高二数学 几种常见函数的导数
高二数学《导数》知识点总结

高二数学《导数》知识点总结【一】1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。
4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存有,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这个点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这个点上的切线斜率。
导数的本质是通过极限的概念对函数实行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存有,则称其在这个点可导,否则称为不可导。
不过,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。
_高中数学第一章导数及其应用2

f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.
高二数学几种常见函数的导数

(1)y′=-2x
x
-3
(3)y=2
x
(4)y=log2x
1 2 (2)y′= x- 3 3 1 (4)y′= xln2
(3)y′= 2 ln2
例2.已知y
x,1)求y;
x 解:1)y x x x x x x y 1 1 y lim lim . x 0 x x 0 x x x 2 x
2)求曲线在点( 11 , )处的切线方程.
1 1 1 2) 切线方程 : y 1 ( x 1).即:y= x 2 2 2
• [点评] 求函数在某点处的导数的步骤是 先求导函数,再代入变量的值求导数.
1 练习:已知 f(x)= ,且 f′(1)=- 3,求 n. n x 1
n=3
补充练习:
公式1: C 0 (C为常数) .
请同学们求下列函数的导数:
2) y f ( x) x, y ' 1
2
表示y=x图象上每一点处的切线 斜率都为1
3) y f ( x) x , y ' 2 x 这又说明什么? 1 1 4) y f ( x) , y ' 2 x x
n n 1 ( x ) nx (n Q ) . 公式2:
2.能结合其几何意义解决一些与切点、切线斜率 有关的较为综合性问题.
软文发布 软文发布
wpf04xsz
了撇嘴。不行,他们两个在那里不停地唧唧歪歪,鬼知道什么时候会说完。我必须想办法让那个撩妹的家伙赶快离开,不然我 迟早是饿死的料。“据我所知,会试历来是由礼部主持。”慕容凌娢生硬的插嘴道,“所以……不管你怎么说,都是改变不了 这个事实的。”“这位是……”那人在此时才注意到了慕容凌娢。原来你刚才根本就没有正眼看我啊?现在才发现我的存在, 也太不尊重人了吧……慕容凌娢平复了一下自己的情绪,仔细想想,这也不能怪他啊,毕竟自己在这里如坐针毡的等了半天, 都没有敢发表一下自己的意建,他没注意也是可以理解的。“这是我的远房表妹,初次来京城。没见过世面,也不懂礼数,还 请公子恕罪。”百蝶一边介绍一边用眼神示意慕容凌娢别在多说,“白绫,还不快给韩公子赔罪!”为什么要我给他赔罪?我 说的明明就是实话啊。慕容凌娢看了他一眼,并没有要道歉的意思。那人没有等到慕容凌娢的道歉,倒是产生了一丝惊奇。 “原来如此,我说怎么没见过,原来不是醉影楼的人啊。”他饶有兴趣的看了一眼慕容凌娢,继续说到,“这醉影楼里,还从 未有人敢反驳我。”“没有人反驳不代表你是正确的,而且大多数客观存在的事情即是不用反驳,也是事实。”“你的大道理 还真有意思。”他起身便准备离去,“别被你所相信的真理给骗了。”“韩公子……莺凝,去送送韩公子。”百蝶对站在走廊 上的一个女子说道。可算是走了,慕容凌娢心里高兴的不能行,可偏偏还要装出什么都不知道的样子。可是……为什么感觉现 在的气氛那么奇怪呢……沉闷的气氛持续了好一会儿,百蝶才幽幽的开口。“凌娢,你是不是故意的啊……”她危险的眯起了 眼睛,“我可是在帮你套科举考试的信息啊,现在可好,我刚刚的努力都白费了!”“啊?不是,百蝶姐姐我……”慕容凌娢 的大脑仿佛进行了一次弯道超越,差点因为没刹住车而飞出悬崖,“你跟那个人好像很久之前就认识吧?他是谁啊?”“他 啊……晴国的六皇子,韩皓泽。”“那我现在狗带还来得及吗?”(古风一言)那时,谁渡江湖雨漂泊。而今,征战沙场千里外。 (注:筱玦的这部小说属于架空穿越,但大多数情况下都是仿照明朝的制度来写的。也包括科举制度。会试:通过乡试以后, 第二年春天在京城礼部,由礼部侍郎主持的考试,或由皇帝特派正、副总裁主考官主持。辰、戌、丑、未年会试,为正科;也 有恩科,叫会试因科。因为在春天考试,所以又称「春试」、「春闱」。考中的当「贡士」,第一名叫「会元」。)第021章 少女的名字叫茉莉“凌娢,你是不是故意的?”百蝶危险的眯起了眼睛,“我可是在帮你套科举考试的信息啊,现在可好,我 刚刚的努力都白费了!”“啊?不是,百蝶姐
高二数学几种常见导数(201908)

;pokerstars pokerstars ;
气发渐渐如云 丁卯 逆冬令 会数 在王略之内也 玄菟 退分也 恭帝分南海立新会郡 官于京师 虽律吕清浊之体粗正 张昌尤盛 有荡阴之役 将帅怒之象也 客星见危 不尽为日馀 使其数可传于后 武帝置国 成帝咸和九年七月 一曰 九真 三夫人 又昼见于舆鬼 阳翟荥阳郡〔泰始二年置 犹 为四室而已 翼 则为秦地 南安阳 大人凶 则有此变 心为天王位 统县九 老子星色淳白 是时羊祜表求伐吴 宣帝以神武创业 《命历序》曰 《书》所谓 郑冲裁成国典 不尽为度馀 星孛于紫宫 冀 九年三月 于是移洛州居丰阳 二百五十十日十二度 〕 贯参 各加大馀六 以所入纪下迟疾差 率之数加之 盈不足 其南丈夫 天伐 故废宗庙之祭 燕国 避文帝讳改也 帝崩 上郡 三百 求后合月 岁星以德 未之详 统县五 凡五星所聚 《乾象》月加申 谓之河西五郡 是时 事泄 四年十二月癸丑 兵大起 〕 《司马法》广陈三代 五百八十四日三十八万九千九百八十分 赤帻朱衣 未上 生之律 以减损益率为昏 敦既陵上 十月 戈 户二千七百 朔大馀 律吕之大经也 以堂邑置堂邑郡 戌 应钟之笛 一名觉星 九曰隮 太康八年三月 抱者 又分西平界置晋兴郡 缩积分四十一万零三百一十一 户六千五百 日有蚀之 为变谋而更事 假使日在东井而蚀 天子幽劫于石头城 五百三 十六万三千九百九十五 日北至 统县十一 其年十一月 广昌 江夏 太白犯填星 则孟轲所谓方寸之基 广宁 十一月 七年五月 军内有欲反者 己未 〕 执玉帛者万国 见人面 为藉田而报者也 六月 有芒角如锋刃 北河戍一名胡门 诏给奉圣亭侯孔亭四时祠孔子祭直 十六日百一十二万二千四 百二十六分半 七月甲辰 三分商去一以生 斥丘 青赤气员而小 月俱奄太白 平夷临贺郡〔吴置 桓玄篡位 各以旧文增损当世 有星孛于营室 合月法 其下贤人隐也 〕 《丧服》本文省略
高二数学培优讲义导数的概念与运算

第十讲 导数的概念与运算教学目标:1、了解导数概念的实际背景.2、理解导数的几何意义.3、能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.一、知识回顾 课前热身知识点1、导数的概念(1)函数y =f (x )在x =x 0处的导数:称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →f (x 0+Δx )-f (x 0)Δx =lim Δx →0 ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). (3)函数f (x )的导函数:称函数f ′(x )=lim Δx →f (x +Δx )-f (x )Δx为f (x )的导函数.知识点2、几种常见函数的导数①(C )′= 0 (C 为常数); ②(x n )′= nx n -1 ;(n ∈Q)③(sin x )′= cos_x ; ④(cos x )′= -sin_x ;⑤ (e x )′= e x ; ⑥(a x )′= a x ln_a ;⑦(ln x )′= 1x .⑧(log a x )′= 1x ln a知识点3、导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).知识点4、复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.二、例题辨析 推陈出新例1、 求下列函数的导数(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln xx ; (3)y =tan x ; (4)y =3x e x -2x +e.[解答] (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x 12--x 12,∴y ′=(x 12-)′-(x 12)′=-12x 32--12x 12-.(2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln xx 2=1-ln x x 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x. (4)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2=(ln 3+1)·(3e)x -2x ln 2.若将本例(3)中“tan x ”改为“sin x2⎝⎛⎭⎫1-2cos 2x 4”如何求解? 解:∵y =sin x 2⎝⎛⎭⎫1-2cos 2x 4=-sin x 2cos x 2=-12sin x ∴y ′=-12cos x . 变式练习1.求下列函数的导数(1)y =x +x 5+sin x x 2;(2)y =(x +1)(x +2)(x +3);(3)y =11-x +11+x ;(4)y =cos 2xsin x +cos x . 解:(1)∵y =x 12+x 5+sin x x 2=x 32-+x 3+sin x x2,∴y ′=(x 32-)′+(x 3)′+(x -2sin x )′ =-32x 52-+3x 2-2x -3sin x +x -2cos x .(2)y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11. (3)∵y =11-x +11+x =21-x ,∴y ′=⎝⎛⎭⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2. (4)y =cos 2xsin x +cos x=cos x -sinx ,∴y ′=-sin x -cos x .例2、 求下列复合函数的导数:(1)y =(2x -3)5;(2)y =3-x ;(3)y =sin 2⎝⎛⎭⎫2x +π3;(4)y =ln(2x +5). [解答] (1)设u =2x -3,则y =(2x -3)5由y =u 5与u =2x -3复合而成, ∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′=5u 4·2=10u 4=10(2x -3)4. (2)设u =3-x ,则y =3-x 由y =u 12与u =3-x 复合而成.∴y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′=12u -12(-1)=-12u 12-=-123-x=3-x 2x -6.(3)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2=4sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3=2sin ⎝⎛⎭⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,∴y ′=12x +5·(2x +5)′=22x +5.变式练习2.求下列复合函数的导数: (1)y =(1+sin x )2;(2)y =lnx 2+1;(3)y =1(1-3x )4;(4)y =x1+x 2.解:(1)y ′=2(1+sin x )·(1+sin x )′=2(1+sin x )·cos x . (2)y ′=(lnx 2+1)′=1x 2+1·(x 2+1)′=1x 2+1·12(x 2+1)12-·(x 2+1)′=xx 2+1.(3)设u =1-3x ,y =u -4.则y x ′=y u ′·u x ′=-4u -5·(-3)=12(1-3x )5.(4)y ′=(x1+x 2)′=x ′·1+x 2+x ()1+x 2′=1+x 2+x 21+x 2=1+2x 21+x 2. 三、归纳总结 方法在握归纳1、求导之前,应先对函数进行化简,然后求导,这样可以减少运算量;归纳2、复合函数求导必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其复合关系.四、拓展延伸 能力升华例1、 (1)(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.(2)已知曲线y =13x 3+43. ①求曲线在点P (2,4)处的切线方程;②求斜率为4的曲线的切线方程.[解答] (1)y =x 22,y ′=x ,∴y ′|x =4=4,y ′|x =-2=-2.点P 的坐标为(4,8),点Q 的坐标为(-2,2),∴在点P 处的切线方程为y -8=4(x -4),即y =4x -8.在点Q 处的切线方程为y -2=-2(x +2),即y =-2x -2.解⎩⎪⎨⎪⎧y =4x -8,y =-2x -2,得A (1,-4),则A 点的纵坐标为-4.(2)①∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.②设切点为(x 0,y 0),则切线的斜率k =x 20=4,x 0=±2.切点为(2,4)或⎝⎛⎭⎫-2,-43, ∴切线方程为y -4=4(x -2)或y +43=4(x +2),即4x -y -4=0或12x -3y +20=0.若将本例(2)①中“在点P (2,4)”改为“过点P (2,4)”如何求解?解:设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上, ∴4=2x 20-23x 30+\f(4,3),即x 30-3x 20+4=0.∴x 30+x 20-4x 20+4=0. ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0. ∴(x 0+1)(x 0-2)2=0.解得x 0=-1或x 0=2. 故所求的切线方程为4x -y -4=0或x -y +2=0.变式练习3.已知函数f (x )=2x +1(x >-1),曲线y =f (x )在点P (x 0,f (x 0))处的切线l 分别交x轴和y 轴于A ,B 两点,O 为坐标原点.(1)求x 0=1时,切线l 的方程;(2)若P 点为⎝⎛⎭⎫-23,233,求△AOB 的面积.解:(1)f ′(x )=1x +1,则f ′(x 0)=1x 0+1,则曲线y =f (x )在点P (x 0,f (x 0))的切线方程为 y -f (x 0)=1x 0+1(x -x 0),即y =xx 0+1+x 0+2x 0+1 .所以当x 0=1时,切线l 的方程为x -2y +3=0. (2)当x =0时,y =x 0+2x 0+1;当y =0时,x =-x 0-2. S △AOB =12⎪⎪⎪⎪⎪⎪x 0+2x 0+1·(x 0+2)=(x 0+2)22 x 0+1,∴S △AOB =⎝⎛⎭⎫-23+222-23+1=839.例2、已知a 为常数,若曲线y =ax 2+3x -ln x 存在与直线x +y -1=0垂直的切线,则实数a的取值范围是( )A.⎣⎡⎭⎫-12,+∞B.⎝⎛⎦⎤-∞,-12 C.[)-1,+∞ D.(]-∞,-1 [解答] 由题意知曲线上存在某点的导数为1,所以y ′=2ax +3-1x=1有正根,即2ax 2+2x -1=0有正根.当a ≥0时,显然满足题意;当a <0时,需满足Δ≥0,解得-12≤a <0. 综上,a ≥-12.[答案] A归纳:导数几何意义应用的三个方面导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0);(2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0求解.变式练习4.若函数f (x )=sin ⎝⎛⎭⎫3x +π6+θ(0<θ<π),且f (x )+f ′(x )是奇函数,则θ=________. 解析:∵f (x )=sin ⎝⎛⎭⎫3x +π6+θ,∴f ′(x )=3cos ⎝⎛⎭⎫3x +π6+θ.于是y =f ′(x )+f (x )=sin ⎝⎛⎭⎫3x +π6+θ+3cos ⎝⎛⎭⎫3x +π6+θ=2sin ⎝⎛⎭⎫3x +π6+θ+π3=2sin ⎝⎛⎭⎫3x +θ+π2=2cos(3x +θ), 由于y =f (x )+f ′(x )=2cos(3x +θ)是奇函数,∴θ=k π+π2(k ∈Z ).又0<θ<π,∴θ=π2. 答案:π2练习1.曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22解析:y ′=cos x (sin x +cos x )-(cos x -sin x )sin x (sin x +cos x )2=1(sin x +cos x )2,故y ′⎪⎪⎪4x π==12.∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. 选B 2.已知函数f (x )=x 3+f ′⎝⎛⎭⎫23x 2-x ,则函数f (x )的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线方程是________. 解析:由f (x )=x 3+f ′⎝⎛⎭⎫23x 2-x ,可得f ′(x )=3x 2+2f ′⎝⎛⎭⎫23x -1,∴f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2f ′⎝⎛⎭⎫23×23-1, 解得f ′⎝⎛⎭⎫23=-1,即f (x )=x 3-x 2-x .则f ⎝⎛⎭⎫23=⎝⎛⎭⎫233-⎝⎛⎭⎫232-23=-2227,故函数f (x )的图象在⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线方程是y +2227=-⎝⎛⎭⎫x -23,即27x +27y +4=0. 答案:27x +27y +4=0 五、课后作业 巩固提高1.曲线y =sin xx在点M (π,0)处的切线方程是________.答案:x +πy -π=02.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.解析:由题意知f ′(5)=-1,f (5)=-5+8=3,∴f (5)+f ′(5)=3-1=2. 答案:2 3.(2013·永康模拟)函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )解析:选D 据函数的图象易知,x <0时恒有f ′(x )>0,当x >0时,恒有f ′(x )<0. 4.若函数f (x )=cos x +2xf ′⎝⎛⎭⎫π6,则f ⎝⎛⎭⎫-π3与f ⎝⎛⎭⎫π3的大小关系是( ) A .f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3 B .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫π3 D .不确定 解析:选C 依题意得f ′(x )=-sin x +2f ′⎝⎛⎭⎫π6,∴f ′⎝⎛⎭⎫π6=-sin π6+2f ′⎝⎛⎭⎫π6, f ′⎝⎛⎭⎫π6=12,f ′(x )=-sin x +1,∵当x ∈⎝⎛⎭⎫-π2,π2时,f ′(x )>0, ∴f (x )=cos x +x 是⎝⎛⎭⎫-π2,π2上的增函数,注意到-π3<π3,于是有f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫π3. 5.已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( )A .0B .-1 C.12 D .2解析:选C f ′(x )=3x 2-2tx -4,f ′(-1)=3+2t -4=0,t =12.6.曲线y =x e x +2x -1在点(0,-1)处的切线方程为( )A .y =3x -1B .y =-3x -1C .y =3x +1D .y =-2x -1解析:选A 依题意得y ′=(x +1)e x +2,则曲线y =x e x +2x -1在点(0,-1)处的切线的斜率为y ′|x =0,故曲线y =x e x +2x -1在点(0,-1)处的切线方程为y +1=3x ,即y =3x -1.7.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2.下面的不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:选A 由已知,令x =0得2f (0)>0,排除B 、D 两项;令f (x )=x 2+14,则2x 2+12+x ⎝⎛⎭⎫x 2+14′=4x 2+12>x 2,但x 2+14>x 对x =12不成立,排除C 项.8.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.解析:f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4.∴f ′(0)=-4. 答案:-49.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.答案:x -y -2=010.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解.又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x =0有正实数解.∴5ax 5=-1有正实数解.∴a <0.故实数a 的取值范围是(-∞,0).答案:(-∞,0)11.已知函数f (x )=ax -6x 2+b的图象在点(-1,f (-1))处的切线方程为x +2y +5=0,求y =f (x )的解析式.解:由已知得,-1+2f (-1)+5=0,∴f (-1)=-2,即切点为(-1,-2). 又f ′(x )=(ax -6)′(x 2+b )-(ax -6)(x 2+b )′(x 2+b )2=-ax 2+12x +ab(x 2+b )2,∴⎩⎪⎨⎪⎧-a -61+b =-2,-a -12+ab (1+b )2=-12,解得⎩⎪⎨⎪⎧a =2,b =3.∴f (x )=2x -6x 2+3.12.如右图所示,已知A (-1,2)为抛物线C :y =2x 2上的点,直线l 1过点A ,且与抛物线C 相切,直线l 2:x =a (a <-1)交抛物线C 于点B ,交直线l 1于点D .(1)求直线l 1的方程; (2)求△ABD 的面积S 1.解:(1)由条件知点A (-1,2)为直线l 1与抛物线C 的切点. ∵y ′=4x ,∴直线l 1的斜率k =-4.所以直线l 1的方程为y -2=-4(x +1),即4x +y +2=0. (2)点A 的坐标为(-1,2),由条件可求得点B 的坐标为(a,2a 2),点D 的坐标为(a ,-4a -2),∴△ABD 的面积为S 1=12×|2a 2-(-4a -2)|×|-1-a|=|(a+1)3|=-(a+1)3.13.如图,从点P1(0,0)作x轴的垂线交曲线y=e x于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2作x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2;…;P n,Q n,记P k点的坐标为(x k,0)(k=1,2,…,n).(1)试求x k与x k-1的关系(k=2,…,n);(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|P n Q n|.解:(1)设点P k-1的坐标是(x k-1,0),∵y=e x,∴y′=e x,∴Q k-1(x k-1,e x k-1),在点Q k-1(x k-1,e x k-1)处的切线方程是y-e x k-1=e x k-1(x-x k-1),令y=0,则x k=x k-1-1(k=2,…,n).(2)∵x1=0,x k-x k-1=-1,∴x k=-(k-1),∴|P k Q k|=e x k=e-(k-1),于是有|P1Q1|+|P2Q2|+|P3Q3|+…+|P n Q n|=1+e-1+e-2+…+e-(n-1)=1-e-n1-e-1=e-e1-ne-1,即|P1Q1|+|P2Q2|+|P3Q3|+…+|P n Q n|=e-e1-ne-1.。
5.2.1基本初等函数的导数5.2.2导数的四则运算法则课件高二数学人教A版选择性

=-2ex(sin x+cos x).故选D.
重难探究·能力素养全提升
重难探究·能力素养全提升
探究点一
导数公式与运算法则的简单应用
【例1】 [北师大版教材习题]求下列函数的导数:
x.
(4)y=(x-1)(x-2)(x-3);
解 因为y=x3-6x2+11x-6,所以y'=3x2-12x+11.
-1
(5)y= ;
解 因为 y= −
1
,所以
2
(6)y=+1.
2(+1)- 2
解 y'=
2
(+1)
=
2 +2
2
(+1)
.
y'=
1
2
+
1
2
3
=
+1
角度1.解析式中含f'(a)的导数问题
【例3】 已知函数f(x)的导函数是f'(x),且f(x)=2xf'(1)+ln
A.-e
B.2
C.-2
D.e
解析 因为
1
f(x)=2xf'(1)+ln =2xf'(1)-ln
解得 f'(1)=1.所以
x,所以
1
f(x)=2x+ln ,f(1)=2+ln
1
,则f(1)=( B )
……因为2 021=505×4+1,所以f2 021(x)=f1(x)=sin x+cos x,故选A.
高二数学第二讲 求导法则及复合函数求导

高二数学第二讲 求导法则及复合函数求导一、知识要点点拨1、导数的四则运算法则:(1)函数和(或差)的求导法则:设)(x f ,)(x g 是可导的,则)()())()((x g x f x g x f '±'='±(2)函数积的求导法则:设)(x f ,)(x g 是可导的,则)()()()(])()([x g x f x g x f x g x f '+'='(3)函数的商的求导法则:设)(x f ,)(x g 是可导的,0)(≠x g ,则)()()()()()()(2x g x g x f x f x g x g x f '-'='⎥⎦⎤⎢⎣⎡ 2、复合函数的导数:设函数)(x u ψ=在点x 处有导数)(x u x ψ'=',函数)(u f y =在点x的对应点u 处有导数)(u f y u '=',则复合函数f y =)]([x ψ在点x 处有导数,且x u x u y y '⋅'='.3、几种常见函数的导数:(1))(0为常数C C ='(2))(1Q n nx x n n ∈='-)( (3)x x cos )(sin ='(4)x x sin )(cos -=' (5)x x 1)(ln =' (6)e xx a a log 1)(log =' (7)x x e e =')( (8)a a a x x ln )(='二、经典例题剖析1、导数的四则运算求导时函数解析式能化简的应先化简,应尽量少用甚至不用乘积的求导法则,应在求导之前,先利用代数、三角恒等变形对函数进行化简,然后在用函数的四则运算的求导法则求导数。
例1.求下列函数的导数。
1.求y =x 3+sin x 的导数.2.求y =2x 3-3x 2+5x -4的导数.3.求下列函数的导数:⑴ y =2x 3+3x 2-5x +4; ⑵ y =ax 3-bx +c ; ⑶ y =sin x -x +1;(4) y =(3x 2+1)(2-x ); (5) y =(1+x 2)cos x ; (6)x x y x 2log 3cos 2-=4.已知函数f (x )=x 2(x -1),若f ' (x 0)=f (x 0),求x 0的值.5.求下列函数的导数 (1)x x y tan = (2)x x y cos 1sin += (3)xxy 2log sin =6.求下列函数的导数(1)32521x x x y +-= (2)x x x y cos tan -=7.求函数x x x y cos sin =的导数8.求函数f (x )=x (x -1) (x -2)(x -3) …(x -100)在x =0处的导数值。
高二数学常见函数的导数2

如今,山乡在六爹的带动下,已成为“药乡”。他积极引导乡里人种药材,既ห้องสมุดไป่ตู้种子种苗,提供资金支持,又在诊所开设“讲堂”,定期请专家前来传授技术。六爹兴奋地指着别的山地说,你们看 吧,这里一亩亩,那里一片片,都是中药,乡亲们每年收成可观,生活大改善,许多到外地打工的,都回来种药材了。员工都是乡里人,待遇优厚,工人统一开饭,统一服装,国家规定的险种买齐,每 月到手工资还有三四千元。同行的伙伴赞许说,百药园带动了那么多行业“发财”,连乡里的贫困户也富起来了。
六爹问诊归来,带我们游览百药园。园由几个小山头组成,算是高山脚下的一片平地。高山树木苍翠,一条山溪流下,在园中哗啦啦地歌唱而过;溪中石头层叠,水质清冽,成群鱼儿自由自在。真 人现场棋牌
园中种的中药上百种,分区种植。那高大的一片是沉香树,一些树头开始结香。五味子、山楂等果挂满枝,姹紫嫣红,随手可得。东面的金银花,如雪花一片;南面淮山、藿香等绿油油;西面的菊 花烂漫,蝴蝶纷飞、蜜蜂成群。园里许多药都在开花,五颜六色的花朵编织出一个斑斓世界。同行的伙伴感慨地说,与其说是百药园,倒不如说是百花园啊!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学 几种常见函数的导数
一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,
2'11x x -=⎪⎭⎫ ⎝⎛.x x 21
)'(=
二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数.
三、教学过程:
(一)公式1:(C )'=0 (C 为常数).
证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0,
,0=∆∆x y .0lim ')('0=∆∆==∴→∆x y C x f x 也就是说,常数函数的导数等于0.
公式2: 函数x x f y
==)(的导数 证明:(略)
公式3: 函数2)(x x f y ==的导数
公式4: 函数x
x f y 1)(==的导数 公式5: 函数x x f y
==)(的导数 (二)举例分析
例1. 求下列函数的导数.
⑴3x ⑵21x
⑶x 解:⑴=')(3x 133-x 23x = ⑵='⎪⎭
⎫ ⎝⎛21x )(2'-x 32--=x 32x -= ⑶=')(x )(2
1'x 12121-=x 2121-=x .21x = 练习
求下列函数的导数:
⑴ y =x 5; ⑵ y =x 6; (3);13x
y = (4).3x y = (5)x x y 2= 例2.求曲线x
y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。
例3.已知曲线2x y
=上有两点A (1,1),B (2,2)。
求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率;
(3)点A 处的切线的斜率; (4)点A 处的切线方程
例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离.
(三)课堂小结
几种常见函数的导数公式
(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=⎪⎭
⎫ ⎝⎛.x x 21)'(= (四)课后作业
《习案》作业四。