制等内容。
信号与系统是电子信息工程及其相关专业的基础课程,对于学习与工程实践有着重要的意义。
下面是信号与系统知识点的总结。
1.信号的分类信号是信息的载体,它可以是连续的或离散的,可以是周期的或非周期的,可以是冲激的或非冲激的。
根据信号的不同属性,可以将其分为连续信号和离散信号、周期信号和非周期信号、冲激信号和非冲激信号等。
2.连续信号与离散信号连续信号是定义在连续时间域上的信号,用函数表示;离散信号是定义在离散时间域上的信号,用数列表示。
连续信号和离散信号可以通过采样和重构的方法相互转换。
3.周期信号与非周期信号周期信号是在一定时间内重复出现的信号,其周期可以是有限的也可以是无限的;非周期信号是不具有周期性的信号,其能量或功率可以是有限的也可以是无限的。
4.冲激信号与非冲激信号冲激信号是单位面积上的单位冲量信号,可以看作是宽度趋近于零、幅度趋近于无穷大的矩形信号;非冲激信号是在一定时间范围内的非零函数。
5.信号的基本操作信号的基本操作包括平移、反褶、放大、缩小等。
平移操作是将信号在时间轴上平移,反褶操作是将信号在时间轴上反转,放大操作是增大信号的幅度,缩小操作是减小信号的幅度。
6.系统的分类系统是对信号进行操作或变换的装置或过程,可以分为线性系统和非线性系统、时不变系统和时变系统等。
线性系统具有叠加性和比例性质,时不变系统的输出与输入的延迟无关。
7.线性时不变系统的性质线性时不变系统具有线性叠加性、时域平移不变性、时域卷积性质和频域相应性质。
线性时不变系统可以通过其单位冲激响应来描述,单位冲激响应与系统的输入信号进行卷积运算可以得到系统的输出信号。
8.系统的稳定性系统的稳定性是指对于有界输入信号,系统的输出是否有界。
稳定系统的输出信号不会无限增长,而不稳定系统的输出信号可能会无限增长。
信号与系统通信原理知识点

描述信源平均信息量的物理量,等于 信源所有可能消息的信息量的数学期 望。
07 模拟调制技术
幅度调制原理及抗噪性能分析
幅度调制原理
幅度调制是通过改变载波的振幅来传递 信息的一种调制方式。在幅度调制中, 调制信号控制载波的振幅,使得载波的 振幅随着调制信号的变化而变化。
VS
抗噪性能分析
幅度调制系统的抗噪性能主要取决于信噪 比(SNR)。在相同的信噪比条件下,幅 度调制系统的误码率随着信噪比的增加而 降低。为了提高幅度调制系统的抗噪性能, 可以采用增加信号功率、降低噪声功率、 采用合适的解调方式等方法。
对于离散时间信号,可以采用离散时间傅里叶变换(DTFT)进行频域
分析,DTFT是连续时间傅里叶变换的离散化形式。
系统频率响应
系统频率响应的定
义
系统对输入信号的响应可以通过 频率响应来描述,频率响应反映 了系统对不同频率分量的放大或 衰减程度。
系统频率响应的求
解
通过系统的传递函数或差分方程 可以求解系统的频率响应,传递 函数描述了系统输入与输出之间 的关系。
数值计算法
对于难以用解析方法求解的拉普拉斯反变换,可以采用数值计算方法进行近似求解。
系统S域分析
系统函数
在S域中,系统的特性可以用系统函数来描述。系统函数 是系统冲激响应的拉普拉斯变换,它包含了系统的全部信 息。
频率响应分析
通过系统函数在虚轴上的取值可以得到系统的频率响应。 频率响应描述了系统对不同频率信号的放大或衰减特性。
通信分类
根据传输媒介的不同,可分为有线通信和无线通信;根据信号性质的不同,可分为模拟通信和数字通 信。
模拟通信与数字通信比较
信号性质
模拟通信传输连续的信号,数 字通信传输离散的信号。
信号与系统知识点

Y (z) 3z1Y (z) 2z2Y (z) z1X (z) 2z2 X[z],
H (z)
Y (z) X (z)
1
z 1 3z
1
2 z 2 2z
2
1 (z 1)
Yx
(z)
H
(z)X
(z)
(z
1 1)
(z
z 1)
(z
z 1)2
yx[n] nu[n]
(c)、全响应:y[n] y0[n] yx[n] (1 n)u[n]
x(n1) (0 )
复习范围:
6)
常
用
拉
氏
t u(t )
变
tu(t)
换
t eat u (t )
对
teatu(t)
1 s2 1 s2
1 (s a)2
1 (s a)2
Re{s} 0 Re{s} 0 Re{s} a Re{s} a
复习范围:
7) Z 变 换 的 性 质
Z{x[n m]u[n]} zm X (z) zm1x[1] zm2x[2] x[m]
m
最小抽样率:
2
T1
rad
/ s,或f
1 T1
s
2m
4
T1
rad / s,或f
2 T1
最大抽样间隔:
Ts
T1 2
s,
信号的频谱包络:
X (k0 ) T0ck
AT1 sin
c k0T1
2
复习范围:
三、调制、解调、滤波的分析计算
调制
x(t)
g(t)
p(t)
解调
g(t)
r(t) 低通滤波 y(t)=x(t)
k 0 n
信号与系统知识点归纳

周期信号的频谱是离散的,由一系列频率分量组成,每个 分量对应一个傅里叶系数。
幅度谱和相位谱
幅度谱表示各频率分量的幅度大小,相位谱表示各频率分 量的相位信息。
非周期信号频谱分析
傅里叶变换
将非周期信号表示为一系列复指数函数的积分,即 $F(omega) = int_{-infty}^{infty} f(t) e^{jomega t} dt$,其中 $F(omega)$ 是信号的频谱。
单位样值信号
在某一时刻取值为1,其余时 刻为0的信号。
正弦型信号
形如sin(ωn)或cos(ωn)的周期 性信号,其中ω为角频率。
复杂指数型信号
形如ean的形式,其中a和ω为 常数,n为离散时刻。
离散时间信号频谱分析
离散时间信号的频谱
通过傅里叶变换将离散时间信号从时域转换 到频域,得到信号的频谱。
信号分类
根据信号的性质和特征,信号可以分 为多种类型,如连续时间信号和离散 时间信号、周期信号和非周期信号、 能量信号和功率信号等。
系统定义及性质
系统定义
系统是一个由输入信号激励、内部含有某种变换关系、并能产生输出信号的物理装置或算法。在信号处理中,系 统通常表示为对输入信号进行某种变换或处理的过程。
周期信号的频谱
周期信号可以表示为无穷级数,其频谱由傅 里叶系数确定。
非周期信号的频谱
非周期信号的频谱是连续的,可以通过傅里 叶变换求得。
信号的能量和功率谱
能量信号和功率信号的频谱特性不同,分别 对应能量谱和功率谱。
离散时间系统响应
线性时不变系统的响应
线性时不变系统对输入信号的响应具有叠加性和时不变性。
卷积和运算
线性时不变系统的响应可以通过输入信号与系统单位样值响应的卷积 和求得。
信号与系统知识点

信号与系统信号分类:模拟、数字(连续、离散)三种基本系统互连:串联、并联(级联)、反馈对系统的描述:I/O方程、初始条件、边界条件因果:输出只取决于以前的和当前的输入时不变:特性不随时间改变线性:齐次性、可加性初始松弛条件一个离散时间线性时不变系统的特性完全由它的单位冲激响应决定。
(卷积)一个连续时间线性时不变系统的特性完全由它的单位冲激响应决定。
(卷积几份)卷积性质:交换律、分配律、结合律单位冲激响应对系统因果、稳定性的描述LTI系统的特征值、特征函数(离散、连续)周期性连续信号的傅里叶级数公式(各项意义)傅里叶级数存在条件(Dirichlet条件:周期内积分存在、有限个最大最小值、有限个不连续点)吉布斯现象(对存在不连续点的函数进行的傅里叶级数分析)帕斯瓦尔定理(能量与频谱的关系)时域卷积频域相乘;时域相乘频域卷积(系数)(离散:周期卷积)周期离散信号特征函数的性质(周期性N时域频域)与连续信号的区别系统函数、频率响应周期信号通过LTI系统:信号功率谱被改变(幅度、相位)时域连续频域非周期,时域周期频率离散傅里叶变换公式(傅里叶级数是傅里叶变换的抽样)傅里叶变换存在条件:能量有限、狄里赫利条件离散时间傅里叶级数以N为周期,傅里叶变换以2π为周期离散时间傅里叶反变换存在条件:无;变换:能量有限或绝对可和实信号的傅里叶变换共轭对称,实偶信号对应频域实偶,实奇频域虚奇周期卷积计算公式CTFT在时域和频域存在对偶关系线性相位:只时移不失真;非线性:时移的同时失真全通系统定义抽样:原始信号与抽样序列相乘(频域:频谱线性搬移)(零阶保持采样)奈奎斯特抽样速率(两倍信号最高频率)模拟角频率w,数字角频率Ω(Ω=wT)抽样前后傅里叶变换对应关系(以ws为周期和以2π为周期、系数)卷积的应用:AM调制(最大调制效率三分之一)、解调超外差式接收:先移到低频然后解调拉普拉斯变换:傅里叶变换不能分析不稳定系统以及不可和信号拉普拉斯变换与傅里叶变换的关系(不同:拉氏变换还需要收敛域来确定信号)收敛域(拉氏变换仅在收敛域内有定义)(合理变换的收敛域内不能有极点)(只与s的实部有关)(傅里叶变换存在条件)如果信号是有限长并且绝对可积,则收敛域是整个s平面单边信号收敛域:右单边对应右平面,左单边对应左平面,双边对应带状收敛域由极点确定,两极点之间,最右极点右边,最左极点左边,或不存在S平面几何分析法(确定拉氏变换幅频相频特性)拉氏变换确定系统稳定(ROC包含虚轴)、因果(RHP)初始、终值定理;应用(与拉氏变换零极点个数、已经s=0处是否有极点有关)框图表示系统函数单边拉氏变换(分析因果系统,用带有初始条件的微分方程描述系统)、微分性质中与初始条件有关全响应=零输入响应+零状态响应反馈:引入极点Z变换公式(收敛域只与z的模有关)Z变换和DTFT的关系(r=1)、LT关系(z=expsT)S平面和Z平面的关系(虚轴和单位圆)Z变换与因果(收敛域在圆外且包括无穷远或Z变换极点数不大于零点数)、稳定(收敛域包括单位圆或所有极点都在单位圆内或傅里叶变换存在)的关系图形分析(Z变换与频率响应的关系)线性常系数微分方程描述离散系统系统函数单边Z变换(收敛域总是在圆外并且包括无穷远处)(对因果系统,单边变换等于双边变换)(时移特性与n=-1处的值有关)。
信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。
下面是信号与系统的知识点整理。
1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。
-离散信号:在时间上是离散的信号,如数字音频、数字图像等。
-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。
-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。
2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。
-冲击信号:在其中一时刻瞬间出现并消失的信号。
-正弦信号:以正弦函数表示的周期信号。
-方波信号:由高电平和低电平构成的周期信号。
3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。
-线性系统:满足叠加性质的系统。
-因果系统:输出仅依赖于当前和过去的输入的系统。
-稳定系统:有界的输入产生有界的输出的系统。
4.线性时不变系统的特性:-线性性质:满足叠加性质。
-时不变性:系统的输出只取决于输入信号的当前和过去的值。
-冲激响应:线性时不变系统对单位冲激信号的响应。
5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。
-传输函数:用传输函数表示系统的输入和输出之间的关系。
6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。
-序列的频率表示:幅度谱、相位谱和角频率。
7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。
-传递函数:用传递函数表示系统的输入和输出之间的关系。
8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。
-傅里叶变换:将连续时间非周期信号从时域变换到频域。
9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。
-图像处理:对图像进行滤波、增强、压缩等处理。
-音频处理:对音频信号进行降噪、消除回声、变声等处理。
-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。
信号与系统知识点详细总结

信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。
连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。
系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。
线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。
时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。
2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。
3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。
信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。
时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。
冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。
4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。
频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。
傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。
傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。
信号与系统知识点总结

信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。
2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。
二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。
2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。
3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。
三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。
四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。
2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。
3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。
五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。
2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 信号与系统分析导论
北京交通大学
1、 信号的描述及分类 周期信号:
()000002sin ,sin ,2t T m k N π
ωωπ=ΩΩ=当为不可约的有理数时,为周期信号
能量信号:直流信号和周期信号都是功率信号。
一个信号不可能既是能量信号又是功率信号,但有少数信号既不是能量信号
也不是功率信号。
2、 系统的描述及分类
线性: 叠加性、均匀性
时不变:输出和输入产生相同的延时 因果性:输出不超前输入
稳定性:有界输入有界输出
3、 信号与系统分析概述
※ 第2章 信号的时域分析
信号的分析就是信号的表达。
1、 基本连续信号的定义、性质、相互关系及应用
()t δ的性质:筛选特性:000()()()()x t t t x t t t δδ-=-
取样特性:00()()d ()x t t t t x t δ∞
-∞-=⎰ 展缩特性:1
()() (0)t t δαδαα=≠
()'t δ的性质:筛选特性:00000()'()()'()'()()x t t t x t t t x t t t δδδ-=---
取样特性:00()'()d '()x t t t t x t δ∞
-∞-=-⎰ 展缩特性:1'()'() (0)t t δαδααα=
≠
2、连续信号的基本运算 翻转、平移、展缩、相加、相乘、微分、积分、卷积
3、基本离散信号
4、离散信号的基本运算
翻转、位移、抽取和内插、相加、相乘、差分、求和、卷积
5、确定信号的时域分解
直流分量+交流分量、奇分量+偶分量、实部分量+虚部分量、()[],t k δδ的线性组合。
第3章 系统的时域分析
1、系统的时域描述
连续LTI 系统:线性常系数微分方程 ()()y t x t 与之间的约束关系 离散LTI 系统:线性常系数差分方程 [][]y k x k 与之间的约束关系
2、 系统响应的经典求解(一般了解) 衬托后面方法的优越
纯数学方法 全解=通解+特解
3、 系统响应的卷积方法求解
()zi y t :零输入响应,形式取决于微分方程的特征根。
()zs y t :零状态响应,形式取决于微分方程的特征根及外部输入()x t 。
()h t :冲激平衡法(微分方程右边阶次低于左边阶次,则()h t 中不含有()t δ及其导数项)
(一般了解)
[]h k :等效初始条件法(一般了解)
4、 ※卷积计算及其性质
※图形法
※解析法
等宽/不等宽矩形信号卷积
卷积的基本公式及其性质(交换律、结合律、分配律)
※第4章 信号的频域分析
1、连续周期信号表达为虚指数信号()0jn t e t ω-∞<<∞的线性组合
0=()jn t n n x t C e ω∞-∞=∑ 完备性、唯一性
()n x t C ⇔(周期信号的频谱)000001 ()T t jn t n t C x t e dt T ω+-=⎰
产生Gibbs 现象的原因
2、连续周期信号的对称特性
若()()x t x t =-:含有直流项与余弦各次谐波分量;
若()()x t x t =--:含有正弦各次谐波分量; 若0()(2)x t x t T =±:含有正弦与余弦的偶次谐波分量;
若0()(/2)x t x t T =-±:含有正弦与余弦的奇次谐波分量。
判断信号的对称特性时,可做上下平移,只影响直流分量。
3、常见连续周期信号的频谱
矩形波 三角波
4、连续周期信号频谱的特点 离散谱 谱线间隔02T πω=
幅度衰减
有效带宽 B 2π
1
ωττ=∝
5、 连续周期信号功率谱
6、 连续非周期信号表达为()j t e t ω-∞<<∞的线性组合
7、常用连续非周期信号的频谱
()()()()()()()0
000,,sgn ,,sin ,cos ,,,()j t t a T t u t t e u t t t e S t t ωαδωωωδ±-,矩形波、三角波等 8、傅里叶变换的性质(用会)
11大性质
9、能量守恒
10、离散周期信号表达为2πj mk N e 的线性组合
11、常用离散周期信号的频谱
周期单位脉冲序列[]N k δ,正弦型序列,周期矩形波序列等。
12、离散傅里叶级数的基本性质
13、离散非周期信号表达为虚指数序列j k e Ω的线性组合
14、离散傅里叶变换的基本性质
15、信号的时域抽样
※时域抽样定理 基本内容、基本理论、基本应用 连续周期信号、连续非周期信号、离散周期信号、离散非周期信号时域和频域的对应关系。
※第5章 系统的频域分析
1、系统的频域描述
()()()
zs Y j H j X j ωωω=取决于系统本身的特性 系统的频响特性
不同信号通过系统响应的频域分析:
2、系统响应的频域求解
3、无失真传输系统、理想低通滤波器
时域:()()d y t kx t t =-
频域:()()()d
j t d H j ke h t k t t ωωδ-==-
4、信号的调制与解调
幅度调制 调制特性()()0T t ωδδω→
※第6章 连续时间信号与系统的复频域分析
1、信号表达为()st e t -∞<<+∞
2、常用信号的拉普拉斯变换
ROC :有限信号的收敛域为()e R s >-∞。
3、拉普拉斯变换的性质
4、拉普拉斯反变换
留数法
部分分式展开法 真分式 周期信号、其他波形等 x (t ) 表达为基本信号 ()X s ROC +
5、连续系统的复频域描述
()H s ——系统函数 ()()()
zs Y s H s X s =只与系统本身有关
()H s 求解 ()()H s h t ⇔
6、()H s 与系统特性
时域特性 ()h t
频域特性 ()H j ω
稳定性 LTI ()H s 的ROC 包含s 平面j ω轴 因果性 因果LTI ()H s 的所有极点位于s 左半平面
7、 连续系统的模拟
1) 直接型
2) 级联型 12()()()H s H s H s =
3) 并联型 12()()()H s H s H s =++
8、 连续时间系统响应S 域求解
可以同时求出(),(),(),()zs zi y t y t h t H s ,画出系统模拟框图,判断系统的稳定性。
※第7章 离散时间信号与系统的复频域分析
1、信号表达为k z -形式
2、常用序列的Z 变换
[][][]()0,,,sin ,k N k u k R k k r δΩ等
3、Z 变换的性质
4、Z 反变换 ()[]X z ROC x k +→
幂级数展开法
留数法
部分分式展开法,尽可能先提取分子上一个z 。
5、离散系统的z 域描述
()H z ——系统函数 ()()()
zs Y z H z X z =只与系统本身有关 ()H z 求解 ()[]H z h k ⇔
6、()H z 与系统特性
1)时域特性[]
h k
2)稳定性 LTI:()
H z的ROC包含单位圆
3)因果性因果LTI:()
H z的所有极点位于单位圆内
7、离散系统的模拟
1)直接型
2)级联型
3)并联型
8、离散系统的z域求解
y k y k h k H z,画出系统模拟框图,判断系统的因果性、稳定性。
可以同时求出[],[],[],()
zs zi
第8章系统的状态变量分析
1、状态变量分析方法的概念
状态变量如何选取
2、建立状态方程和输出方程
1)微分方程或差分方程
2)()
H z
H s或()
3)模拟框图。