高中物理选修3-1第三章章末知识总结

合集下载

高中物理选修31知识点总结

高中物理选修31知识点总结

高中物理选修3-1知识点总结高中物理选修3-1知识点总结高中物理选修3-1知识点总结第一章电场一基本公式1.库仑定律:F静=KQ1Q2r2(k9.0109Nm2/c2)2.场强(1)定义式:EF电q(2)点电荷:EKQr2(3)匀强电强:EUd3.电场力:F电Eq4.电势差:UABWABABqAWAOq5.电场力做功:与重力做功类同,做正功电势能减少,做负做电势能不断增加(1)W电=Uq(2)W电=F电scos6.电容器:QQ(1)cU{(2)Cs4kd7.电荷以初速度为零先进入加速电场U1再进入偏转电场U2:(1)水平侧移技术水平距离即竖直方向位移:U2y2l4U1d(2):tanU2l2Ud18.带电粒子在电场中的位移:(1)粒子穿过电场的时间:tLv0(2)在磁场中的加速度:aUqmd(3)搬回电场时的侧移距离:y12at2(4)离开电场时的速度偏向角:tanvyatvxv0二.基本规律1.电荷守恒定律a.带同种电荷的相同两球先接触后再分开,则两球各带总电荷量的一半b.带异种电荷的相同两球先之后接触后再分开,则电荷先中和再均分。

2.库仑定律条件:真空中的点电荷3.场强方向:规定:把正电荷受力的方向规定为场强方向4.电场线:(1)不相交、不相切,不闭合(2)密的地方场强大,疏的地方场强弱(3)某点的强场方向与该点的切线方向一致5.等势线:(1)与电场线垂直(2)在等势线上移动电荷,电场力不做功(3)等势线密的地方场强大,疏的地方场强弱6.等量这三类电荷电场分布:7.等量生化电荷电场分布:8.电容器:a.与源断开,电量Q不变;b.与电源接通电压U不变。

9.力做功:(1)电场力:仅仅决定电势能的变化。

正功,电势能减少;负功,电势能增加。

(2)重力:只决定重力势能的变化。

正功,重力势能减少;负功,重力势能增加(3)安培力:做正功电能转化为机械能,做负功机械能转化为电能。

做多少功,就转化多少能量。

(4)洛仑兹力:对运动电荷永远不够做功,始终与速度方向垂直。

高二物理选修3-1第三章磁场知识点总结复习

高二物理选修3-1第三章磁场知识点总结复习

第三章磁场教案3.1 磁现象和磁场第一节、磁现象和磁场1.磁现象磁性:能吸引铁质物体的性质叫磁性.磁体:具有磁性的物体叫磁体.磁极:磁体中磁性最强的区域叫磁极。

2.电流的磁效应磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比)电流的磁效应:电流通过导体时导体周围存在磁场的现象(奥斯特实验)。

3.磁场磁场的概念:磁体周围存在的一种特殊物质(看不见摸不着,是物质存在的一种特殊形式)。

磁场的基本性质:对处于其中的磁极和电流有力的作用.磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的.磁场对电流的作用,电流与电流的作用,类比于库仑力和电场,形成磁场的概念,磁场虽然看不见、摸不着,但是和电场一样都是客观存在的一种物质,我们可以通过磁场对磁体或电流的作用而认识磁场.4.磁性的地球地球是一个巨大的磁体,地球周围存在磁场———地磁场.地球的地理两极与地磁两极不重合(地磁的N极在地理的南极附近,地磁的S极在地理的北极附近),其间存在磁偏角.地磁体周围的磁场分布情况和条形磁铁周围的磁场分布情况相似。

宇宙中的许多天体都有磁场。

月球也有磁场。

例1、以下说法中,正确的是()A、磁极与磁极间的相互作用是通过磁场产生的B、电流与电流的相互作用是通过电场产生的C、磁极与电流间的相互作用是通过电场与磁场而共同产生的D、磁场和电场是同一种物质例2、如图表示一个通电螺线管的纵截面,ABCDE在此纵截面内5个位置上的小磁针是该螺线管通电前的指向,当螺线管通入如图所示的电流时,5个小磁针将怎样转动?例3、有一矩形线圈,线圈平面与磁场方向成 角,如图所示。

设磁感应强度为B,线圈面积为S,则穿过线圈的磁通量为多大?例4、如图所示,两块软铁放在螺线管轴线上,当螺线管通电后,两软铁将(填“吸引"、“排斥”或“无作用力”),A端将感应出极。

3。

2 磁感应强度第二节 、 磁感应强度1.磁感应强度的方向:小磁针静止时N 极所指的方向规定为该点的磁感应强度方向 思考:能不能用很小一段通电导体来检验磁场的强弱呢?2.磁感应强度的大小匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。

高中物理选修3-1第三章章末知识总结

高中物理选修3-1第三章章末知识总结

磁场综合复习1.磁场的产生磁体、电流、变化的电场周围有磁场。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

(但这并不等于说所有磁场都是由运动电荷产生的,因为麦克斯韦发现变化的电场也能产生磁场。

)2.磁场的基本性质:磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

这一点应该跟电场的基本性质相比较。

3.磁场方向:五种表述是等效的①磁场的方向②小磁针静止时N极指向③N极的受力方向④磁感线某点的切线方向⑤磁感应强度的方向4.磁感线⑴用来形象地描述磁场中各点的磁场强弱和方向的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线:地球磁场通电直导线周围磁场通电环行导线周围磁场⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。

5.磁感应强度:ILFB (条件是匀强磁场中,或ΔL很小,并且L⊥B )。

磁感应强度是矢量。

单位是特斯拉,符号为T。

由磁场本身决定,和放不放入电流无关。

6.安培力(磁场对电流的作用力)(1)安培力方向的判定⑴用左手定则。

⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。

⑶用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。

可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。

例1. 如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。

物理选修3-1每章笔记

物理选修3-1每章笔记

物理选修3-1每章笔记第一章:运动的描述在物理学中,我们通过描述和研究物体的运动来理解和解释自然界中的现象。

运动可以分为直线运动和曲线运动。

直线运动中,我们关注物体在匀速和变速下的运动特征,例如位移、速度和加速度等概念。

曲线运动中,我们学习了圆周运动和斜抛运动的规律,以及相关的数学关系,如圆周运动的周期和频率。

第二章:力和牛顿第二定律力是引起物体运动或变形的原因。

当多个力同时作用于一个物体时,它们的合力会影响物体的运动状态。

牛顿第二定律描述了力和物体运动之间的关系,即力等于质量乘以加速度。

根据牛顿第二定律,我们可以计算物体所受力的大小和方向,并进一步分析物体在不同力的作用下的运动情况。

第三章:牛顿第三定律和动量牛顿第三定律指出,两个物体之间的相互作用力大小相等、方向相反。

这表明力永远是相互的,它们总是成对出现的。

利用牛顿第三定律,我们可以解释许多现象,如行星的轨道、弹射运动和物体之间的碰撞等。

此外,我们还学习了动量的概念,动量等于物体的质量乘以其速度。

动量是描述物体运动状态的重要量,它在碰撞问题中起着重要作用。

第四章:机械能守恒和功机械能守恒原理指出,在没有外力做功和能量损失的情况下,系统的机械能始终保持不变。

我们可以通过应用机械能守恒原理解析和计算各种物理问题,如自由落体运动、弹簧振子和滑坡问题等。

功是力对物体做的功,它是衡量力量转化为能量的方式。

功的大小等于力与物体位移的乘积。

在计算功的过程中,我们需考虑力和位移之间的夹角关系。

第五章:重力与万有引力定律重力是地球对物体吸引的力,它是一种质点之间的相互作用力。

万有引力定律由牛顿提出,指出两个质点之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

根据万有引力定律,我们可以计算天体之间的引力大小,该定律还可以解释地球上的重力现象,如自由落体运动和行星的运动等。

第六章:静电场静电场是由电荷产生的力场。

正电荷和负电荷之间会相互吸引,同种电荷之间则相互排斥。

高中物理选修3-1第三章磁感应强度知识点

高中物理选修3-1第三章磁感应强度知识点

高中物理选修3-1第三章磁感应强度知识点磁感应强度是高中物理电磁学重要并且抽象的概念,也是物理选修3-1第三章重要知识点,下面是店铺给大家带来的高中物理选修3-1第三章磁感应强度知识点,希望对你有帮助。

高中物理选修3-1第三章磁感应强度知识点定义:当通电导线与磁场方向垂直时,通电导线所受的安培力F 跟电流I和导线长度L的乘积IL的比值叫做磁感应强度。

对磁感应强度的理解1、公式B=F/IL是磁感应强度的定义式,是用比值定义的,磁感应强度B的大小只决定于磁场本身的性质,与F、I、L均无关。

2、定义式B=FIL成立的条件是:通电导线必须垂直于磁场方向放置。

因为磁场中某点通电导线受力的大小,除了与磁场强弱有关外,还与导线的方向有关。

导线放入磁场中的方向不同,所受磁场力也不相同.通电导线受力为零的地方,磁感应强度B的大小不一定为零,这可能是电流方向与B的方向在一条直线上的原因造成的。

3、磁感应强度的定义式也适用于非匀强磁场,这时L应很短,IL 称作“电流元”,相当于静电场中的试探电荷。

4、通电导线受力的方向不是磁场磁感应强度的方向。

5、磁感应强度与电场强度的区别:磁感应强度B是描述磁场的性质的物理量,电场强度E是描述电场的性质的物理量,它们都是矢量,现把它们的区别列表如下:(1)磁感应强度是矢量,遵循平行四边形定则。

如果空间同时存在两个或两个以上的磁场时,某点的磁感应强度B是各磁感应强度的矢量和。

高中物理选修3-1匀强磁场知识点匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫做匀强磁场.在匀强磁场中,在通电直导线与磁场方向垂直的情况下,导线所受的安培力F= BIL。

(一)公式F=BIL中L指的是“有效长度”.当B与I垂直时,F最大,F=BIL;当B与I平行时,F=0。

(二)弯曲导线的有效长度L,等于连接两端点直线的长度,如下图相应的电流沿L由始端流向末端。

1、当电流与磁场方向垂直时,F = ILB2、当电流与磁场方向夹θ角时,F = ILBsinθ高中物理复习方法一、注重知识形成过程。

高中物理选修3知识点公式总结

高中物理选修3知识点公式总结

1、电荷量:电荷的多少叫电荷量,用字母Q 或q 表示。

(元电荷常用符号e自然界只存在两种电荷:正电荷和负电荷。

同号电荷相互排斥,异号电荷相互吸引。

2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。

3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间9109⨯=k N ﹒m 2/C 2。

45、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。

67、电场线的性质:a .电场线起始于正电荷或无穷远,终止于无穷远或负电荷;b .任何两条电场线不会相交;c. 静电场中,电场线不形成闭合线; d 8、匀强电场:场强大小和方向都相同的电场叫匀强电场。

电场线相互平行且均匀分布时表明是匀强电场。

9q E P ϕ= 10、等势面特点:①电场线与等势面垂直,②沿等势面移动电荷,静电力不做功。

11A B BA U ϕϕ-=( 电势差的正负表示两点间电势的高低)12、电势差与静电力做功:q WU =qU W =⇒表示A 、B 两点的电势差在数值上等于单位正电荷从A 点移到B 点,电场力所做的功。

1314、电势差与电场强度的关系:在匀强电场中,沿电场线方向的两点间的电势差等于场强与这两点间距离的Ed =15 电容的单位是法拉(F)决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。

②对于平行板电容器有关的Q 、E 、U 、C 的讨论时要注意两种情况:16、带电粒子在电场中运动:①.带电粒子在电场中平衡。

(二力平衡)②.带电粒子的加速:动力学分析及功能关系分析:经常用2022121qU mv mv -=③.带电粒子的偏转:动力学分析:带电粒子以速度V 0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动)。

人教版高中物理选修3-1第三章 章末小结 (共47张PPT)

人教版高中物理选修3-1第三章 章末小结 (共47张PPT)
3.解决安培力问题的一般步骤 先画出通电导线所在处的磁感线的方向,用左手定则确定通电导线所受安
物 理 选 修
培力的方向;根据受力分析确定通电导体所处的状态或运动过程;根据牛顿运
动定律或动能定导航
第三章 磁场
(陕西师大附中 2015~2016 学年高二上学期检测)如图为一电流 表的原理示意图,质量为 m 的均质细金属棒 MN 的中点处通过一绝缘挂钩与一 竖直悬挂的弹簧相连,弹簧劲度系数为 k,在矩形区域 abcd 内有匀强磁场,磁感 应强度大小为 B,方向垂直纸面向外,与 MN 的右端 N 连接的一绝缘轻指针可 指示标尺上的读数, MN 的长度大于 ab, 当 MN 中没有电流通过且处于平衡状态 时,MN 与矩形区域的 cd 边重合,当 MN 中有电流通过时,指针示数可表示电
物 理 选 修
BIm ab +mg=k( bc +Δx) 联立①③并代入数据得:Im=2.5A 故此电流表的量程是 2.5A。
③ ④
3-1 ·
人 教 版
返回导航
第三章 磁场
(4)设量程扩大后,磁感应强度变为 B′,则有: 2B′Im ab +mg=k( bc +Δx) k bc 由①⑤得 B′= 2Im ab 代入数据得 B′=0.10T 故若将量程扩大 2 倍,磁感应强度应变为 0.10T。
新课标导学
物 理
选修3-1 ·人教版
第三章
磁 场
章 末 小 结
1
知 识 结 构 规 律 方 法 触 及 高 考
2
3
第三章 磁场
知识结构
物 理 选 修
3-1 ·
人 教 版
返回导航
第三章 磁场
物 理 选 修
3-1 ·
人 教 版

物理选修3-1知识点归纳(全)

物理选修3-1知识点归纳(全)

第一章《静电场》一、电荷、电荷守恒定律1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。

2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C ,是一个电子(或质子)所带的电量。

说明:任何带电体的带电量皆为元电荷电量的整数倍。

荷质比(比荷):电荷量q 与质量m 之比,(q/m)叫电荷的比荷3、起电方式有三种①摩擦起电②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。

③感应起电——切割B ,或磁通量发生变化。

④光电效应——在光的照射下使物体发射出电子4、电荷守恒定律:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的.二、库仑定律1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。

方向由电性决定(同性相斥、异性相吸) 2.公式:221rQ Q kFk =9.0×109N ·m 2/C2极大值问题:在r 和两带电体电量和一定的情况下,当Q 1=Q 2时,有F 最大值。

3.适用条件:(1)真空中;(2)点电荷.点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r )。

点电荷很相似于我们力学中的质点.注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律②使用库仑定律计算时,电量用绝对值代入,作用力的方向根据“同性相排斥,异性相吸引”的规律定性判定。

计算方法:①带正负计算,为正表示斥力;为负表示引力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场综合复习1.磁场的产生磁体、电流、变化的电场周围有磁场。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

(但这并不等于说所有磁场都是由运动电荷产生的,因为麦克斯韦发现变化的电场也能产生磁场。

)2.磁场的基本性质:磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

这一点应该跟电场的基本性质相比较。

3.磁场方向:五种表述是等效的①磁场的方向②小磁针静止时N极指向③N极的受力方向④磁感线某点的切线方向⑤磁感应强度的方向4.磁感线⑴用来形象地描述磁场中各点的磁场强弱和方向的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线:地球磁场 通电直导线周围磁场 通电环行导线周围磁场⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。

5.磁感应强度:IL F B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。

磁感应强度是矢量。

单位是 特斯拉 ,符号为T 。

由磁场本身决定,和放不放入电流无关。

6.安培力 (磁场对电流的作用力)(1)安培力方向的判定⑴用左手定则。

⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。

⑶用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。

可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。

例1. 如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。

分析的关键是画出相关的磁感线。

例2. 流后,磁铁对水平面的压力将会___(对磁铁的摩擦力大小为___。

解:本题有多种分析方法。

⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。

磁铁对水平面的压力减小,但不受摩擦力。

⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。

⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。

例3. 电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。

该时刻由里向外射出的电子流将向哪个方向偏转?解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。

电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。

(本题用其它方法判断也行,但不如这个方法简洁)。

(2)安培力大小的计算F =BLI sin α(α为B 、L 间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。

例4. 如图所示,光滑导轨与水平面成α角,导轨宽L 。

匀强磁场磁感应强度为B 。

金属杆长也为L ,质量为m ,水平放在导轨上。

当回路总电流为I 1时,金属杆正好能静止。

求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止? 解:画出金属杆的截面图。

由三角形定则得,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。

根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。

当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。

(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。

例6. 如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。

电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后的水平位移为s 。

求闭合电键后通过铜棒的电荷量Q 。

解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0而被平抛出去,其中F =BIL ,而瞬时电流和时间的乘积等于电荷量Q =I Δt7.洛伦兹力(1)洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的 微观解释 。

公式F= qvB 。

条件是v 与B 垂直。

(2)洛伦兹力方向的判定:在用左手定则时,四指必须指电流方向(不是速度方向),即 正电荷 定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。

例7. 磁流体发电机原理图如右。

等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。

该发电机哪个极板为正极?两板间最大电压为多少?解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。

所以上极板为正。

正、负极板间会产生电场。

当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。

当外电路断开时,这也就是电动势E 。

当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。

这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。

在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。

⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于xBdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。

)⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。

在外电路断开时最终将达到平衡态。

(3)洛伦兹力大小的计算带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:R = mv/qB T = 2πm/qB例8. 如图直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?(提示:关键是找圆心、找半径和用对称。

)解:由公式知,它们的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距2r ,由图还可看出,经历时间相差2T /3。

关键是找圆心、找半径和用对称。

例9. 一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)x 正方向成60°的方向射入第一象限内的匀强磁场中,一象限。

求匀强磁场的磁感应强度B 和射出点的坐标。

解:由射入、射出点的半径可找到圆心O /,并得出半径为0。

4.带电粒子在匀强磁场中的偏转⑴穿过矩形磁场区。

一定要先画好辅助线(半径、速度及延长线)。

偏转角由sin θ=L /R 求出。

侧移由R 2=L 2-(R-y )2解出。

经历时间由Bq m t θ=得出。

M+ + + + +注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!⑵穿过圆形磁场区。

画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

偏角可由R r =2tan θ求出。

经历时间由Bq m t θ=得出。

注意:由对称性,射出线的反向延长线必过磁场圆的圆心。

8.带电粒子在混合场中的运动1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。

带电粒子必须以唯一确定的速⑴这个结论与离子带何种电荷、电荷多少都无关。

⑵若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。

例10. 某带电粒子从图中速度选择器左端由中点O以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带 电;第二次射出时的速度为。

解:B 增大后向上偏,说明洛伦兹力向上,所以为带正电。

由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对例11. 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L 偏转角度均为α,求E ∶B 解:分别利用带电粒子的偏角公式。

在电场中偏转:当偏转角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。

2.带电微粒在重力、电场力、磁场力共同作用下的运动带电微粒在三个场共同作用下做匀速圆周运动。

必然是电场力和重力平衡,而洛伦兹力充当向心力。

例12. 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。

则该带电微粒必然带_____,旋转方向为_____。

若已知圆半径为r,电场强度为E磁感应强度为B,则线速度为_____。

解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针转动;。

相关文档
最新文档