材料现代分析测试方法-分子振动光谱

合集下载

材料现代分析试方法复习题

材料现代分析试方法复习题

《材料现代分析测试方法》习题及思考题一、名词术语波数、原子基态、原子激发、激发态、激发电位、电子跃迁(能级跃迁)、辐射跃迁、无辐射跃迁,分子振动、伸缩振动、变形振动(变角振动或弯曲振动)、干涉指数、倒易点阵、瑞利散射、拉曼散射、反斯托克斯线、斯托克斯线、 X射线相干散射(弹性散射、经典散射或汤姆逊散射)、X射线非相干散射(非弹性散射、康普顿-吴有训效应、康普顿散射、量子散射)、光电效应、光电子能谱、紫外可见吸收光谱(电子光谱)、红外吸收光谱、红外活性与红外非活性、弛豫、K系特征辐射、L系特征辐射、Kα射线、Kβ、短波限、吸收限、线吸收系数、质量吸收系数、散射角(2θ)、二次电子、俄歇电子、连续X射线、特征X射线、点阵消光、结构消光、衍射花样的指数化、连续扫描法、步进扫描法、生色团、助色团、反助色团、蓝移、红移、电荷转移光谱、运动自由度、振动自由度、倍频峰(或称泛音峰)、组频峰、振动耦合、特征振动频率、特征振动吸收带、内振动、外振动(晶格振动)、热分析、热重法、差热分析、差示扫描量热法、微商热重(DTG)曲线、参比物(或基准物、中性体)、程序控制温度、(热分析曲线)外推始点、核磁共振。

二、填空1.原子中电子受激向高能级跃迁或由高能级向低能级跃迁均称为( )跃迁或( )跃迁。

2.电子由高能级向低能级的跃迁可分为两种方式:跃迁过程中多余的能量即跃迁前后能量差以电磁辐射的方式放出,称之为( )跃迁;若多余的能量转化为热能等形式,则称之为( )跃迁。

3.多原子分子振动可分为( )振动与( )振动两类。

4.伸缩振动可分为( )和( )。

变形振动可分为( )和( )。

5.干涉指数是对晶面( )与晶面( )的标识。

6.晶面间距分别为d110/2,d110/3的晶面,其干涉指数分别为( )和( ).7. 倒易矢量r*HKL的基本性质为:r*HKL垂直于正点阵中相应的(HKL)晶面,其长度|r*HKL|等于(HKL)之晶面间距dHKL的( )。

现代科学分析方法重点及及解答

现代科学分析方法重点及及解答

现代科学分析方法重点及及解答1.紫外光谱,荧光光谱在材料研究中的应用(1)分子内的电子跃迁有哪几种,吸收最强的跃迁是什么跃迁?形成单键的σ电子;形成双键的π电子;未成对的孤对电子n电子。

成键轨道σ、π;反键轨道σ*、π* ;非键轨道n 。

1)、ς-ς* 跃迁它需要的能量较高,一般发生在真空紫外光区。

在200 nm左右,其特征是摩尔吸光系数大,为强吸收带。

2)、n-ς*跃迁实现这类跃迁所需要的能量较高,其吸收光谱落于远紫外光区和近紫外光区3)、π→π*跃迁π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁差不多。

200nm左右,吸收强度大,强吸收。

4)、n→π*跃迁n电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁所需能量较小,吸收峰在200 ~ 400 nm左右,吸收强度小,弱吸收吸收最强的跃迁是:π→π*跃迁(2)紫外可见吸收光谱在胶体的研究中有重要作用,请举出三个例子来说明,并结合散射现象来讨论二氧化钛胶体和粉末漫反射光谱的差异。

举例:1)、胶体的稳定性,尤其是稀释后的稳定性;2)、胶粒对可见光的散射;3)、测定消光(包括吸收、散射、漫反射等对光强度造成的损失)稀释条件下,胶粒尺寸小于光波长的1/20,瑞利散射可忽略。

4)、估算晶粒的大小。

5)、尺寸效应,会发生吸收边的蓝移或是红移,可以用来像是CdS和CdSe的量子点。

差异:当测定二氧化钛的溶胶时,按晶粒尺寸的不同,分为两种情况:1)当d<λ/20时,瑞利散射可以忽略。

2)当d>λ/20时,散射就会十分明显,这样获得是一个消光光谱,而不是吸收光谱,无法测得λonset。

用粉末漫反射光谱可以克服上述缺点,得到一个较好的吸收光谱。

(3)什么是荧光、磷光、光致发光和化学发光?对应的英文名称分别是什么?荧光(Fluorescence):从激发态的最低振动能级返回到基态,不通过内部转换而是光辐射失活,则称为荧光。

材料现代分析测试方法习题答案

材料现代分析测试方法习题答案

材料现代分析测试方法习题答案【篇一:2012年材料分析测试方法复习题及解答】lass=txt>一、单项选择题(每题 3 分,共 15 分)1.成分和价键分析手段包括【 b 】(a)wds、能谱仪(eds)和 xrd (b)wds、eds 和 xps(c)tem、wds 和 xps (d)xrd、ftir 和 raman2.分子结构分析手段包括【 a】(a)拉曼光谱(raman)、核磁共振(nmr)和傅立叶变换红外光谱(ftir)(b) nmr、ftir 和 wds(c)sem、tem 和 stem(扫描透射电镜)(d) xrd、ftir 和raman3.表面形貌分析的手段包括【 d】(a)x 射线衍射(xrd)和扫描电镜(sem) (b) sem 和透射电镜(tem)(c) 波谱仪(wds)和 x 射线光电子谱仪(xps) (d) 扫描隧道显微镜(stm)和sem4.透射电镜的两种主要功能:【 b】(a)表面形貌和晶体结构(b)内部组织和晶体结构(c)表面形貌和成分价键(d)内部组织和成分价键5.下列谱图所代表的化合物中含有的基团包括:【c 】(a)–c-h、–oh 和–nh2 (b) –c-h、和–nh2,(c) –c-h、和-c=c- (d) –c-h、和 co2.扫描电镜的二次电子像的分辨率比背散射电子像更高。

(√)3.透镜的数值孔径与折射率有关。

(√)5.在样品台转动的工作模式下,x射线衍射仪探头转动的角速度是样品转动角速度的二倍。

(√ )三、简答题(每题 5 分,共 25 分)1. 扫描电镜的分辨率和哪些因素有关?为什么?和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。

束斑尺寸越小,产生信号的区域也小,分辨率就高。

2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的?范德华力和毛细力。

以上两种力可以作用在探针上,致使悬臂偏转,当针尖在样品上方扫描时,探测器可实时地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。

材料现代分析测试方法1-1

材料现代分析测试方法1-1

L-S耦合
称总自旋量子数,表征 的大小。 称总自旋量子数,表征PS的大小。 称总(轨道)角量子数,表征P 的大小。 称总(轨道)角量子数,表征 L的大小。 称内量子数(或总量子数),表征P 的大小, ),表征 称内量子数(或总量子数),表征 J的大小, 为正整数或半整数,取值为: 为正整数或半整数,取值为:L+S,L+S-1, , , L+S-2,…,│L-S│, , , , 个值; 若L≥S,则J有2S+1个值; , 有 个值 个值。 若L<S,则J有2L+1个值。 < , 有 个值 MJ 称总磁量子数,表征 J沿外磁场方向分量大小, 称总磁量子数,表征P 沿外磁场方向分量大小, MJ 取值为:0,±1,±2,…,±J(当J为整数时) 取值为: , 为整数时) , , , ( 为整数时 或±1/2,±3/2,…,±J(当J为半整数时)。 , , , ( 为半整数时)。 为半整数时 S L J J
L-S耦合可记为: 耦合可记为:
)(l )=(S, )= )=J (s1,s2, …)( 1,l2, …)=( ,L)= )( )=( 将各电子自旋角动量( 将各电子自旋角动量(Ps1,Ps2,…)与各电 ) 子轨道角动量( 子轨道角动量 ( Pl1 , Pl1 , …) 分别加和 ( 矢量 ) 分别加和( 获得原子的总自旋角动量 和),获得原子的总自旋角动量PS和总轨道角动量 PL,然后再由PS与PL合成总(自旋-轨道)角动量PJ 合成总 自旋-轨道) (即P J=P S+P L)。 耦合, 按L-S耦合,得到S、L、J、MJ等表征原子运动 状态的原子量子数。 状态的原子量子数。
或任意正整数; 1)主量子数变化Δn=0或任意正整数; 主量子数变化Δ 2)总角量子数变化ΔL=±1; 总角量子数变化Δ 3)内量子数变化ΔJ=0,±1(但J=0时,ΔJ=0的跃 内量子数变化Δ 迁是禁阻的); 迁是禁阻的); 4)总自旋量子数的变化ΔS=0。 总自旋量子数的变化Δ

材料现代分析与测试技术-各种原理及应用

材料现代分析与测试技术-各种原理及应用

材料现代分析与测试技术-各种原理及应用XRD :1.X 射线产生机理:(1)连续X 射线的产生:任何高速运动的带电粒子突然减速时,都会产生电磁辐射。

①在X 射线管中,从阴极发出的带负电荷的电子在高电压的作用下以极大的速度向阳极运动,当撞到阳极突然减速,其大部分动能变为热能都损耗掉了,而一部分动能以电磁辐射—X 射线的形式放射出来。

②由于撞到阳极上的电子极多,碰撞的时间、次数及其他条件各不相同,导致产生的X 射线具有不同波长,即构成连续X 射线谱。

(2)特征X 射线:根本原因是原子内层电子的跃迁。

①阴极发出的热电子在高电压作用下高速撞击阳极;②若管电压超过某一临界值V k ,电子的动能(eV k )就大到足以将阳极物质原子中的K 层电子撞击出来,于是在K 层形成一个空位,这一过程称为激发。

V k 称为K 系激发电压。

③按照能量最低原理,电子具有尽量往低能级跑的趋势。

当K 层出现空位后,L 、M 、N……外层电子就会跃入此空位,同时将它们多余的能量以X 射线光子的形式释放出来。

④K 系:L, M, N, ...─→K ,产生K α、K β、K r ... 标识X 射线L 系:M, N, O,...─→L ,产生L α、L β... 标识X 射线特征X 射线谱M 系: N, O, ....─→M ,产生M α... 标识X 射线特征谱Moseley 定律2)(1αλ-?=Z Z:原子序数,、α:常数2.X 射线与物质相互作用的三个效应(1)光电效应?当X 射线的波长足够短时,X 射线光子的能量就足够大,以至能把原子中处于某一能级上的电子打出来,?X 射线光子本身被汲取,它的能量传给该电子,使之成为具有一定能量的光电子,并使原子处于高能的激发态。

(2)荧光效应①外层电子填补空位将多余能量ΔE 辐射次级特征X 射线,由X 射线激发出的X 射线称为荧光X 射线。

②衍射工作中,荧光X 射线增加衍射花样背影,是有害因素③荧光X 射线的波长只取决于物质中原子的种类(由Moseley 定律决定),利用荧光X 射线的波长和强度,可确定物质元素的组分及含量,这是X 射线荧光分析的基本原理。

材料现代分析测试方法教案

材料现代分析测试方法教案

材料现代分析测试方法教案(总18页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除材料科学与工程学院教案教师姓名:课程名称:材料现代分析测试方法课程代码:授课对象:本科专业:材料物理授课总学时:64其中理论:64实验:16(单独开课)教材:左演声等. 材料现代分析方法. 北京工业大学出版社,2000材料学院教学科研办公室制图3-3入射电子束与固体作用产生的发射现象3-2电子“吸收”与光子吸收有何不同?3-3入射X射线比同样能量的入射电子在固体中穿入深度大得多,而俄歇电子与X光电子的逸出深度相当,这是为什么?3-8配合表面分析方法用离子溅射实行纵深剖析是确定样品表面层成分和化学状态的重要方法。

试分析纵深剖析应注意哪些问题。

二、补充习题1、简述电子与固体作用产生的信号及据此建立的主要分析方法。

章节名称第四章材料现代分析测试方法概述教学时数4教学目的及要求1.掌握X射线衍射、电子衍射、紫外可见吸收光谱、红外吸收光谱、透射电子显微镜、扫描电子显微镜和电子探针X射线显微分析的用途。

2.了解原子发射光谱、原子吸收光谱、原子荧光光谱、核磁共振谱、拉曼光谱、X射线光电子能谱、紫外光电子能谱、俄歇电子能谱、色谱、质谱及电化学分析方法的用途。

重点难点重点:X射线衍射、电子衍射、紫外可见吸收光谱、红外吸收光谱、透射电子显微镜、扫描电子显微镜和电子探针X射线显微分析的用途。

教学内容提要第一节衍射分析方法概述X射线衍射、电子衍射。

第二节光谱分析方法概述原子发射光谱,原子吸收光谱,原子荧光光谱,紫外可见吸收光谱,红外吸收光谱,分子荧光光谱,分子磷光光谱,X射线荧光光谱,核磁共振谱,拉曼光谱等。

第三节电子能谱分析方法概述X射线光电子能谱,紫外光电子能谱,俄歇电子能谱。

第四节电子显微分析方法概述透射电子显微镜,扫描电子显微镜,电子探针X射线显微分析。

第五节色谱、质谱及电化学分析方法概述色谱分析法,质谱分析法,电化学分析法。

现代分析与测试技术优选全文

现代分析与测试技术优选全文


相干散射——电子衍射分析—— 显微结构分析

激发被测物质中原子发出特种X射线

——电子探针(电子能(波)谱分析,电子
探针X射线显微分析)
——显微化学分析(Be或Li以上元素分析)
1.材料现代分析技术绪论
材 料 现 代 分 析 技 术
1.材料现代分析技术绪论

材料现代分析的任务与方法

材料组成分析
1.材料现代分析技术绪论


直接法的局限
现 代
采用高分辨电子显微分析等直接分析技术并不能有效、 直观地反映材料的实际三维微观结构;高分辨电子

显微结构像是直接反映晶体的原子分辨率的投影结

构,并不直接反映晶体结构。
技 尽管借助模型法,通过对被测晶体拍摄一系列不同离

焦条件的显微像,来分析测定材料的晶体结构,但
性能和使用性能间相互关系的知识及这些知识的应用,是一门应用
基础科学。材料的组成、结构,工艺,性能被认为是材料科学与工
程的四个基本要素。
1.材料现代分析技术绪论
材 料
组成 (composition) 组成是指材料的化学组成及其所占比例。
现 工艺 (process)

工艺是将原材料或半成品加工成产品的方法、技术等。
2. 多晶相各种相的尺寸与形态、含量与分布、位向 关系(新相与母相、孪生相、夹杂物)
微观,0.1nm尺度(原子及原子组合层次)
结构分析:原子排列方式与电子构型
1. 各种相的结构(即晶体类型和晶体常数)、晶体缺 陷(点缺陷、位错、层错)
2. 分子结构与价键(电子)结构:包括同种元素的不 同价键类型和化学环境、高分子链的局部结构(官 能团、化学键)和构型序列等

现代分析测试技术_06振动光谱分析综合练习

现代分析测试技术_06振动光谱分析综合练习

第六章振动光谱分析(红色的为选做,有下划线的为重点名词或术语或概念)1.名词、术语、概念:波数,分子振动,伸缩振动,变形振动(或弯曲振动、变角振动),运动自由度,振动自由度,简并,分裂,倍频峰,组频峰,泛音峰,振动耦合,费米共振,特征振动频率与特征振动吸收带,内振动,外振动(晶格振动),红外活性与非活性,拉曼效应,拉曼散射,斯托克斯线,反斯托克斯线,拉曼位移,偏振度(或退偏度、退偏比)。

2.光谱工作者常常把红外区分成三个区域,即()、()和()。

3.若一个分子是由N个原子组成,则线性分子的运动自由度为(),振动自由度为(),转动自由度为(),平移自由度为()。

4.若一个分子是由N个原子组成,则非线性分子的运动自由度为(),振动自由度为(),转动自由度为(),平移自由度为()。

5.水分子(H2O)的振动自由度为(),转动自由度为(),平移自由度为()。

6.二氧化碳分子(CO2)的振动自由度为(),转动自由度为(),平移自由度为()。

7.氯化氢分子(HCl)的振动自由度为(),转动自由度为(),平移自由度为()。

8.红外辐射与物质相互作用产生红外吸收光谱,必须有分子偶极矩的变化。

只有发生偶极矩变化的分子振动,才能引起可观测到的红外吸收光谱带,称这种分子振动为(),反之则称为()。

9.按分光原理,红外光谱仪可分为两大类:即()和()红外光谱仪。

10.色散型红外光谱仪,按分光元件不同,可分为()和()红外分光光度计;按光束可为分()和()红外分光光度计。

11.干涉型红外光谱仪又称为()红外光谱仪,其英文缩写是()。

12.红外光谱的实验方法有透射法和反射法,反射法主要有()、()和()。

13.某一键或基团的振动频率有其特定值,它虽然受周围环境的影响,但不随分子构型作过大的改变,这一频率称为某一键或基团的(),而其吸收带称为()。

14.中红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量、键力以及原子分布的几何特点,即取决于物 质的化学成分和内部结构。
材料现代分析测试方法-分子振动光谱
➢ 每一种具有确定化学组成和结构特征的物质,都
应具有特征的红外吸收谱图(谱带位置、谱带数 目、谱带宽度、谱带强度)等。
➢ 当化学组成和结构特征不同时,其特征吸收谱图
也就发生了变化。
➢ 我们就可以根据红外光谱的特征吸收谱图对物质
注意以下几方面的特征:
1)谱带的数目
首先要分析它所含有的谱带数目,如上图中聚苯 乙烯在3000 cm-1附近有七个吸收带。
2)吸收带的位置
由于每个基团的振动都有特征振动频率,在红外
光谱中表现出特定的吸收谱带位置。在鉴定化合物时,
谱带位置常是最重要的参数。如OH—基的吸收波数在
3650~ 3700 cm-1,而水分子的吸收在较低的波数
➢ 谱图的横坐标一般标有两种量纲,即波长(μm)
(图上方)和波数(cm-1)(图下方),纵坐标
则常用透过率T%(=I/I0)表示(有时也用吸光 度A=lg1/T表示)。
➢ 在红外光谱图中的吸收均称为谱带。
材料现代分析测试方法-分子振动光谱
图 聚苯乙烯红外光谱
材料现代分析测试方法-分子振动光谱
2.红外光谱图的特征
3450 cm-1左右。
材料现代分析测试方法-分子振动光谱
3)谱带的形状 如果所分析的化合物较纯,它们的谱带比较
尖锐,对称性好。若是混合物,有时出现谱带的 重叠、加宽、对称性也被破坏。对于晶体固态物 质,其结晶的完整性程度影响谱带的形状。 4)谱带的强度
对于一定的化合物,它们的基频吸收强度都 较大,红外辐射的透过率小。和普通可见光的吸 收一样,红外光的吸收也服从兰勃特定律:
外界环境中,其化学键力常数是不同的,因此它 们的特征频率也会有差异。
➢ 掌握各种官能团与红外吸收频率的关系以及影响
吸收峰在谱图中的位置的因素是光谱解析的基础。
➢ 可将整个红外光谱大致分为两个区:
官能团区(特征谱带区)(4000~1300 cm-1)、 指纹区(1300~400 cm-1)。
材料现代分析测试方法-分子振动光谱
进行分析鉴定工作,并按其吸收的强度来测定它 们的含量。
材料现代分析测试方法-分子振动光谱
(一)红外吸收的条件
分子吸收红外辐射必须满足两个条件
1.偶极矩的变化
➢ 分子在振动过程中,原子间的距离(键长)或夹
角(键角)会发生变化,这可能引起分子偶极矩 的变化,产生一个稳定的交变电场,它的频率等 于振动的频率。
➢ 这个稳定的交变电场将和运动的具有相同频率的
电磁辐射电场相互作用,从而吸收辐射能量,产 生红外光谱的吸收。
材料现代分析测试方法-分子振动光谱
➢ 如果振动中没有偶极矩的变化就不会产生交变的
偶极电场,这种振动不会和红外辐射发生相互作 用,分子没有红外吸收光谱。
➢ 非极性分子的振动、极性分子的对称伸缩振动偶
材料现代分析测试方法-分子振动光谱
指纹区的吸收光谱: 很复杂,特别能反映分子结构的细微变化,每 一种化合物在该区的谱带位置、强度和形状都 不一样,相当于人的指纹,用于认证化合物是 很可靠的。
无机化合物的基团振动大多在这一波长范围内。
材料现代分析测试方法-分子振动光谱
二、红外吸收光谱分析
(一)红外光谱图 1.红外光谱图与表示方法
材料现代分析测试方法-分子振动光谱
➢ 由于分子振动能级连续跃迁二级以上的几率很
小,因此,倍频带的强度仅有基频带强度的 1/10左右或更低。
➢ 如果吸收谱带是在两个以上的基频带波数之和
或差处出现,则此谱带称为合频带,其强度也 比基频带弱得多。
材料现代分析测试方法-分子振动光谱
(二)基团特征频率
➢ 分子除了有简谐振动对应的基频谱带外,由于各
A lg (1 /T ) lg (I/I) K b 0 材料现代分析测试方法-分子振动光谱
振动和转动能级,从而更可靠地鉴定分子结构。 材料现代分析测试方法-分子振动光谱
一、 红外光谱的基本原理
➢ 分子的振动具有一些特定的分裂的能级。 ➢ 当用红外光照射物质时,该物质结构中的质点会
吸收一部分红外光的能量。引起质点振动能量的 跃迁,从而使红外光透过物质时发生了吸收而产 生红外吸收光谱。
➢ 被吸收的特征频率取决于被照射物质组成的原子
选择定则。
材料现代分析测试方法-分子振动光谱
由选律可知:
➢ 分子的振动从一个能级跃迁到相邻高一级能级,
只获得一个量子,由这类吸收产生的光谱频率 称为基频,基频的吸收带就称作基频带。
➢ 由于真实分子的振动不完全符合谐振子模型,
在很多情况下可能出现Δn>±1的跃迁。如果分 子振动能级跃迁两个以上能级,所产生的吸收 谱带叫倍频带,它出现在基频带的几倍处。
第五节 分子振动光谱
➢ (IR)和拉曼(Raman)光谱统称为敏感。
➢ 红外光谱为极性基团的鉴定提供最有效的信息,
拉曼光谱对研究物质的骨架特征特别有效。
➢ 一般非对称振动产生强的红外吸收,而对称振动
则出现显著的拉曼谱带。
➢ 红外和拉曼分析法结合,可更完整地研究分子的
官能团区的吸收光谱:
主要反映分子中特征基团的振动,基团的鉴定工 作主要在该区进行。
在此波长范围的振动吸收数较少, 多数是X—H键(X为N、O、C等)、 有机化合物中C== O、C==C、C≡C、C==N等重要官 能团在这范围内有振动。 在无机化合物中,除H2O分子及OH—键外,CO2、 CO32-、N—H等少数键在此范围内有振动吸收。
种振动之间的相互作用,以及振动的非谐性质, 还有倍频、合频、偶合以及费米共振等的吸收谱 带,因此确定各个谱带的归属是比较困难的。
➢ 但是根据大量的光谱数据发现,具有相同化学键
或官能团的一系列化合物有近似共同的吸收频率, 这种频率称为基团特征频率。
材料现代分析测试方法-分子振动光谱
➢ 同一种基团的某种振动方式若处于不同的分子和
极矩变化为零,不产生红外吸收。这种不发生吸 收红外辐射的振动,称为非红外活性振动,非红 外活性振动往往是拉曼活性的。
材料现代分析测试方法-分子振动光谱
2.选律
分子的振动能级是量子化的,而不是连续变
化的。式
E
n
1 2
h
中,n可取值0,1,2,3……。
在简谐振动模型中,其谐振子吸收或发射辐
射就必定依照Δn=±1的规律增减,这称为选律或
相关文档
最新文档