三相半波可控整流电路

合集下载

三相半波可控整流电路作用

三相半波可控整流电路作用

三相半波可控整流电路作用三相半波可控整流电路是一种常见的电路类型,用于将交流电转换成直流电。

它的主要作用就是在无法使用单相整流时实现直流电的转换,同时也可以对输出的电流进行控制,使其具有稳定的特性。

在本文中,我们将为您详细介绍三相半波可控整流电路的作用和原理。

一、三相半波可控整流电路的原理三相半波可控整流电路的原理是将三相电源输入电路中,通过选择不同的晶闸管通导角度,使一个相的输出电流进行控制。

在三个周期中,只有一个周期的输出电流被导通,其余两个周期的输出电流被截断。

因此,三相半波可控整流电路的输出电流是不连续的,但输出电压是近似直流的。

二、三相半波可控整流电路的作用1. 实现交流电到直流电的转换三相半波可控整流电路通过对输出电流进行控制,把输入的交流电转变成近似直流电。

这对于需要直流电源的电器非常重要,如大型机械设备、控制系统等。

2. 降低电能消耗三相半波可控整流电路可以减少电压波动和电流的峰值,从而减少电能消耗。

这种电路在工业生产中经常被使用,可以有效降低生产成本。

3. 提高电能效率三相半波可控整流电路的使用可以提高电能的利用效率。

通过控制输出电流,可以使其保持稳定,从而提高系统的效率和性能。

4. 实现自动调节三相半波可控整流电路还可以设计自动调节功能,使输出电流自动调节,以保证系统的稳定性。

这种功能在需要连续性输出电流的工业生产中特别有用。

三、三相半波可控整流电路的应用三相半波可控整流电路广泛应用于各种工业和农业领域,如雕刻、切割、搬运和农业机械,汽车制造等。

在这些应用中,三相半波可控整流电路可以实现高效能的直流电源,为设备提供稳定、可靠的电源。

此外,它也被广泛应用于电气驱动、自动控制、机器视觉等领域。

总之,三相半波可控整流电路的作用在工业生产中是不可替代的,它可以实现电能转换、降低耗能、提高效能、实现自动调节。

有了这种电路,我们可以更加轻松、高效地完成各种生产任务。

三相半波可控整流电路性负载阻

三相半波可控整流电路性负载阻

1.三相半波可控整流电路(电阻性负载)1.1三相半波可控整流电路(电阻性负载)电路结构为了得到零线变压器二次侧接成星形得到零线,为了给三次谐波电流提供通路,减少高次谐波的影响,变压器一次绕组接成三角形,为△/Y接法。

三个晶闸管分别接入a、b、c三相电源,其阴极连接在一起为共阴极接法。

如图1.du R1VT3VTd i2VTr T图1.三相半波可控整流电路原理图(电阻性负载)1.2三相半波可控整流电路工作原理(电阻性负载)1)在ωt1-ωt2区间,有Uu>Uv,Uu>Uw,U相电压最高,VT1承受正向电压,在ωt1时刻触发VT1导通,导通角θ=120°,输出电压Ud=Uu。

其他两个晶闸管承受反向电压而不能导通。

VT1通过的电流It1与变压器二次侧u相电流波形相同,大小相等,可在负载电阻R两端测试。

2)在ωt2-ωt3区间,有Uv>Uu,V相电压最高,VT2承受正向电压,在ωt2时刻触发VT2导通,Ud=Uv。

VT1两端电压Ut1=Uu-Uv=Uuv<0,晶闸管VT1承受反向电压关断。

3)在ωt3-ωt4区间,有Uw>Uv,W相电压最高,VT3承受正向电压,在ωt3时刻触发VT3导通,Ud=Uw。

VT2两端电压Ut2=Uv-Uw=Uvw<0,晶闸管VT2承受反向电压关断。

在VT3导通期间VT1两端电压Ut1=Uu-Uw=Uuw<0。

这样在一个周期内,VT1只导通120°,在其余240°时间承受反向电压而处于关断状态。

1.3三相半波可控整流电路仿真模型(电阻性负载)根据原理图用matalb软件画出正确的三相半波可控整流电路(电阻性负载)仿真电路图如图2所示:图2.三相半波可控整流电路仿真模型(电阻性负载)脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟分别为(α+30)/360*0.02,(α+120+30)/360*0.02,(α+240+30)/360*0.02。

三相半波可控整流电路

三相半波可控整流电路
在分布式电源系统中,三相半波可控整流电路还可以实现多电源的并联运行。通 过整流电路的均流控制,可以实现多电源的负载均衡,提高电源系统的供电能力 和可靠性。
06
结论与展望
三相半波可控整流电路的优势与局限性
要点一
高效节能
要点二
输出波形质量高
三相半波可控整流电路具有较高的效率,能够减少能源浪 费。
该电路输出的电压波形较为平滑,减少了谐波干扰。
变压器还需要具有一定的电气隔离作用,以保 证整流电路的安全运行。
03
工作过程
触发脉冲的产生与控制
触发脉冲的产生
三相半波可控整流电路的触发脉冲通 常由专门的触发电路产生,该电路根 据所需的整流波形和控制要求,产生 相应的触发脉冲信号。
触发脉冲的控制
触发脉冲的宽度和相位可以通过调节 控制信号来改变,从而实现整流输出 电压和电流的控制。
THANKS
感谢观看
技术发展趋势与未来展望
数字化控制
随着数字技术的发展,未来三相半波可控整 流电路将更多地采用数字化控制方式,提高 控制精度和稳定性。
智能触发技术
智能触发技术能够提高整流电路的运行效率 和稳定性,减少对电网的干扰,是未来的重 要发展方向。
技术发展趋势与未来展望
• 多相整流技术:多相整流技术能够提高整流电路 的容量和稳定性,减少对电网的谐波干扰,是未 来的研究热点之一。
3
触发电路的性能直接影响整流电路的输出性能和 稳定性,因此需要保证触发脉冲的相位准确、稳 定。
变压器
变压器是三相半波可控整流电路中的重要组成 部分,主要用于实现电气隔离和电压变换。
在整流电路中,变压器通常采用三相变压器, 将输入的三相交流电变换为合适幅值的单相交 流电,以满足晶闸管和整流电路的需要。

三相半波可控整流电路

三相半波可控整流电路

t
换相点开始计算,所以为 150。
6) 数量关系
整流输出电压平均值的计算
α ≤30时,负载电流连续,有:
p p U d2 1p 5 6 p 6
2 U 2sitnd (t)3 26U 2co s 1 .1U 7 2cos
3
当α =0时,Ud最大,为 UdUd01.1U 72 。
α >30时,负载电流断续,晶闸管导通角减小,此时有:
(如α =ቤተ መጻሕፍቲ ባይዱ0时的波形如图所
示)
❖ua 过 零 时 , VT1 不 关 断 , 直到VT2的脉冲到来,才 换流,由VT2导通向负载 供电,同时向VT1施加反 压使其关断——ud波形中 出现负的部分。
电感性负载时, α的移相范围为90
原因是由于当α≥90时,Ud的波形正负对称,平均值为0, 失去意义。所以α的移相范围为90。
R
2)负载电压
一周期中,在ωt1~ ω t2期间,VT1导通,ud=ua 在ω t2~ ω t3期间, VT2导通,ud=ub 在ω t3~ ω t4期间,VT3导通,ud=uc
3)晶闸管的电压波形,由3段组 成:
第1段,VT1导通期间,uT1=0; 第2段,在VT1关断后,VT2导 通期间,uT1=ua-ub=uab,为一 段线电压;
2、到α≤30°,输出电压连续,导通角θ=120°; 当30° <α≤150°时,输出电压呈现断续,每个晶 闸管导通角为θ= 150°- α<120°
3、控制角移相范围为0°~150°
2. 三相半波可控整流电路电感性负载
1) 特点:电感性负载,L值很大,id波形基本平直 ➢ α ≤30时:整流电压波形与电阻负载时相同 ➢ α >30时:ud波形中出现负的部分。 2) 电感性负载时, α的移相范围为90

三相半波可控整流电路

三相半波可控整流电路
.
uαb
uαc
图3-13 三相半波可控整流电路共 阴极接法电阻负载时的电路及 α =0时的波形
(2)α =30时,波形如下图所示
u2 =30u°a
ub
uc
O
wt
uG
O ud
wt
O iVT1
wt1
wt
O uVT1 uac
wt
O
wt
uab
uac
α ≤30时的波形:负载电流连续,晶闸管导通角等于120 。 (α =30时负载电流连续和断续之间的临界状态)
.
(3)α =60时,波形如下图所示
u2 =60u°a ub
uc
O uG uOd
O iVT1
O
α >30的情况:负
wt
载电流断续,晶闸管 导通角小于120 。
wt
wt α 移相范围: 0
~150
wt
.
3.3 三相半波可控整流电路
3. 各电量计算
(1)0 ≤ α ≤30时,负载电流连续,有:
3.3 三相半波可控整流电路
一、 电阻性负载
1.电路的特点:
•变压器二次侧接成星形, 而一次侧接成三角形。
•三个晶闸管分别接入α 、
b、c三相电源,其阴极
连接在一起——共阴极 接法 。
三角形
ud
N
id
星形
.
3.3
三相半波可控整流电路 自然换相点
u
( α =0)
uα ub uc
ud
N
id
0 wt1 wt2 wt3 wt4
.
3.3 三相半波可控整流电路
3. 大电感负载接续流二极管
为了扩大移相范围并使负载电流id 平

三相半波可控整流电路

三相半波可控整流电路

三相半波可控整流电路1. 电阻负载(1) 工作原理三相半波可控整流电路如图1 a) 所示。

为得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波电流流人电网。

三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。

假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路,以下首先分析其工作情况。

此时,三个二极管对应的相电压中哪一个的值最大,则该相所对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压,波形如图1 d) 所示。

在一个周期中,器件工作情况如下:在ωt~ωt期21uu;在ωt~ωt期间,b 相电压最高,VD导通,= 相电压最高,间,αa3d12uuuu。

此后,导通,= 期间,c 相电压最高,VDVD导通,= ~ωt;在ωt cdb4323d在下一周期相当于ωt的位置即ωt时刻,VD又导通,重复前一周期的工作情114u o波形为三个120。

VD况。

如此,一周期中VD、VD、轮流导通,每管各导通d213相电压在正半周期的包络线。

在相电压的交点ωt、ωt、ωt处,均出现了二极管换相,即电312流由一个二极管向另一个二极管转移,称这些交点为自然换相点。

对三相半波可控整流电路而言,自然换相点是各相晶闸管能触发导通的最早时刻,将其作为o,要改变触发角只能是在此基础上α=0的起点,即α计算各晶闸管触发角则电若在自然换相点处触发相应的晶闸管导通,增大,即沿时间坐标轴向右移。

.路的工作情况与以上分析的二极管整流工作情况一样。

由单相可控整流电路可u 的过零点。

知,各种单相可控整流电路的自然换相点是变压器二次电压2o时,变压器二次侧 a 相绕组和晶闸管VT1的电流波形如当α = 0o,可见变压器二次所示,另两相电流波形形状相同,相位依次滞后120图1 e) 绕组电流有直流分量。

图1 f) 是VT两端的电压波形,由3段组成:第1段, VT导通期11uu= 导通期间,,,VT第2段,在VT关断后间,为一管压降,可近似为=0;VT1VT121uuuuuu u= 段,在VT导通期间,-- = = ,为一段线电压;第3acaabbac VT13为另一段线电压。

三相可控整流电路

三相可控整流电路

α ≤60时(α =0 如图12所示;α =30 如图13所示)
• ud波形连续,工作情况与带电阻负载时十分相似。
主要 • 区别在于: 包括 id的波形可近似为一条水平线。
α >60时( α =90如图14所示)
• 阻感负载时的工作情况与电阻负载时不同。
电阻负载时,ud波形不会出现负面积
ud1
= 90°
ub
uc
ua
O ud2 ud
wt1
uab Ⅰ uac Ⅱ ubc Ⅲ uba Ⅳ uca Ⅴ ucb Ⅵ uab
wt
uac
O
wt
uVT
1
uac
uac
O uab
wt
图14 三相桥式整流电路 带阻感负载,α =90时的 波形
二、三相桥式全控整流电路3定量分析 当整流输出电压连续时(即带阻感负载时,或带电阻负载α ≤60时)的平均值为:
1 IT Id 3
I dT
1 Id 3
U TM 6U 2
一、三相半波可控整流电路
3. 大电感负载接续流二极管
为了扩大移相范围并使负载电流 id 平稳,可在电感负载两端并接续流 二极管,由于续流管的作用, ud 波 形已不出现负值,与电阻性负载 ud 波形相同。
接入VD
图7 三相半波可控整流电路,阻感负载(接 续流管)时的波形
- 可采用两种方法:单宽脉冲触发、双窄脉冲触发
(5)晶闸管承受的电压波形与三相半波时相同, 晶闸管承受最大正、反向电压的关系也相同。
三、数字式脉冲移相触发器
1 数字式移相触发电路的工作原理框图
2 触发脉冲与主电路电压的同步
利用专用芯片进行直接数字控制已较普遍采用, 其控制灵活便于实现生产过程的自动化。

三相半波可控整流电路

三相半波可控整流电路

选取晶闸管型号为 KP100-7F晶闸管。
一、单相半波可控整流电路
二、电感性负载 ➢ 电感性负载通常是电机的励
磁线圈、继电器线圈及其他 含有电抗器的负载。
➢ 电感性负载的特点:感生电 动势总是阻碍电感中流过的 电流使得流过电感的电流不 发生突变。
VT T
a) u1
uVT u2
id
L ud
R
u2
b)
i
VT
O
1,4
i
VT
O
2,3
O
电流的平均值和有效值:
i2
u
VT
O
1,4
Id
wt
Id
wt
Id
wt
Id
wt
O
wt
I dT
1 2 Id
1 IT 2 Id 0.707Id
b)
变压器二次侧电流i2的波形为正负各180的矩形波,其相 位由α 角决定,有效值I2=Id。
二、单相桥式可控整流电路
3.电感性负载(接续流二极管)见图2-7
α)
➢ 工作原理及波形分析
VT1 和 VT4 组 成 一 对 桥 臂 , 在 u2 正半周承受电压u2,得到触发脉 冲即导通,当u2过零时关断。
VT2 和 VT3 组 成 另 一 对 桥 臂 , 在 u2 正 半 周 承 受 电 压 - u2, 得 到 触 发脉冲即导通,当u2过零时关断。
ud
ud(id)
2
1
Байду номын сангаас
cos 2
输出电流平均值Id :
Id
Ud R
0.45 U 2 R
1 cos
2
一、单相半波可控整流电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ID
30
120

Id
I dD
30
120

Id
U DM 6U 2
二、 阻感负载 1.工作原理及波形分析
阻感负载,当 L 值很大时,
ud O ia O ib O ic O id O uVT O
1
id波形基本平直
0

wt
波形与电阻负载时相同。 30 < α≤90° 时 : ( 如 α =60时的波形右图所示)。 特点:晶闸管 导通角均为 120°,与控制角α无关;移 相范围为 90 ;晶闸管电流 波形近似为方波。
3.3 三相半波可控整流电路

负载电流平均值为 I U d d
R

流过晶闸管的电流平均值为 I
dT
1 Id 3

晶闸管承受的最大电压,为变压器二次线电
压峰值,即 U 6U TM 2
3.3
三相半波可控整流电路
T u2 a b VT2 c VT1 L eL ud VT3 id R ua ub uc
u2 b) O uG O ud d) O i VT
1
=0 u α
ub
R
uc
R
id
w t1
w t2
w t3
wt
c)
wt
wt
e) f) u O
VT
wt wt
uαb uαc
1
O
图3-13 三相半波可控整流电路共 阴极接法电阻负载时的电路及 α =0时的波形
(2)α =30时,波形如下图所示
u2 =30° u
Ud (2)负载电流平均值 I d R
(3)流过晶闸管的电流平均值IdT、有效值IT 以及承
受的最高电压UTM分别为
1 IT Id 3
I dT
1 Id 3
U TM 6U 2
3.3 三相半波可控整流电路
3. 大电感负载接续流二极管

为了扩大移相范围并使负载电流 id 平 稳,可在电感负载两端并接续流二极 管,由于续流管的作用, ud 波形已不 出现负值,与电阻性负载 ud波形相同。
3.3 三相半波可控整流电路
一、 电阻性负载
1.电路的特点:
•变压器二次侧接成星形,
而一次侧接成三角形。
•三个晶闸管分别接入α 、
N
ud
id
b、c 三相电源,其阴极
连接在一起 —— 共阴极
接法。
三角形
星形
3.3 三相半波可控整流电路
u
uα ud
N
自然换相点 ( α =0)
ub
uc
id
0 wt1 wt2 wt3 wt4
6
3 6 U 2 cos 1.17U 2 cos 2

当α =0 时,Ud最大,为 U d U d0 1.17U 2
(2) 30 ≤ α ≤150 时,负载电流断续,晶闸管 导通角减小,此时有:
1 Ud 2 3



2U 2 sin wtd (wt )
6
3 2 U 2 1 cos( ) 0.6751 cos( ) 2 6 6

3.3 三相半波可控整流电路
(2)晶闸管电流平均值IdT、有效值IT 及晶闸管承受的最 高电压值UTM 1)0°≤α ≤30°时 1 1 I dT I d U TM 6U 2 IT Id 3 3 2) 30°≤α ≤150°时 150 150 I dT Id U TM 6U 2 IT I d 360 360 (3)续流管平均电流IdD、有效值ID及承受的最高电压 UDM (30°≤α ≤150°)
接入VD
图3-16 三相半波可控整流电路,阻 感负载(接续流管)时的波形
图3-15 三相半波可控整流电路,阻 感负载(不接续流管)时的波形
3.3 三相半波可控整流电路
3. 大电感负载接续流二极管


在0°≤α ≤30°区间,电源电 压均为正值, ud 波形连续,续 流管不起作用; 当 30 °< α ≤150°区间,电 源电压出现过零变负时,续流 管及时导通为负载电流提供续 流回路,晶闸管承受反向电源 相电压而关断。这样 ud 波形断 续但不出现负值。续流管 VD 起 作用时,晶闸管与续流管的导 通角分别为: 150 T
D 3 ( 30 )
三、反电动势负载
与单相全控桥反电势负载情况相 似,在电枢回路中串入电感量足 够大的Ld。这就为含有反电势的 大电感负载,其波形分析、各电 量计算式与大电感负载时相同 , 仅电流计算公式不同
Ud E Id Rd
同样,为了扩大移相范围,并 使id波形更加平稳,也可在负载 两端并联续流管VD。其波形分 析和计算方法,与接续流管的 三相半波大电感负载相同。
图3-17 三相半波可控整流电路,反电动 势负载的波形
3.3 三相半波可控整流电路

各电量计算
(1) 负载电压平均值Ud和电流平均值Id 1) 0°≤α ≤30°时
U d 1.17U 2 cos U d 0 cos
2) 30°≤α ≤150°时
1 U d 3 0.45U 2 [1 cos( )] 0.675U 2 [1 cos( )] 6 2 6 3)负载电流 Id=Ud/Rd
VD1导通,ud=uα
VD2导通,ud=ub VD3导通,ud=uc
ωt
•二极管换相时刻为自然 换 相 点, 是 各 相 晶 闸 管 能触发导通的最早时刻, 将其作为计算各晶闸管 触发角α 的起点,即α =0。
3.3
三相半波可控整流电路
α)
2. 工作原理:
(1) α=0°
每管导通120°, 三相电源 轮流向负载供电,负载电压ud 为三相电源电压正半周包络线。 变压器二次绕组的电流:变 压器二次侧α 相绕组和晶闸管 VT1的电流波形相同,变压器 二次绕组电流有直流分量。 晶闸管的电压波形,由3段 组成。
a
ub
uc
O uG O ud O iVT
1
wt
wt wt 1 wt wt wt
uab uac
O uVT u 1 ac O
α ≤30时的波形:负载电流连续,晶闸管导通角等于120 。 (α =30时负载电流连续和断续之间的临界状态)
(3)α =60时,波形如下图所示
u2 =60° ua ub uc
O uG O ud O
1
wt
α
>30的情况:负
载电流断续,晶闸管
wt wt
导通角小于120 。
α
移相范围: 0
iVT
~150
wt
O
3.3 三相半波可控整流电路
3. 各电量计算 (1)0 ≤ α ≤30时,负载电流连续,有:
1 Ud 2 3

5 6
2U 2 sin wtd (wt )
≤ α ≤30 时:整流电压
wt wt wt wt
uac uab
uac
wt
图3-14 三相半波可控整流电路,阻感负 载时的电路及 =60时的波形
3.3 三相半波可控整流电路
2.各电量计算
(1) 输出电压平均值 ud 5 1 6 Ud 2U sin wtd (wt ) 1.17U cos 2 2 2 / 3 6
相关文档
最新文档