人工神经网络深度学习PPT课件

合集下载

《人工神经网络》课件

《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成

深度学习-神经网络PPT学习课件

深度学习-神经网络PPT学习课件
神经网络的学习过程就是学习控制着空间变换方式(物质组成方式)的权重矩阵 W , 那如何学习每一层的权重矩阵 W 呢? 2.3.1、激活函数
激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络 仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价 的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性 映射学习能力。
线性可分视角:神经网络的学习就是学习如何利用矩阵的线性变换加激活函数的非 线性变换,将原始输入空间投向线性可分/稀疏的空间去分类/回归。
增加节点数:增加维度,即增加线性转换能力。 增加层数:增加激活函数的次数,即增加非线性转换次数。
2/29/2020
13
2.2.2、物理视角:“物质组成”
回想上文由碳氧原子通过不同组合形成若干分子的例子。从分子层面继续迭代这种 组合思想,可以形成DNA,细胞,组织,器官,最终可以形成一个完整的人。不同层级之 间都是以类似的几种规则再不断形成新物质。
2/29/2020
16
➢Sigmoid
sigmoid 是使用范围最广的一类激活函数,具 有指数函数形状,它在物理意义上最为接近生物神 经元。此外,(0, 1) 的输出还可以被表示作概率, 或用于输入的归一化,代表性的如Sigmoid交叉熵 损失函数。
然而,sigmoid也有其自身的缺陷,最明显的 就是饱和性。 软饱和激活函数:
2/29/2020
17
➢Tanh
➢ReLU
可以看到,当x<0时,ReLU硬饱和,
tanh也是一种非常常见的激活函数。 与sigmoid相比,它的输出均值是0, 使得其收敛速度要比sigmoid快,减少 迭代次数。然而,从途中可以看出, tanh一样具有软饱和性,从而造成梯 度消失。

人工神经网络及其应用[PPT课件]

人工神经网络及其应用[PPT课件]
❖ 人脑的功能,一方面受到先天因素的制约,即由遗传信息先 天确定了其构造与特性;另一方面,后天因素也起重要的作 用,即大脑可通过其自组织、自学习,不断适应外界环境的 变化。大脑的自组织、自学习性来源于神经网络构造的可塑 性,它主要反映在神经元之间连接强度的可变性上。
➢人工神经网络是从微观构造与功能上对人脑神经系 统的模拟而建立起来的一类模型,具有模拟人的局部 形象思维的能力。其特点主要是具有非线性、学习能 力和自适应性,是模拟人的智能的一条重要途径。
Ep (t)
dp yp (t) 2
1 2 [d p
yp (t)]2
1 2
e2p
(t)
J (t)
〔4〕δ规那么:
1 2
[dp
p
yp (t)]2
1 2
e2 p p
(t)
用于权值调整的自适应学习算法为
将代入上式可得j(t 1 )j(t) /E p uj( ( pt t) )2j(t)e p (t)u jp
wij uiuj
❖这一规那么与〞条件反射“学说一致,并已得到神经细胞 学说的证实。α是表示学习速率的比例常数。
2.4 神经网络的互联模式
根据连接方式的不同,神经网络的神经元之间的连接有如 下几种形式。
1〕前向网络
前向网络构造如以下图。神经元分层排列,分别组成输入 层、中间层〔也称为隐含层,可以由假设干层组成〕和输 出层。每一层的神经元只承受来自前一层神经元的输入, 后面的层对前面的层没有信号反响。输入模式经过各层次 的顺序传播,最后在输出层上得到输出。感知器网络和BP 网络均属于前向网络。
1〕有监视学习:对于监视学习,网络训练往往要基于一定数 量的训练样本。训练样本通常由输入矢量和目标矢量组成。在 学习和训练过程中,网络根据实际输出与期望输出的比较,进 展连接权值和域值的调节。通过将期望输出成为导师信号,它 是评价学习的标准。最典型的有监视学习算法是BP算法,即误 差反向传播算法。

人工智能算法工程师:深度学习与神经网络算法培训ppt

人工智能算法工程师:深度学习与神经网络算法培训ppt

TensorFlow框架特点及使用方法
特点
TensorFlow是一个开源的深度学习框架,具有高度的灵活性 和可扩展性。它支持分布式训练,能够在多个GPU和CPU上 加速训练过程。TensorFlow还提供了丰富的API和工具,方 便用户进行模型开发和调试。
使用方法
使用TensorFlow进行深度学习需要先安装TensorFlow库,然 后通过编写Python代码来定义模型、加载数据、进行训练和 评估等操作。TensorFlow提供了高级的API,如Keras,可以 简化模型开发和训练过程。
PyTorch框架特点及使用方法
特点
PyTorch是一个轻量级的深度学习框架,具有简单易用的特点。它支持动态计算 图,使得模型开发和调试更加灵活。PyTorch还提供了GPU加速和分布式训练功 能,能够提高训练速度。
使用方法
使用PyTorch进行深度学习需要先安装PyTorch库,然后通过编写Python代码来 定义模型、加载数据、进行训练和评估等操作。PyTorch提供了高级的API,如 torch.nn和torch.optim,可以简化模型开发和训练过程。
模型可解释性不足
深度学习模型的可解释性一直是研究 难点。未来需要加强模型可解释性的 研究,以更好地理解模型的工作原理 。
THANKS。
将有更多创新方法被提出。
面临的挑战与解决方案探讨
数据隐私与安全
计算资源需求大
随着深度学习应用的广泛使用,数据 隐私和安全问题日益突出。需要采取 数据脱敏、加密等技术手段来保护用 户隐私。
深度学习模型的训练和推理需要大量 的计算资源,如高性能计算机、GPU 等。需要进一步优化算法和模型结构 ,以降低计算资源需求。
人工智能算法工程师:深度学习 与神经网络算法培训

《深度学习PPT》第3章 人工神经网络与深度学习

《深度学习PPT》第3章 人工神经网络与深度学习

9 of 57
3.1 探秘大脑的工作原理
第3章 人工神经网络与深度学习
3.1.2 人脑神经元的结构
神经元的基本结构包括细胞体和突起两部分。细胞体包括细胞核、细胞质、细胞 膜。细胞膜内外电位差称为膜电位。神经元的突起一般包括数条短而呈树状分支 的树突和一条长而分支少的轴突。长的突起外表大都套有一层鞘,组成神经纤维, 神经纤维末端的细小分支叫作神经末梢。神经纤维集结成束,外面包有膜,构成 一条神经。
6 of 57
3.1 探秘大脑的工作原理
(5)深度学习算法 数据输 出
外部环 境
第3章 人工神经网络与深度学习
数据输入
执行
深度学习(端到端网络,一组函数集)
知识库
学习
深度学 习
深度学习的基本模型
人的活动过程伴随信息传递、知识处理和智能的形成过程,其信息 传输模型如图所示
7 of 57
3.1 探秘大脑的工作原理
22 of 57
3.4 人脑神经网络的互连结构
第3章 人工神经网络与深度学习
3.4.1 前馈神经网络
前馈神经网络(feedforward neural network),简称前馈网络,是人 工神经网络的一种。在此种神经网络中,各神经元从输入层开始,接 收前一级输入,并输入到下一级,直至输出层。整个网络中无反馈, 可用一个有向无环图表示
输出
hw.b
3.2 人脑神经元模型
3.2.2 激活函数
常用激活函数主要有:线性函数、 非线性函数(sigmoid型函数)、 概率型函数。
y
x 0
(a)线性函数 y
x 0
(c) ReLU函数 y
1 x
0 (e) sigmoid函数

人工神经网络ppt课件

人工神经网络ppt课件
LOGO
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率

人工神经网络-PPT课件

人工神经网络-PPT课件

*
《医学信息分析与决策》课程组
7
一、神经网络简介
神经网络的基本特征
结构特征: 并行式处理 分布式存储 容错性
能力特征: 自学习 自组织 自适应性
*
《医学信息分析与决策》课程组
8
一、神经网络简介
神经网络的基本功能
联 想 记 忆 功 能
*
《医学信息分析与决策》课程组
9
一、神经网络简介
神经网络的基本功能
人脑与计算机信息处理机制的比较 系统结构 信号形式 信息存储 信息处理机制
*
《医学信息分析与决策》课程组
5
一、神经网络简介
生物神经网络 人类的大脑大约有1.41011个神经细胞,亦称 为神经元。每个神经元有数以千计的通道同其 它神经元广泛相互连接,形成复杂的生物神经 网络。 人工神经网络 以数学和物理方法以及信息处理的角度对人脑 神经网络进行抽象,并建立某种简化模型,就 称为人工神经网络(Artificial Neural Network,缩写 ANN)。
*
《医学信息分析与决策》课程组
19
一、神经网络简介
神经网络的软硬件实现
MATLAB以商品形式出现后,仅短短几年,就以 其良好的开放性和运行的可靠性,使原先控制 领域里的封闭式软件包(如英国的UMIST,瑞 典的LUND和SIMNON,德国的KEDDC)纷纷淘汰, 而改以MATLAB为平台加以重建。在时间进入20 世纪九十年代的时候,MATLAB已经成为国际控 制界公认的标准计算软件。
*
《医学信息分析与决策》课程组
21
一、神经网络简介
神经网络的软硬件实现
MATLAB的推出得到了各个领域的专家学者的广 泛关注,在此基础上,专家们相继推出了 MATLAB工具箱,主要包括信号处理、控制系统、 神经网络、图像处理、鲁棒控制、非线性系统 控制设计、系统辨识、最优化、模糊逻辑、小 波等工具箱,这些工具箱给各个领域的研究和 工程应用提供了有力的工具。

深度学习Deep-Learning【精品PPT文档】

深度学习Deep-Learning【精品PPT文档】
深度学习Deep Learning
目录
• • • • • • • • 深度学习简介 数学基础 机器学习简介 感知器 前馈神经网络 卷积神经网络 循环神经网络 深度学习应用
深度学习概念
• 机器学习(Machine Learning,ML)主要是研究如何使计算机从给定的 数据中学习规律,即从观测数据(样本)中寻找规律,并利用学习到的 规律(模型)对未知或无法观测的数据进行预测。目前,主流的机器学 习算法是基于统计的方法,也叫统计机器学习。 • 人工神经网络(Artificial Neural Network ,ANN),也简称神经网络, 是众多机器学习算法中比较接近生物神经网络特性的数学模型。人工神 经网络通过模拟生物神经网络(大脑)的结构和功能,由大量的节点 (或称“神经元”,或“单元”)和之间相互联接构成,可以用来对数 据之间的复杂关系进行建模。
目录
• • • • • • • • 深度学习简介 数学基础 机器学习简介 感知器 前馈神经网络 卷积神经网络 循环神经网络 深度学习应用
向量
向量的模和范数
常见的向量
矩阵
矩阵的基本运算
矩阵的基本运算
导数法则
导数法则
导数法则
常用函数及其导数
常用函数及其导数
深度学习历史
• • • • • • • • 1958 年Rosenblatt 感知器 1969 年Minsky XOR 1986 年Hinton、LeCun 人工神经网络(BP算法) 1998 年LeCun 卷积神经网络 2006 Hinton在DBN中提出了一种逐层预训练方法, 解决了梯度弥散问题 2008 Vincent等提出了降噪自编码器 2011 Rafir等提出了收缩自编码器 2012 微软研究员建立深度神经网络–隐马尔科夫混合模型, 在语音识别领域取得 突
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
divergence. Neural Comp., 14(8):1771–1800 ◆ Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The wake-sleep
algorithm for unsupervised neural networks. Science, 268:1158– 1160
§7.1 研究背景
2012年6月,《纽约时报》披露了Google
Andrew Ng
Brain项目
斯坦福大学教授
用16000个CPU Core的并行计算平台训练一种称为“深度神
大规模计算机系统方 经网络”(DNN,Deep Neural Networks)的机器学习模型
面的世界顶尖专家
(内部共有10亿个节点)
JeffDean
在语音识别和图像识别等领域获得了巨大的成功
§7.1 研究背景
2012年11月,微软公开演示 全自动同声传译系统
深度学习,讲演者用英文演讲,后台的计算机一气呵成自动完 成语音识别、英中机器翻译和中文语音合成,效果非常流畅
§学习研究所”
人工神经网络及其应用
第七讲 深度学习 主讲人:方涛
第七讲深度学习
主讲内容
§7.1 研究背景 §7.2 从BP网络看深度学习 §7.3 几种典型的深度学习模型 §7.4 开源深度学习框架 §7.5 深度学习的未来
§7.1 研究背景
2016年---人工智能 (AI)奠基60周年
约翰·麦卡锡(1927-2011) LISP之父—不走寻常路的常识逻辑学家
“监督学习的策略网络(Policy Network)”
通过13层全连接网络,反复训练围棋棋盘布局,调整参数, 以最佳概率预测落子选择(Move Picker),如何下棋子
“赢棋的可能,就是计算局面
§7.1 研究背景
专注于神经网络几十年, 1985年,提出Boltzmann机 1986年,提出受限Boltzmann机、BP算法 2006年,提出神经网络进行降维 开启了深度学习时代,并在随后的ImageNet图 片识别的比赛,取得了非常有说服力的结果 Geoffrey E. Hinton(74%->85%),震撼了学术界
主要设计者----位于伦敦Google旗下DeepMind公

大卫·席尔瓦 (David Silver)----剑桥大学计算 机科学学士,硕士,加拿大阿尔伯塔大学计算机科 学博士 黄士杰(Aja Huang),台湾交通大学计算机科学学 士,台湾师范大学计算机科学硕士和博士,加拿大 阿尔伯塔大学计算机科学博士后
1969:Perceptron(感知器)---神经 网络的局限性(深度学习的前身)
在近60年的人工智能历史中,马文-明斯
基一直是一位闪耀着耀眼光彩的杰出的
人工智能权威,是当之无愧的人工智能
之父。(李德毅院士)
1927-2016
明斯基在1950年进入普林斯顿大学攻读数学系的博士研究生学位,比我晚一
年。我们很快意识到,我们两人都对人工智能很感兴趣。事实上,当时明斯
§7.1 研究背景
人脑视觉系统如 何提取特征?
关键在于抽象和迭代, 从原始信号开始进行 低级抽象,逐渐向高 级抽象迭代
从低层到高层的特征表示越来越抽象,生物视觉特征分层抽象的过程,就是 一个计算机建模过程
§7.1 研究背景
§7.1 研究背景
基已经对如何实现人工智能颇有想法了,这一点在之后他设计和建造的世界
上第一个神经网络模拟器Snare上得到了证实。
( John McCarthy 人工智能先驱,LISP语言之父,图灵奖获得者)
§7.1 研究背景
2016年,阿尔法狗(AlphaGo)4 :1大胜围 棋9 段李世石高手, AI重大历史时刻
1956年,约翰.麦卡锡召集了一次会议来讨论人工智能未来的发展 方向,开启了AI的发展 21世纪初,“深度学习”的出现,AI研究获得了长足的进步 没有大数据,没有“大计算”,就没有人工智能的今天!
§7.1 研究背景
Marvin Minsky— 人工智能之父和框架理论的创立者
MIT AI Lab 创始人之一 1970年获得图灵奖 美国工程院和美国科学院院士
HOG
BOW……
DoG+Gabor
最大的问题?--人工设计
特征抽取非常费力,需要领域知识启发式提取
可变 形部 件模 型行 人检 测
§7.1 研究背景
待检测图像
行人模型
图像金字塔 适应目标尺度变化
局部滤波器变形 动态规划求解
§7.1 研究背景
人脑视觉系统如 何提取特征?
1981 年的诺贝尔医学奖,颁发给了 David Hubel 和 TorstenWiesel (JohnHopkins University),以及 Roger Sperry。前两位的主要贡献,是 “发现了视觉系统的信息处理”:可视皮层是分级的: 这个发现激发了人们对于神经系统的进一步思考→ 神经-中枢-大脑的工作过程,”或许”是一个不断迭代、不断抽象的过程
加拿大多伦多大学教授
◆ Hinton, G. and Salakhutdinov, R. (2006). Reducing the dimensionality of data
with neural networks.Science, 313(5786):504–507. ◆ Hinton, G. E. (2002). Training products of experts by minimizing contrastive
(IDL,Institue of Deep Learning
§7.1 研究背景
机器学习解决目标识别与分类问题的思路
三个主要组成部分
中间的特征提取部分将很大程度上决定最终的 效果,如何提取特征?“巧妇难为无米之炊”
§7.1 研究背景
SIFT
Sift被认为是局部图像 特征描述子研究领域一 项里程碑式的工作,对 尺度、旋转以及一定视 角和光照变化等图像变 化都具有不变性,还 SIFT具有很强的可区分 性
相关文档
最新文档