常用统计量分布表
统计量及其分布

样本均值的抽样分布 (例题分析)
【例】设一个总体含有4 个个体,分别为X1=1、X2=2、 X3=3 、X4=4 。总体的均值、方差及分布如下。
总体均值和方差
总体的频数分布
X
i 1
N
i
N
N
2.5
2
2 ( X ) i i 1
0.02 0 2 1 0.1
21 Φ0.2
0.8414
(4) 样本 k 阶(原点)矩
1 n k Ak X i , k 1, 2, ; n i 1
1 n k 其观察值 k x i , k 1, 2, . n i 1
n n 1 2 1 2 2 E( S ) E X i nX (Xi X ) E n 1 i 1 n 1 i 1
2
1 n 2 2 E ( X i ) nE ( X ) n 1 i 1 2 1 n 2 2 2 ( ) n 2 n 1 i 1 n
n
k 1
n
2
2
n
,
定理 设总体X的期望E(X) = ,方差D(X) = 2,X1, X2,…,Xn为总体X的样本, X,S2分别为样本均值 和样本方差,则
E( X ) E( X )
D( X ) 2 D( X ) n n
E( S 2 ) D( X ) 2
思考:在分组样本场合,样本均值如何计算? 二者结果相同吗?
x1 f1 x n f n 其中 x n
常用统计量与计算方法

代入公式(3—5)得:
Md
L
i
n
15 68
( c) 57 ( 16) 70.5
(天)
f2
20 2
即间隔时间的中位数为70.5天。
L — 频数最多所在组的下限
i — 组距 (即全距/组数)
f — 频数最多所在组的频数
n — 总频数(即总次数)
c — 小于频数最多所在组的累加频数
19
(三)众数 (mode) M0 (书 P17)
26
为 了 准 确 地 表示样本内各个观测值的变异 程度 ,人们 首 先会考虑到以平均数为标准,求 出各个观测值与平均数的离差,(x x) ,称为 离均差。
虽然离均差能表示一个观测值偏离平均数的 性质和程度,但因为离均差有正、有负 ,离均 差之和 为零,即Σx( x ) = 0 ,因 而 不 能 用离均差之和Σ(x x )来 表 示 资料中所有观 测值的总偏离程度。
注: 小样本的自由度为n-1
x x 2
n 1
n 30
35
标准差的计算方法
上述计算方法需先求出平均数(一般为约数),容易 引起计算误差,因此采用原始数据进行计算 (书P20)
大样本: S x 2 x 2 / n
n
小样本: S x 2 x 2 / n
n -1
为简化计算过程,若试验观测数值较大(小)时,可将各观测值
乙组的变异明显低于甲组, R 不能反映 组内其它数据的 变异度 25
二、变异数
缺点
c. 样本较大时, 抽到较大值与较小值的可能性也较大, 因而样本极差也较大,故样本含量相差较大时,不宜用 极差来比较分布的离散度。
当资料很多,而又要迅速对资料的变异程度作出判断 用途 时,有时可先利用极差判断。
第五章-正态分布、常用统计分布和极限定理

的面积, 然后根据1 0.125 0.875查附表4, 对应
Z 1.15,那么录取分数线
x X Z X 74 1.1511 86.65(分)
表5-2
例11:
0Z 图5-11
(1)求Z 1分数以上的概率是多少 ?
解:Z 1时, (Z) 0.34134, Z以上的概率为
(Z) Z
1
t2
e 2 dt
2
(Z 2 ) 图5-8 Z 2
(Z2 Z1)
图5-9Z1 Z 2
例4:已知服从标准正态分布 N(0,1), 求P( 1.3) ? 解:因为() 1,() P( 1.3) P( 1.3) 所以( 1.3) 1 P( 1.3) 1 (1.3) 1 - 0.9032 0.0968
2
如果把u 0, 1代入(x)
1
e
(
xu)2
2 2
2
(x)
1
x2
e2
2
标准正态分布其实是一般正态分布的一个特 例,记作N(0,1),一般正态分布记作N(μ,σ2)。
一般正态分布之所以能变成唯一的标准正态 分布,就是把原来坐标中的零点沿着X轴迁到μ点, 并且以σ为单位记分。
σ=1
0
图5-5
13.6%
13.6%
2.16% 0.11%
3 2 1 图05-6 1
2.16% 0.11%
23
三、标准分的实际意义
例1:甲、乙、丙3个同学《社会统计学》分数 都是80分,甲同学所在班平均成绩μ甲=80分, μ 乙=75分, μ丙=70分,标准差都是10,比较甲、乙、 丙3个同学在班上的成绩。
心理统计学重点知识

心理统计学一.描述统计(一)统计图表 1、统计图次数分布图——①直方图:用以矩阵的面积表示连续性随即变量次数分布的图形。
②次数多边形图:一种表示连续性随机变量次数分布的线形图,属于次数分布图。
③累加次数分布图:分为累加直方图和累加曲线图;其中累加曲线的形状大约有三种:一种是曲线的上枝长于下枝(正偏态),另一种是下枝长于上枝(负偏态),第三种是上枝,下枝长度相当(正态分布)。
其他统计图:条形图:用于离散型数据资料; 圆形图:用于间断性资料;线形图:更多用于连续性资料,凡预表示两个变量之间的函数关系,或描述某种现象在时间上的发展趋势,或一种现象随另一种现象变化的情况,用这种方法比较好。
散点图: 2、统计表①简单次数分布表 ②分组次数分布表③相对次数分布表:将次数分布表中各组的实际次数转化为相对次数,即用频数比率表示。
④累加次数分布表⑤双列次数分布表:对有联系的两列变量用同一个表来表示其次数分布。
(二)集中量数 1、算术平均数M1nii XX N==∑优点:反应灵敏;计算严密;计算简单;简明易解;适合于进一步用代数方法演算;较少受抽样变动的影响;缺点:受极端数据的影响;若出现模糊不清的数据时,无法计算平均数; 计算和运用平均数的原则: 同质性原则;平均数与个体数值相结合的原则; 平均数与标准差、方差相结合原则; 性质:①在一组数据中每个变量与平均数之差的总和等于零②在一组数据中,每一个数都加上一个常数C ,所得的平均数为原来的平均数加常数C ③在一组数据中,每一个数都乘以一个常数C ,所得的平均数为原来的平均数乘以常数C 2、中数:Md 按顺序排列在一起的一组数据中居于中间位置的数,即这组数据中,一般数据比它大,一般数据比它小。
注意计算方法;3、众数:Mo 是指在次数分布中出现次数最多的那个数值;三者的关系:正偏态分布中,M>Md>Mo 负偏态分布中,M<Md<MoMo=3Md-2M (自己推导一下)(三)差异量数差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称为离散量数。
正态分布统计量

正态分布统计量正态分布统计量(Normal Distribution Statistics)是通过对正态分布(Normal Distribution)的概率密度函数(Probability Density Function,简称PDF)进行统计学分析而得出的一些数学量。
正态分布是一种经典的概率分布,广泛存在于自然界和社会人文领域,包括但不限于生物统计学、金融学、社会科学等领域中的数据分析研究。
正态分布统计量的研究在基础理论和实际应用中都具有极其重要的意义。
一、正态分布概述正态分布,也被称为高斯分布(Gaussian Distribution),是一种连续型概率分布。
它的概率密度函数在数学上被表示为:f(x) = (1 / sqrt(2πσ²)) * e^(-((x-μ)²/2σ²))其中,μ代表正态分布的期望值,即均值;σ²则表示方差,反映了样本数据的离散程度。
e是自然对数的底数,即2.71828...,sqrt是平方根函数。
这个公式的图形呈钟型,中心对称,两边逐渐递降,且两端趋于无穷小。
因为其形状呈现出如此独特的特征,正态分布被广泛使用并且是许多实际问题的基础。
二、正态分布的重要性为什么正态分布是如此重要呢?这是因为它是自然界、社会人文领域和现代科学中随机变量的模型。
正态分布在许多场合中都会自然出现,因此非常适合于描述自然规律。
例如,在统计学中,一个样本的平均值通常服从正态分布。
在金融领域的股票市场分析中,价格波动通常也服从正态分布。
在社会心理学中,人们的智商分布也呈现正态分布。
此外,中心极限定理(Central Limit Theorem)也是正态分布重要性的原因之一。
中心极限定理表明,随着样本容量的增大,样本均值趋向于服从正态分布。
因此,如果我们知道一个样本的样本均值和方差,我们就可以使用正态分布统计量来预测整个总体的分布情况。
三、正态分布统计量正态分布统计量是对正态分布进行分析时引入的一些基本概念和指标。
spss教程-常用的数据描述统计:频数分布表等--统计学

第二节常用的数据描述统计本节拟讲述如何通过SPSS菜单或命令获得常用的统计量、频数分布表等。
1.数据这部分所用数据为第一章例1中学生成绩的数据,这里我们加入描述学生性别的变量“sex”和班级的变量“class”,前几个数据显示如下(图2-2),将数据保存到名为“2—6—1.sav”的文件中。
图2-2:数据输入格式示例1.Frequencies语句(1)操作打开数据文件“2—6—1。
sav",单击主菜单Analyze /Descriptive Statistics / F requencies…,出现频数分布表对话框如图2-3所示。
图2-3:Frequencies定义窗口把score变量从左边变量表列中选到右边,并请注意选中下方的Display frequency table复选框(要求显示频数分布表)。
如果您只要求得到一个频数分布表,那么就可以点OK按钮了。
如果您想同时获得一些统计量,及统计图表,还需要进一步设置。
①Statistics选项单击Statistics按钮,打开对话框,请按图2—4自行设置。
有关说明如下:(ⅰ)在定义百分位值(percentile value)的矩形框中,选择想要输出的各种分位数,SPSS提供的选项有:●Quartiles四分位数,即显示25%、50%、75%的百分位数。
●Cut points equal 把数据平均分为几份。
如本例中要求平均分为3份.●Percentile显示用户指定的百分位数,可重复多次操作。
本例中要求15%、50%、85%的百分位数。
(ⅱ)在定义输出集中趋势(Central Tendency)的矩形框中,选择想要输出的集中统计量,常用的选项有: ●Mean 算术平均数●Median 中数●Mode 众数●Sum 算术和(ⅲ)在定义输出离散统计量(Dispersion)的矩形框中,选择想要输出的离散统计量,常用的选项有:●Std。
Deviation 标准差●Variance 方差●Range 全距●Minimum 最小值●Maximum 最大值●S。
统计学中常见分布的应用

1引言
在数理统计中,常见的分布包括指数分布,普哇松分布,正态分布, 分布, 分布, 分布.这些常见分布的参数的区间估计和假设检验问题是在日常生产生活中我们常用到的问题,在大部分的文献资料中对正态分布的这一问题讨论较多,本文将就其它五个常见分布的参数的区间估计和假设检验问题进行详细的介绍.其中包括这五种分布的密度函数、性质及其在数理统计中的应用.
那么
~ ,
所以假设拒绝域:对于给定的 和 ,由
,
是自由度为 的 分布之 水平双侧分位数,假设 之 水平的拒绝域是
,
接受域是
.
例某种中药饮片中成分 的含量规定为 ,现在抽验了该药物一批成品中的五个片剂,测得其中成分 的含量分别为: 假设该药物中成分 的含量 服从正态分布,问在 的显著性水平下,抽验结果是否与片剂中成分 的含量为 要求相符?
其中 为常数,这种分布叫作指数分布.显然,我们有
指数分布含有一个参数 ,通常把这分种分布记作 .如果随机变量 服从指数分布 ,则记为 ~ ,因为
(连续随机变量的分布函数 等于概率密度 在区间 上的反常积分)由此可得指数分布 的分布函数为
=
2.5 普哇松分布
定义5[3](P64)称随机变量 服从普哇松分布,如果
2五中常见分布的定义及其相关性质
2.1 分布
定义1[1](P225)称随机变量 服从 分布,自由度为 ,如果它有密度函数
性质假设 独立同标准正态分布,则随机变量
服从 分布,自由度等于 .
2.2 分布
定义2[1](P228)称随机变量 服从 分布,自由度为 ,如果它有密度函数
.
性质假设 服从标准正态分布, 服从 分布,自由度为 ,而且 和 相互独立,那么随机变量 ,服从 分布,自由度为 .
第3节 常用统计分布(三个常用分布)

例2
设X
~
N
(
,
2
),
Y
2
~
2 (n),且X ,Y相互独立,
试求 T X 的概率分布.
Yn
解 因为X ~ N(, 2),所以 X ~ N(0,1)
又Y
2
~
2 (n),且X ,Y独立,则
X
与Y
2
独立,
由定理得
T (X ) / X ~ t(n) (Y / 2) / n Y n
n
事实上,它们受到一个条件的约束:
Xi nX
i 1
n
i 1
Xi
X
1
n
(
i 1
Xi
nX )
1
0
0.
例1
设X1 ,
X 2 ,
,
X
为
6
来
自
正
态
总
体N
(0,1)的
一
组
样
本,
求C1
,
C
使
2
得
Y C1( X1 X 2 )2 C2( X 3 X4 X5 X6 )2
服 从 2分 布.
解
X1
2
4
则C1 1 2 ,C2 1 4 .
3. t 分布 定义 设 X ~ N (0, 1), Y ~ 2 (n), 且 X , Y
独立,则称随机变量 T X 服从自由度为 n Y /n
的 t 分布, 记为T ~ t(n).
t 分布又称学生氏(Student)分布. t(n) 分布的概率密度函数为
2. 2分布(卡方分布)
定义、设 X1, X 2 ,L , X n 相互独立,同服从 N (0, 1)