信号与系统学习知识重点
(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。
信号与系统重要知识总结

信号与系统重要知识总结信号与系统是电子信息类专业中的一门重要课程,它是研究信号的产生、传输、处理与分析的学科。
信号与系统的重要知识主要包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算、系统的稳定性等。
以下是对信号与系统重要知识的总结。
一、信号的基本概念信号是随时间、空间或其他自变量变化的物理量。
根据自变量的不同,信号可以分为时域信号和频域信号。
时域信号是关于时间的函数,而频域信号是关于频率的函数。
二、信号的分类根据信号的性质和特点,信号可以分为连续时间信号和离散时间信号。
连续时间信号是在整个时间范围内存在的信号,离散时间信号仅在一些离散时间点存在。
三、信号的时域和频域表示时域表示是将信号表示为随时间变化的函数,常用的时域表示方法有冲激函数表示、阶跃函数表示和周期函数表示等。
频域表示是将信号表示为随频率变化的函数,常用的频域表示方法有傅里叶变换和拉普拉斯变换等。
四、线性时不变系统线性时不变系统(LTI)是信号与系统中的重要概念,它是指系统的输出只取决于输入的当前值和过去值,且满足线性叠加原理。
LTI系统具有很多重要性质,如时域稳定性、频域稳定性、因果性、时域线性和频域线性等。
五、卷积运算卷积运算是信号与系统中的重要运算工具,它描述了输入信号经过系统响应的输出信号。
卷积运算实质上是将两个信号相乘并对一个变量进行积分的过程。
在时域中,卷积运算可以表示为输入信号和系统冲激响应的卷积;在频域中,卷积运算可以使用傅里叶变换和反变换来进行。
六、系统的稳定性系统的稳定性是指当输入有界时,输出是否也是有界的。
稳定性是一个重要的系统性质,不稳定系统可能导致系统失控或发生崩溃。
稳定性的判定方法有多种,常用的方法有判定系统传递函数的极点位置和利用BIBO(有界输入有界输出)稳定性判据。
综上所述,信号与系统是电子信息类专业中的一门重要课程,它涉及信号的产生、传输、处理与分析的方法。
信号与系统中的重要知识包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算和系统的稳定性等。
信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。
下面是信号与系统的知识点整理。
1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。
-离散信号:在时间上是离散的信号,如数字音频、数字图像等。
-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。
-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。
2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。
-冲击信号:在其中一时刻瞬间出现并消失的信号。
-正弦信号:以正弦函数表示的周期信号。
-方波信号:由高电平和低电平构成的周期信号。
3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。
-线性系统:满足叠加性质的系统。
-因果系统:输出仅依赖于当前和过去的输入的系统。
-稳定系统:有界的输入产生有界的输出的系统。
4.线性时不变系统的特性:-线性性质:满足叠加性质。
-时不变性:系统的输出只取决于输入信号的当前和过去的值。
-冲激响应:线性时不变系统对单位冲激信号的响应。
5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。
-传输函数:用传输函数表示系统的输入和输出之间的关系。
6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。
-序列的频率表示:幅度谱、相位谱和角频率。
7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。
-传递函数:用传递函数表示系统的输入和输出之间的关系。
8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。
-傅里叶变换:将连续时间非周期信号从时域变换到频域。
9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。
-图像处理:对图像进行滤波、增强、压缩等处理。
-音频处理:对音频信号进行降噪、消除回声、变声等处理。
-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。
信号与系统_复习知识总结

信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。
在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。
一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。
2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。
(2)离散时间信号:只在一些特定时刻上有取值的信号。
(3)连续振幅信号:信号的幅度在一定范围内连续变化。
(4)离散振幅信号:信号的幅度只能取离散值。
二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。
(2)波形表示法:用图形表示信号。
2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。
(2)图形表示法:用折线图表示离散时间信号。
三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。
(2)齐次性:输入信号的倍数与输出信号的倍数相同。
2.时不变性:系统的输出不随输入信号在时间上的变化而变化。
3.扩展性:输入信号的时延会导致输出信号的时延。
4.稳定性:系统的输出有界,当输入信号有界时。
5.因果性:系统的输出只依赖于当前和过去的输入信号值。
6.可逆性:系统的输出可以唯一地反映输入信号的信息。
四、离散时间系统的性质1.线性性质:具有加性和齐次性。
2.时不变性:输入信号的时移会导致输出信号的相应时移。
3.稳定性:系统的输出有界,当输入信号有界时。
4.因果性:系统的输出只依赖于当前和过去的输入信号值。
五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。
2.线性时不变系统:具有加性和齐次性。
3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。
4.非线性系统:不具有加性和齐次性。
六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。
信号与系统期末重点总结

信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。
2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。
3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。
4. 系统的定义:系统是将输入信号转换为输出信号的过程。
5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。
二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。
(2)幅度谱与相位谱:复指数信号的频谱特性。
(3)周期信号:特点是在一个周期内重复。
(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。
2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。
(2)冲击响应与系统特性:系统的特性通过冲击响应得到。
(3)卷积积分:输入信号与系统冲激响应的积分运算。
3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。
(2)Fourier变换:将时域信号转换为频域信号。
(3)Laplace变换:用于解决微分方程。
三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。
(2)离散频谱:离散时间信号的频域特性。
(3)周期信号:在离散时间中周期性重复的信号。
(4)离散时间系统的线性时不变性:线性组合和时延等。
2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。
(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。
(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。
3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。
(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。
(3)Z变换:傅立叶变换在离散时间中的推广。
四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。
信号与系统-复习总结

信号与系统-复习总结.doc信号与系统复习总结前言信号与系统是电子工程、通信工程和自动控制等专业的基础课程之一。
它主要研究信号的特性、系统的分析方法以及信号与系统之间的相互作用。
通过对信号与系统的学习,可以为后续课程打下坚实的基础。
以下是我对信号与系统课程的复习总结。
第一部分:信号的基本概念1.1 信号的分类信号可以分为连续时间信号和离散时间信号,根据信号的确定性与否,又可以分为确定性信号和随机信号。
1.2 信号的基本属性信号的基本属性包括幅度、频率、相位和时延等。
这些属性决定了信号的基本特性。
1.3 信号的运算信号的基本运算包括加法、减法、乘法、卷积等。
这些运算是信号处理中的基础。
第二部分:系统的特性2.1 系统的分类系统可以分为线性时不变系统(LTI系统)、线性时变系统、非线性系统等。
2.2 系统的特性系统的特性包括因果性、稳定性、可逆性等。
这些特性决定了系统对信号的处理能力。
2.3 系统的数学模型系统的数学模型通常包括差分方程、状态空间模型、传递函数等。
第三部分:信号与系统的分析方法3.1 时域分析时域分析是直接在时间轴上对信号进行分析的方法,包括信号的时域特性分析和系统的时域响应分析。
3.2 频域分析频域分析是将信号从时间域转换到频率域进行分析的方法,包括傅里叶变换、拉普拉斯变换等。
3.3 复频域分析复频域分析是利用拉普拉斯变换将信号和系统从时域转换到复频域进行分析的方法。
3.4 系统的状态空间分析状态空间分析是一种现代的系统分析方法,它利用状态变量来描述系统的动态行为。
第四部分:信号与系统的实际应用4.1 通信系统信号与系统的知识在通信系统中有着广泛的应用,如信号的调制与解调、信道编码与解码等。
4.2 控制系统在控制系统中,信号与系统的知识用于系统的设计和分析,如PID控制器的设计、系统稳定性分析等。
4.3 滤波器设计滤波器设计是信号处理中的一个重要应用,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器的设计。
信号与系统知识点详细总结

信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。
连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。
系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。
线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。
时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。
2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。
3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。
信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。
时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。
冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。
4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。
频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。
傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。
傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。
信号与系统知识点总结

信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。
2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。
二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。
2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。
3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。
三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。
四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。
2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。
3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。
五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。
2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 信号与系统分析导论北京交通大学1、 信号的描述及分类周期信号:()000002sin ,sin ,2t T mk Nπωωπ=ΩΩ=当为不可约的有理数时,为周期信号能量信号:直流信号和周期信号都是功率信号。
一个信号不可能既是能量信号又是功率信号,但有少数信号既不是能量信号也不是功率信号。
2、 系统的描述及分类 线性: 叠加性、均匀性时不变:输出和输入产生相同的延时因果性:输出不超前输入 稳定性:有界输入有界输出 3、 信号与系统分析概述※ 第2章 信号的时域分析信号的分析就是信号的表达。
1、 基本连续信号的定义、性质、相互关系及应用()()()()()()0'0,,,,,,sin ,,j t t st a t t u t r t Ae e t e S t ωαδδωL 1444244431444442444443奇异信号普通信号()()()()()()()()()()()()''tttd t t t d dt du t t u t d dt dr t u t r t u d dtδδδδττδδττττ-∞-∞-∞======⎰⎰⎰()t δ的性质:筛选特性:000()()()()x t t t x t t t δδ-=-取样特性:00()()d ()x t t t t x t δ∞-∞-=⎰展缩特性:1()() (0)t t δαδαα=≠()'t δ的性质:筛选特性:00000()'()()'()'()()x t t t x t t t x t t t δδδ-=---取样特性:00()'()d '()x t t t t x t δ∞-∞-=-⎰展缩特性:1'()'() (0)t t δαδααα=≠'()'()t t δδ=--'()d 0t t δ∞-∞=⎰2、连续信号的基本运算翻转、平移、展缩、相加、相乘、微分、积分、卷积 3、基本离散信号[][][][][]00,,,,,,sin ,j k k k N k u k r k R k Ar e k Az δΩΩL[][][1]k u k u k δ=--[][1][]u k r k r k =+- [][]kn u k n δ=-∞=∑[1][]kn r k u n =-∞+=∑4、离散信号的基本运算翻转、位移、抽取和内插、相加、相乘、差分、求和、卷积5、确定信号的时域分解直流分量+交流分量、奇分量+偶分量、实部分量+虚部分量、()[],t k δδ的线性组合。
第3章 系统的时域分析1、系统的时域描述 连续LTI 系统:线性常系数微分方程 ()()y t x t 与之间的约束关系离散LTI 系统:线性常系数差分方程 [][]y k x k 与之间的约束关系2、 系统响应的经典求解(一般了解) 衬托后面方法的优越纯数学方法 全解=通解+特解()()()h p y t y t y t =+ [][][]h p y k y k y k =+3、 系统响应的卷积方法求解()()()()()()zi zs zi y t y t y t y t x t h t =+=+* [][][][][][]zi zs zi y k y k y k y k x k h k =+=+* ()zi y t :零输入响应,形式取决于微分方程的特征根。
()zs y t :零状态响应,形式取决于微分方程的特征根及外部输入()x t 。
()h t :冲激平衡法(微分方程右边阶次低于左边阶次,则()h t 中不含有()t δ及其导数项)(一般了解)[]h k :等效初始条件法(一般了解)4、 ※卷积计算及其性质()()()()()d y t x t h t x h t τττ∞-∞=*=-⎰[][][][][]n y k x k h k x n h k n ∞=-∞=*=-∑※图形法 ※解析法等宽/不等宽矩形信号卷积卷积的基本公式及其性质(交换律、结合律、分配律)()()()x t t x t δ*=()()()1212x t t t t x t t t δ-*-=--()()()tx t u t x d ττ-∞*=⎰()()()11t t x t u t t x d ττ--∞*-=⎰(1)''(1)'(1)12121212()()()()()()[()()]x t x t x t x t x t x t x t x t ---*=*=*=*1()()()()()t tt tt e e u t e u t e u t te u t βααβααββααβ⎧-≠⎪-*=⎨⎪=⎩11[][][](1)[]k k k k k u k u k u k k u k βααβαββαααβ++⎧-≠⎪*=-⎨⎪+=⎩※第4章 信号的频域分析1、连续周期信号表达为虚指数信号()0jn tet ω-∞<<∞的线性组合0=()jn tnn x t C eω∞-∞=∑% 完备性、唯一性()n x t C ⇔%(周期信号的频谱)00001()T t jn t n t C x t e dt T ω+-=⎰%0001()(cos sin )2n n n a x t a n t b n t ωω∞==++∑%产生Gibbs 现象的原因 2、连续周期信号的对称特性若()()x t x t =-%%:含有直流项与余弦各次谐波分量; 若()()x t x t =--%%:含有正弦各次谐波分量;若0()(2)xt x t T =±%%:含有正弦与余弦的偶次谐波分量; 若0()(/2)xt x t T =-±%%:含有正弦与余弦的奇次谐波分量。
判断信号的对称特性时,可做上下平移,只影响直流分量。
3、常见连续周期信号的频谱 矩形波三角波4、连续周期信号频谱的特点离散谱 谱线间隔02Tπω= 幅度衰减 有效带宽B 2π1ωττ=∝5、 连续周期信号功率谱0022221|()|d T n T n=P x t t C T ∞--∞==∑⎰%()()22020sin 2cos 2A AB B tC C t ωω→→→6、 连续非周期信号表达为()j t e t ω-∞<<∞的线性组合t1()()d 2πj x t X j e ωωω∞-∞=⎰ ()()x t X j ω⇔ t ()()d j X j x t e t ωω∞--∞=⎰7、常用连续非周期信号的频谱()()()()()()()0000,,sgn ,,sin ,cos ,,,()j t t a T t u t t e u t t t e S t t ωαδωωωδ±-,矩形波、三角波等8、傅里叶变换的性质(用会)11大性质9、能量守恒()2221()d ()d 2π1()2πx t t X j G j X j ωωωω∞∞-∞-∞==⎰⎰10、离散周期信号表达为2πj mk Ne 的线性组合{}11[]IDFS [][]N mk Nm x k X m Xm W N--===∑%%% 2πjNN W e-=[][]x k X m ⇔%% {}1[]DFS [][]N mk N k X m x k x k W -===∑%%%11、常用离散周期信号的频谱周期单位脉冲序列[]N k δ,正弦型序列,周期矩形波序列等。
12、离散傅里叶级数的基本性质 13、离散非周期信号表达为虚指数序列j ke Ω的线性组合ππ1[]()d 2πj j kx k X e e ΩΩ-=Ω⎰()[]j j kk X e x k e∞Ω-Ω=-∞=∑14、离散傅里叶变换的基本性质 15、信号的时域抽样 ※时域抽样定理 基本内容、基本理论、基本应用连续周期信号、连续非周期信号、离散周期信号、离散非周期信号时域和频域的对应关系。
※第5章 系统的频域分析1、系统的频域描述 ()()()zs Y j H j X j ωωω=取决于系统本身的特性系统的频响特性不同信号通过系统响应的频域分析:{}()j t j t T e H j e ωωω={}[]0000sin()()sin ()T t H j t ωθωωϕωθ+=++ {}[]0000cos()()cos ()T t H j t ωθωωϕωθ+=++2、系统响应的频域求解()()()zs Y j H j X j ωωω= []1()()zs zs y t F Y j ω-=3、无失真传输系统、理想低通滤波器 时域:()()d y t kx t t =- 频域:()()()dj t d H j ke h t k t t ωωδ-==-4、信号的调制与解调幅度调制 调制特性()()0T t ωδδω→ ()()x t X j ω→()()()()00011cos 22x t t X j X j ωωωωω→++-⎡⎤⎡⎤⎣⎦⎣⎦※第6章 连续时间信号与系统的复频域分析1、信号表达为()st e t -∞<<+∞1()()d 2πj st j x t X s e s j σσ+∞-∞=⎰()()()()d stx t X s ROCX s x t e t-∞-⇔+=⎰2、常用信号的拉普拉斯变换()()()()()()()0()00,,,,,sin ,cos ,,j t n n t t t u t r t e t t t e u t ωαδδωω±ROC :有限信号的收敛域为()e R s >-∞。
3、拉普拉斯变换的性质4、拉普拉斯反变换 留数法✓ 部分分式展开法 真分式 周期信号、其他波形等ROC5、连续系统的复频域描述()H s ——系统函数 ()()()zs Y s H s X s =只与系统本身有关 ()H s 求解 ()()H s h t ⇔6、()H s 与系统特性 ✓ 时域特性 ()h t ✓ 频域特性 ()H j ω✓ 稳定性 LTI ()H s 的ROC 包含s 平面j ω轴 ✓ 因果性 因果LTI ()H s 的所有极点位于s 左半平面 7、 连续系统的模拟()()1()t u tss==()()()h t A tH s Aδ==1)直接型2)级联型12()()()H s H s H s=L3)并联型12()()()H s H s H s=++L8、连续时间系统响应S域求解2()()()()(0)()()(0)(0)y t Y sy t sY s yy t s Y s sy y---→''→-'''→--可以同时求出(),(),(),()zs ziy t y t h t H s,画出系统模拟框图,判断系统的稳定性。