北京市海淀区七年级上期末数学试卷
北京市海淀区七年级上学期期末考试数学试卷及详细答案解析(共5套)

北京市海淀区七年级上学期期末考试数学试卷(一)一、选择题1、的相反数为()A、2B、﹣C、D、﹣22、石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A、300×104B、3×105C、3×106D、30000003、下列各式结果为负数的是()A、﹣(﹣1)B、(﹣1)4C、﹣|﹣1|D、|1﹣2|4、下列计算正确的是()A、a+a=a2B、6a3﹣5a2=aC、3a2+2a3=5a5D、3a2b﹣4ba2=﹣a2b5、用四舍五入法对0.02015(精确到千分位)取近似数是()A、0.02B、0.020C、0.0201D、0.02026、如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A、1B、2C、3D、47、若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A、﹣1B、1C、﹣D、﹣8、一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x元,那么根据题意,所列方程正确的是()A、0.8(1+0.5)x=x+28B、0.8(1+0.5)x=x﹣28C、0.8(1+0.5x)=x﹣28D、0.8(1+0.5x)=x+289、在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A、b+c<0B、|b|<|c|C、|a|>|b|D、abc<010、已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能经过的点是()A、MB、NC、SD、T二、填空题11、在“1,﹣0.3,+ ,0,﹣3.3”这五个数中,非负有理数是________.(写出所有符合题意的数)12、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为________°.13、计算:180°﹣20°40′=________.14、某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x件,那么这4名工人此月实际人均工作量为________件.(用含x的式子表示)15、|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是________;若|x|=2,则x的值是________.16、某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为________.17、如图所示,AB+CD________AC+BD.(填“<”,“>”或“=”)18、已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A 向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做xn.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=________;②若|x+x1+x2+x3+…+x20|的值最小,则x3=________.三、解答题(一)19、计算:(1)3﹣6× ;(2)﹣42÷(﹣2)3﹣× .20、如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为________(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是________;对于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是________.21、解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.四、解答题(二)22、先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.23、如图所示,点A在线段CB上,AC= ,点D是线段BC的中点.若CD=3,求线段AD的长.24、列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?五、解答题(三)25、一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.26、如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2, OA3,其中∠A3OA2的度数是________;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2, OA3, OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是________(4)(选做题)当OAi 所在的射线是∠AiOAk(i,j,k是正整数,且OAj与OAk不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.答案解析部分一、<b >选择题</b>1、【答案】B【考点】相反数【解析】【解答】解:的相反数为﹣,故选:B.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.2、【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:300万用科学记数法表示为3×106.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3、【答案】C【考点】正数和负数【解析】【解答】解:A、﹣(﹣1)=1是正数,故A错误;B、(﹣1)4=1是正数,故B错误;C、﹣|﹣1|=﹣1是负数,故C正确;D、|1﹣2|=1,故D错误;故选:C.【分析】根据小于零的数是负数,可得答案.4、【答案】D【考点】同类项、合并同类项【解析】【解答】解:A、合并同类项是解题关键,故A错误;B、不是同类项不能合并,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【分析】根据合并同类项系数相加字母及指数不变,可得答案.5、【答案】B【考点】近似数【解析】【解答】解:0.02015≈0.020(精确到千分位).故选B.【分析】把万分位上的数字1进行四舍五入即可.6、【答案】B【考点】余角和补角【解析】【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵∠CDB=90°,∴∠A+∠ACD=90°,∴∠A互余的角的个数是2.故选:B.【分析】根据图形和余角的概念解答即可.7、【答案】D【考点】一元一次方程的应用【解析】【解答】解:解2x+1=﹣1,得x=﹣1.把x=﹣1代入1﹣2(x﹣a)=2,得1﹣2(﹣1﹣a)=2.解得a=﹣,故选:D.【分析】根据解方程,可得x的值,根据同解方程,可得关于a的方程,根据解方程,可得答案.8、【答案】A【考点】一元一次方程的应用【解析】【解答】解:设这件夹克衫的成本价是x元,由题意得,0.8(1+50%)x﹣x=28,即0.8(1+0.5)x=28+x.故选A.【分析】设这件夹克衫的成本价是x元,根据题意可得,利润=标价×80%﹣成本价,据此列出方程.9、【答案】C【考点】数轴【解析】【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.【分析】根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.10、【答案】B【考点】几何体的展开图,线段的性质:两点之间线段最短,平面展开-最短路径问题【解析】【解答】解:如图所示:根据圆锥侧面展开图,此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能经过的点是N,,故选B.【分析】根据圆锥画出侧面展开图,根据两点之间线段最短可得它最有可能经过的点是N.二、<b >填空题</b>11、【答案】1,+ ,0【考点】有理数的意义【解析】【解答】解:非负有理数是1,+ ,0.故答案为:1,+ ,0.【分析】根据大于或等于零的有理数是非负有理数,可得答案.12、【答案】120【考点】余角和补角【解析】【解答】解:由题意,可得∠AOB=60°,则∠AOB的补角的大小为:180°﹣∠AOB=120°.故答案为120.【分析】先根据图形得出∠AOB=60°,再根据和为180度的两个角互为补角即可求解.13、【答案】159°20′【考点】度分秒的换算【解析】【解答】解:180°﹣20°40′=179°60′﹣20°40′=159°20°.故答案为:159°20′.【分析】先变形得出179°60′﹣20°40′,再度、分分别相减即可.14、【答案】【考点】列代数式【解析】【解答】解:(4x+15)÷4= (件).答:这4名工人此月实际人均工作量为件.故答案为:.【分析】根据4名工人3月份完成的总工作量比此月人均定额的4倍多15件得到总工作量是(4x+15)件,再把总工作量除以4可得这4名工人此月实际人均工作量.15、【答案】数轴上表示﹣2的点与原点的距离①±2【考点】数轴,绝对值【解析】【解答】解:|﹣2|的含义是数轴上表示﹣2的点与原点的距离;|x|=2,则x的值是:±2.故答案为:数轴上表示﹣2的点与原点的距离;±2.【分析】直接利用绝对值的定义得出|﹣2|的含义以及求出x的值.16、【答案】+ =1【考点】一元一次方程的应用【解析】【解答】解:设该小组共有x名同学,由题意得,+ =1.故答案为:+ =1.【分析】设该小组共有x名同学,根据题意可得,全体同学整理8小时完成的任务+(x﹣2)名同学整理4小时完成的任务=1,据此列方程.17、【答案】<【考点】线段的性质:两点之间线段最短【解析】【解答】解:如图所示:由两点之间线段最短可知AE+BE>AB.同理:CE+DE>DC.∴AE+BE+CE+DE>AB+DC.∴AC+BD>AB+DC,即AB+DC<AC+BD.故答案为:<.【分析】AC与BD的交点为E,由两点之间线段最短可知AE+BE>AB,同理得到CE+DE>DC,从而得到AB+CD<AC+BD.18、【答案】7①-3【考点】探索数与式的规律【解析】【解答】解:①由题意:x 1=2,x 2=3,x 3=4,x 4=5,x 5=6,x 6=7,x 7=4,x 8=,5,x 9=6,x 10=7,x 11=4,x 12=5,x 13=6,x 14=7.故答案为x 14=7.②由题意当x=﹣6时,x 1=﹣5,x 2=﹣4,x 3=﹣3,x 4=﹣2,x 5=﹣1,x 6=0,x 7=1,x 8=2,x 9=3,x 10=4,x 11=5,x 12=6,x 13=7,x 14=4,x 15=5,x 16=6, x 17=7,x 18=4,x 19=5,x 20=6,|x+x 1+x 2+x 3+…+x 20|=50最小, ∴x 3=﹣3.故答案为﹣3.【分析】(1)按照规律写出x 14即可.(2)当x=﹣6时,|x+x 1+x 2+x 3+…+x 20|的值最小,由此可以解决问题. 三、<b >解答题(一)</b> 19、 【答案】 (1)解:3﹣6×=3﹣6× =3﹣1 =2(2)解:﹣42÷(﹣2)3﹣ ×=﹣16÷(﹣8)﹣=2﹣1 =1【考点】有理数的混合运算【解析】【分析】(1)根据有理数的乘法和减法进行计算即可;(2)根据有理数的乘方、除法、乘法和减法进行计算即可. 20、 【答案】(1)解:如图所示:直线DC 即为所求(2)90°(3)BC=AC①BC′=AC′【考点】作图—复杂作图【解析】【解答】(2)90°(只要相差不大都给分).故答案为:90°;(3)BC=AC,BC′=AC′,(若(2)中测得的角不等于90°,则相应地得出线段的不等关系(注意:要分类讨论),同样给分.)【分析】(1)利用线段垂直平分线的作法得出D点位置,进而得出答案;(2)利用量角器得出∠ADC的大小;(3)利用线段垂直平分线的性质得出线段BC,AC的大小关系以及线段BC′与AC′的大小关系.21、【答案】(1)解:去括号得:3x+6﹣2=x+2,移项合并得:2x=﹣2,解得:x=﹣1(2)解:去分母得:2(7﹣5y)=12﹣3(3y﹣1),去括号得:14﹣10y=12﹣9y+3,移项合并得:﹣y=1,解得:y=﹣1【考点】解一元一次方程【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.四、<b >解答题(二)</b>22、【答案】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4【考点】整式的加减【解析】【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23、【答案】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC= ,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1【考点】两点间的距离【解析】【分析】根据点A在线段CB上,AC= ,点D是线段BC的中点,CD=3,可以求得BC的长,从而可以求得CA的长,从而得到AD的长.24、【答案】解:设②号小球运动了x米,由题意可得方程:= ,解方程得:x=2答:从造型一到造型二,②号小球运动了2米【考点】一元一次方程的应用【解析】【分析】设②号小球运动了x米,根据图中的造型和“②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒”列出方程并解答.五、<b >解答题(三)</b>25、【答案】(1)解:∵(1,b)是“相伴数对”,∴ + = ,解得:b=﹣(2)解:(2,﹣)(答案不唯一)(3)解:由(m,n)是“相伴数对”可得:+ = ,即= ,即9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣n﹣3m﹣2=﹣﹣2=﹣2【考点】代数式求值,整式的加减【解析】【分析】(1)利用“相伴数对”的定义化简,计算即可求出b的值;(2)写出一个“相伴数对”即可;(3)利用“相伴数对”定义得到9m+4n=0,原式去括号整理后代入计算即可求出值.26、【答案】(1)45°(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+ =4α,解得:(3),,(4)解:对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OAi 是∠AiOAK是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OAi 是∠AiOAK是的角平分线这种情况,旋转不会停止【考点】角的计算【解析】【解答】解:(1)解:如图所示.aφ=45°,【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OAi 是∠AiOAK是的角平分线,但当a=120度时,只有两条射线,不会出现OAi 是∠AiOAK是的角平分线,所以旋转会中止.北京市海淀区七年级上学期期末考试数学试卷(二)一、选择题1、在实数- ,0,,π,中,无理数有()个.A、1B、2C、3D、42、下列各式中正确的是()A、=±4B、=﹣4C、D、=﹣43、在平面直角坐标系中,点P(﹣2,1)在()A、第一象限B、第二象限C、第三象限D、第四象限4、P(m+1,5)在y轴上,则m的值为()A、﹣5B、0C、1D、﹣15、在平面直角坐标系中,点P(﹣2,3)向右平移3个单位长度后的坐标为()A、(3,6)B、(1,3)C、(1,6)D、(6,6)6、若m>n,则下列各式中错误的是()A、6m>6nB、﹣5m<﹣5nC、m+1>n+1D、﹣2m>﹣2n7、如图,直线a∥b,∠1=70°,那么∠2的度数是()A、50°B、60°C、70°D、80°8、如图,下列条件中,不能判断直线a∥b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°9、已知如图,AD∥CE,则∠A+∠B+∠C=()A、180°B、270°C、360°D、540°10、下列命题①过一点有且只有一条直线平行已知直线;②过一点有且只有一条直线与已知直线垂直;③平行同一直线的两条直线互相平行;④平方根等于本身的数是0或1;⑤如果一个数有立方根,那么它一定有平方根,其中假命题的个数为()A、2个B、3个C、4个D、5个二、填空题11、计算:2 ﹣=________.12、不等式组的解集是________.13、把命题“对顶角相等”写成“如果…,那么…”的形式为:如果________,那么________.14、中,x的取值范围是________.15、点P(2,6)到x轴的距离为________个单位长度.16、已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.17、如图,∠1=15°,AO⊥OC,点B、O、D在同一直线上,则∠2=________°.18、如图,AB∥CD∥EF,∠B=70°,∠E=140°,则∠BCD=________°.19、已知,点P坐标为(﹣2,3),点Q坐标为Q(m,3),且PQ=6,则m=________.20、如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P=________.三、解答题21、解方程组和不等式(1)解方程组(2)解不等式5x+15>4x+13并在数轴上表示它的解集.22、如图,三角形ABC的顶点坐标分别为A(2,4)、B(1,1)、C(4,1).BC 上的一点P的坐标为P(3,1),将三角形ABC向左平移4个单位,再向上平移1个单位,得到三角形A1B1C1,其中点A、B、C、P分别对应点A1、B1、C1、P1.(1)在图中画出三角形A1B1C1;(2)直接写出点P1的坐标:P1(________,________).23、为了推动课堂教学改革,打造高效课堂,某中学对七年级部分学生就一学期以来“小组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的七年级学生的人数,(2)并补全条形统计图2(3)该校七年级级学生共有720人,请你你估计该校七年级有多少名学生支持“小组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?24、完成下面的推理过程,并在括号内填上依据.如图,E为DF上的一点,B为AC上的一点,∠1=∠2,∠C=∠D,求证:AC∥DF 证明:∵∠1=∠2(________)∠1=∠3(对角线相等)∴∠2=∠3(________)∴________∥________(________)∴∠C=∠ABD(________)又∵∠C=∠D(已知)∴∠D=∠ABD(________)∴AC∥DF(________)25、学校决定购买A、B两种型号电脑,若购买A型电脑3台,B型电脑8台共需40000元;若购买A型电脑14台,B型电脑4台共需80000元.(1)A、B两种型号电脑每台多少元?(2)若用不超过160000元去购买A、B两种型号电脑共45台,则最多可购买A型电脑多少台?26、如图所示,将△ABC沿直线BC方向平移△DEF的位置,G是DE上一点,连接AG,过点A、D作直线MN.(1)求证:∠AGE=∠GAD+∠ABC;(2)若EDF=∠DAG,∠CAG+∠CEG=180°,判断AG与DE的位置关系,并证明你的结论.27、已知,在平面直角坐标系中,直线AB与Y轴正半轴、X轴正半轴分别交于A、B两点,点A坐标为A(0,m),点B坐标为B(n,0),且满足(m﹣3)1+=0,(1)分别求出点A,点B的坐标(2)若点E在直线AB上,且满足三角形AOE的面积等于三角形AOB的面积的三分之一,求点E的坐标.(3)平移线段BAZ至DC,B与O是对应点,A与C是对应点,连接AC,E为BA腐乳延长线上一点,连接OE,OF平分∠COE,AF平分∠EAC,OF交AF于F点,若∠ABO+∠OEB=α.请在图2中将图形补充完整,并求∠F(用含α的式子表示)答案解析部分一、<b >选择题</b>1、【答案】B【考点】无理数【解析】【解答】解:=2,所给数据中无理数有:,π,共2个.故选B.【分析】根据无理数的三种形式进行判断即可.2、【答案】C【考点】平方根,算术平方根【解析】【解答】解:A、=4,故A错误;B、=4,故B错误;C、± =±4,故C正确;D、负数没有算术平方根,故D错误.故选:C.【分析】依据算术平方根和平方根的定义求解即可.3、【答案】B【考点】点的坐标【解析】【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,1)在第二象限,故选B.【分析】点P的横坐标为负,在y轴的左侧,纵坐标为正,在x轴上方,那么可得此点所在的象限.4、【答案】D【考点】点的坐标【解析】【解答】解:∵P(m+1,5)在y轴上,∴m+1=0,∴m=﹣1.故选D.【分析】根据y轴上点的横坐标为0得到m+1=0,然后解方程即可.5、【答案】B【考点】坐标与图形变化-平移【解析】【解答】解:平移后的横坐标为﹣2+3=1,纵坐标为3,∴点P(﹣2,3)向右平移3个单位长度后的坐标为(1,3),故选B.【分析】让横坐标加3,纵坐标不变即可得到所求的坐标.6、【答案】D【考点】不等式的性质【解析】【解答】解:A、∵m>n,∴6m>6n,故本选项正确;B、∵m>n,∴﹣m<﹣n,∴﹣5m<﹣5n,故本选项正确;C、∵m>n,∴m+1>n+1,故本选项正确;D、∵m>n,∴﹣2m<﹣2n,故本选项错误.故选D.【分析】根据不等式的基本性质对各选项进行逐一分析即可.7、【答案】C【考点】平行线的性质【解析】【解答】解:∵a∥b,∴∠1=∠2(两直线平行,同位角相等)∵∠1=70°,∴∠2=70°.故选C.【分析】根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果.8、【答案】B【考点】平行线的判定【解析】【解答】解:当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选B.【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.9、【答案】C【考点】平行线的性质【解析】【解答】解:过B作BF∥AD,∵AD∥CE,∴AD∥BF∥CE,∴∠A+∠ABF=180°,∠C+∠CBF=180°,∴∠A+∠ABF+∠C+∠CBF=360°,即∠A+∠ABC+∠C=360°.故选C.【分析】过B作BF∥AD,推出AD∥BF∥CE,得出∠A+∠ABF=180°,∠C+∠CBF=180°,相加即可得出答案.10、【答案】C【考点】命题与定理【解析】【解答】解:①过直线外一点有且只有一条直线与已知直线平行;故①是假命题;②过一点有且只有一条直线与已知直线垂直;故②是真命题;③在同一平面内,平行同一直线的两条直线互相平行;故③是假命题;④平方根等于本身的数是0;故④是假命题;⑤如果一个数有立方根,那么它不定有平方根;故⑤是假命题;其中假命题的个数有4个,故选:C.【分析】分别根据平行线的性质、垂线的性质、平方根和立方根的性质对各小题进行逐一判断即可.二、<b >填空题</b>11、【答案】﹣2【考点】二次根式的加减法【解析】【解答】解:原式=2 ﹣4=﹣2 .故答案为:﹣2 .【分析】先化简,然后合并同类二次根式.12、【答案】x<2【考点】不等式的解集【解析】【解答】解:依据同小取小可知不等式组的解集为:x<2.故答案为:x<2.【分析】依据同小取小即可得出结论.13、【答案】两个角是对顶角①这两个角相等【考点】命题与定理【解析】【解答】解:原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.【分析】先找到命题的题设和结论,再写成“如果…,那么…”的形式.14、【答案】x≥0【考点】二次根式有意义的条件【解析】【解答】解:由题意得:x≥0,故答案为:x≥0.【分析】根据二次根式有意义的条件可得x≥0.15、【答案】6【考点】点的坐标【解析】【解答】解:∵点P到x轴的距离为其纵坐标的绝对值即|6|=6,∴点P到x轴的距离为6.故答案为:6.【分析】求得6的绝对值即为点P到x轴的距离.16、【答案】2【考点】平方根【解析】【解答】解:∵一个正数的两个平方根是x﹣7和3x﹣1,∴x﹣7+3x﹣1=0.解得:x=2.故答案为:2.【分析】依据平方根的性质可得到关于x的方程,从而可求得x的值.17、【答案】105【考点】垂线【解析】【解答】解:∵OA⊥OC,∴∠AOC=90°,∴∠BOC=90°﹣∠1=90°﹣15°=75°,∴∠2=180°﹣∠BOC=180°﹣75°=105°,故答案为:105.【分析】由OA⊥OC可得∠AOC=90°,易得∠BOC,再由邻补角的定义可得∠2.18、【答案】30【考点】平行线的性质【解析】【解答】解:∵AB∥CD,∴∠BCD=∠B=70°,∵CD∥EF,∴∠ECD=180°﹣∠E=40°,∴∠BCD=∠BCD﹣∠ECD=30°,故答案为:30.【分析】根据平行线的性质得到∠BCD=∠B=70°,∠ECD=180°﹣∠E=40°,由角的和差即可得到结论.19、【答案】4或﹣8【考点】点的坐标【解析】【解答】解:∵点P坐标为(﹣2,3),点Q坐标为Q(m,3),∴点P、Q的纵坐标相等,PQ∥x轴,∵PQ=6,∴|﹣2﹣m|=6,∴﹣2﹣m=6或﹣2﹣m=﹣6,解得m=﹣8或m=4.故答案为:4或﹣8.【分析】根据点的纵坐标相等,两点间的距离等于横坐标的差的绝对值列方程求解即可.20、【答案】45°【考点】坐标与图形性质,三角形内角和定理,三角形的外角性质【解析】【解答】解:∵OA⊥OB,∴∠OAB+∠ABO=90°,∠AOB=90°.∵PA平分∠MAO,∴∠PAO= ∠OA M= (180°﹣∠OAB).∵PB平分∠ABO,∴∠ABP= ∠ABO,∴∠P=180°﹣∠PAO﹣∠OAB﹣∠ABP=180°﹣(180°﹣∠OAB)﹣∠OAB﹣∠ABO=90°﹣(∠OAB+∠ABO)=45°.【分析】由OA⊥OB即可得出∠OAB+∠ABO=90°、∠AOB=90°,再根据角平分线的定义以及三角形内角和定理即可求出∠P的度数.三、<b >解答题</b>21、【答案】(1)解:①+②得:4x=12,解得:x=3,把x=3代入①得:3+2y=1,解得:y=﹣1,所以原方程组的解为:(2)解:5x+15>4x+13,5x﹣4x>13﹣15,x>﹣2,在数轴上表示为:【考点】解二元一次方程组,在数轴上表示不等式的解集,解一元一次不等式【解析】【分析】(1)①+②得出4x=12,求出x,把x的值代入①求出y即可;(2)移项,合并同类项,求出不等式的解集,最后在数轴上表示出来即可.22、【答案】(1)解:所作图形如图所示:(2)-1①2【考点】作图-平移变换(﹣1,2).【解析】【解答】解:(2)P1故答案为:﹣1,2.【分析】(1)分别将点A、B、C向左平移4个单位,再向上平移1个单位,然的坐标.后顺次连接;(2)根据平移的性质,结合图形写出点P123、【答案】(1)解:由题意可得,18÷ =54(人),即本次被调查的七年级学生有54人(2)解:由题意可得,非常喜欢的人数为:54× =30,故补全的条形统计图,如右图所示(3)解:由题意可得,720× =640(人),即该校七年级有640名学生支持“小组合作学习”方式【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)根据统计图中的数据可以求得本次被调查的七年级学生的人数;(2)根据(1)中的答案可以求得非常喜欢的人数,从而可以补全条形统计图;(3)根据统计图中的数据可以求得该校七年级有多少名学生支持“小组合作学习”方式.24、【答案】已知①等量代换②BD③CE④同位角相等,两直线平行⑤两直线平行,同位角相等⑥等量代换⑦内错角相等,两直线平行【考点】平行线的判定【解析】【解答】证明:∵∠1=∠2(已知)∠1=∠3(对角线相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行).故答案为:已知,等量代换,BD,CE,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.【分析】推出∠2=∠3,根据平行线判定推出BD∥CE,推出∠C=∠ABD,推出AC∥DF,即可得出答案.25、【答案】(1)解:设A型电脑x元/台,B型电脑y元/台.根据题意得:,解得:答:A型电脑4800元/台,B型电脑3200元/台(2)解:设购买a台A型电脑,(45﹣a)台B型电脑.根据题意得:4800a+3200(45﹣a)≤160000,解得:a≤10答:最多购买10台A型电脑【考点】二元一次方程组的应用,一元一次不等式的应用【解析】【分析】(1)设A型电脑x元/台,B型电脑y元/台.然后根据购买A 型电脑3台,B型电脑8台共需40000元;若购买A型电脑14台,B型电脑4台共需80000元列方程组求解即可;(2)设购买a台A型电脑,(45﹣a)台B型电脑.然后根据总费用不超过160000元列不等式求解即可.26、【答案】(1)解:由平移的性质得:△ABC≌△DEF,∴AB=DE,AB∥DE,∴四边形ABED为平行四边形,∴AD∥BF,∠ADG=∠ABC,∴∠ADG=∠DEF,∴∠ABC=∠DEF=∠ADG,∵∠AGE为△ADG的外角,∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC(2)解:AG⊥DE,理由为:由平移的性质得到∠EDF=∠BAC,∵∠EDF=∠DAG,∴∠BAC=∠DAG,∵AB∥DE,∴∠ABC+∠BEG=180°,∵∠CAG+∠CEG=180°,∴∠ABC=∠CAG,∵MN∥BC,∴∠ABC=∠MAB,∴∠MAB=∠CAG,∵∠MAB+∠BAC+∠CAG+∠DAG=180°,∴∠CAG+∠BAC=90°,即∠BAG=90°,∵AB∥DE,∴∠BAG+∠AGD=90°,则AG⊥DE.【考点】平行线的判定与性质,多边形内角与外角【解析】【分析】(1)利用平移的性质得到AB与DE平行且相等,得到四边形ABED为平行四边形,利用平行四边形的性质得到对角相等,利用外角性质即可得证;(2)AG垂直与DE,理由为:由平移的性质得到∠EDF=∠BAC,根据∠EDF=∠DAG,等量代换得到∠BAC=∠DAG,由AB与DE平行,利用两直线平行同旁内角互补得到一对角互补,等量代换得到∠ABC=∠CAG,利用等式的性质及平行线的性质即可得证.27、【答案】(1)解:由非负数的性质得,m﹣3=0,n﹣4=0,解得m=3,n=4,所以,A(0,3)B(4,0)(2)解:设点E的横坐标为a,。
北京市海淀区初一第一学期数学期末试卷附答案

2018北京市海淀区初一(上)期末 数 学一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个. 1. 5-的相反数是( )A .15B .15- C .5D .5-2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键词“十九大”在万个网站中产生数据174,000条.将174,000用科学记数法表示应为( )A .517.410⨯ B .51.7410⨯ C .417.410⨯ D .60.17410⨯ 3. 下列各式中,不相等...的是( )A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32-4. 下列是一元一次方程的是( )A .2230x x --=B .25x y +=C .112xx+= D .10x +=5. 如图,下列结论正确的是( ) A. c a b >>B.11b c >C. ||||a b <D. 0abc >6. 下列等式变形正确的是( )A. 若35x -=,则35x =-B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+ D. 若3(1)21x x +-=,则3321x x +-=7. 下列结论正确的是( )A. 23ab -和2b a 是同类项B.π2不是单项式 C. a 比a -大D. 2是方程214x +=的解8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是 ( )A. B. C. D.9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是 ( )A. 点A 在线段BC 上B. 点B 在线段AC 上C. 点C 在线段AB 上D. 点A 在线段CB 的延长线上 10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是( )A. 6B. 5C. 4D. 3 二、填空题(每小题2分,共16分) 11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费元.(用含a ,b 的代数式表示)13.已知2|2|(3)0a b -++=,则a b =.14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站, 经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC =° .15. 若2是关于x 的一元一次方程2(x −1)=ax 的解,则a = ________.16. 规定图形表示运算a b c --,图形表示运算x z y w --+.则+=________________(直接写出答案).17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为 .18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n 次变化时,图形的面积是否会变化,________(填写“会”或者“不会”),图形的周长为.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分) 19.计算:(1)()()21862⎛⎫-⨯-+- ⎪⎝⎭;(2)()411293⎛⎫-+-÷--- ⎪⎝⎭.从正面看 从上面看20.解方程:(1)3(21)15x -=;(2)71132x x-+-=. 21.已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值.22. 作图题:如图,已知点A ,点B,直线l 及l 上一点M .(1)连接MA ,并在直线l 上作出一点N ,使得点N 在点M 的左边,且满足MN =MA ;(2)请在直线l 上确定一点O ,使点O 到点A 与点O 到点B 的距离之和最短,并写出画图的依据.23. 几何计算:如图,已知∠AOB =40°,∠BOC =3∠AOB ,OD 平分∠AOC ,求∠COD 的度数. 解:因为∠BOC =3∠AOB ,∠AOB =40°所以∠BOC =__________°所以∠AOC =__________ + _________ =__________° + __________° =__________° 因为OD 平分∠AOC 所以∠COD =12__________=__________° 24. 如图1, 线段AB =10,点C , E , F 在线段AB 上.(1)如图2, 当点E , 点F 是线段AC 和线段BC 的中点时,求线段EF 的长;(2)当点E , 点F 是线段AB 和线段BC 的中点时,请你写出线段EF 与线段AC 之间的数量关系并简要说明理由.25. 先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。
2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。
11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。
2020~2021学年北京海淀区北京市中关村中学初一(七年级)上学期期末数学试卷-学生用卷(含答案)

2020~2021学年北京海淀区北京市中关村中学初一(七年级)上学期期末数学试卷-学生用卷(含答案)一、选择题(本大题共12小题,每小题2分,共24分)1、据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次.将数字338600000用科学记数法可表示为().A. 3.386×108B. 3.386×109C. 0.3386×109D. 33.86×1072、如图所示,∠MON的大小可由量角器测得,则∠MON的余角..大小为().A. 70°B. 20°C. 110°D. 120°3、下列图形中,∠1与∠2是对顶角的是().A. B. C. D.4、下列运算正确的是().A. 4m−m=3B. a3−a2=aC. a2b−ab2=0D. 2xy−yx=xy5、下列变形正确的是().;A. 由−3+2x=1,得2x=1−3;B. 由3y=−4,得y=−34C. 由3=x+2,得x=3+2;D. 由x−4=9,得x=9+4.6、如图,下列结论正确的是().A. c>a>bB. b+a>0C. |a|>|b|D. abc>07、如图,测量运动员跳远成绩选取的是AB的长度,其依据是().A. 两点确定一条直线B. 两点之间直线最短C. 两点之间线段最短D. 垂线段最短8、已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°,则∠AOC的度数是().A. 78°B. 68°C. 46°D. 22°9、已知多项式2x2+4y的值是−2,则多项式x2+2y−6的值是()A. −7B. −1C. 1D. 710、在以下形状不规则的组件中,图1不可能是下面哪个组件的视图().A. B. C. D.11、“☆”表示一种运算符号,其定义是a☆b=−2a+b,例如:3☆7=−2×3+7,如果x☆(−5)=3,那么x等于().A. −1B. −4C. 7D. 112、下图是某区2019年1月份每天的最低和最高气温,观察此图,下列说法正确的是().A. 在1月份中,最高气温为10°C,最低气温为−2°CB. 在10号至16号的气温中,每天温差最大为7°CC. 1月份每天的最高气温均高于0°C,最低气温均低于0°CD. 从27日开始到月底,每天的最高气温持续走低二、填空题(本大题共8小题,每小题3分,共24分)13、34.24°=°′′′.14、如图所示的网格是正方形网格,∠COD∠AOB.(填“>”,“=”或“<”)15、写出一个一元一次方程,使它的解为x=5,方程为.16、右图是一所住宅的建筑平面图(长度单位:m),用式子表示这所住宅的建筑面积是m2.17、点A,B,C在直线l上,线段AB=6cm,AB=2AC,则BC的长度为cm.18、如图,AD是∠EAC的平分线,AD//BC,∠B=30°,则∠C=.19、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”译文:“有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?”设有x个人共同买鸡,根据题意列一元一次方程.20、在2021年迎新联欢会上,数学老师和同学们做了一个游戏.她在A,B,C三个盘子里分别放了一些小球,小球数依次为a0,b0,c0,记为G0=(a0,b0,c0).游戏规则如下:三个盘子中的小球数a0≠b0≠c0,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n次操作后的小球数记为G n=(a n,b n,c n).若G0=(3,5,19),则G 3= ,G 2021= .三、解答题(本大题共5小题,共32分)21、计算:(1) (−12)×(−8)+(−6)2. (2) −14+(−2)÷(+13)+|−9|. 22、解方程:(1) 2(x +1)=7−(x −4). (2) 4x−16=1−3x−13. 23、先化简,再求值:3(a 2b +ab 2)−(3a 2b −1)−ab 2−1,其中a =1,b =−3. 24、如图,根据下列要求画图:(1) 画线段BC ,射线BA .(2) 画出点A 到线段BC 的垂线段AD .(3) 用量角器(半圆仪)测量∠ABC 的度数是 °.(精确到度) 25、如图,已知:BE 平分∠ABC ,CF 平分∠BCD ,且BE//CF ,求证:AB//CD .证明:∵BE 平分∠ABC ,∴∠1=12∠ABC ,∵CF 平分∠BCD ,∴ ∠2=12 (),又∵BE//CF ,∴∠1= (),∴∠ABC=,∴AB//CD().四、解答题(本大题共3小题,共20分)26、暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:(1) 其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元.②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金.(2) 若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.27、点O是直线AB上的一点,射线OC从OA出发绕点O顺时针方向旋转,旋转到OB停止,设∠AOC=α(0∘⩽α⩽180∘),射线OD⊥OC,作射线OE平分∠BOD.(1) 如图1,若α=40∘,且OD在直线AB的上方,依题意补全图形,求∠DOE度数(要求写出几何推理过程).(2) 射线OC顺时针旋转一定的角度得到图2,当射线OD在直线AB的下方时,其他条件不变,请你直接用含α的代数式表示∠DOE的度数.(3) 射线OC从OA出发绕点O顺时针方向旋转到OB,在旋转过程中你发现∠DOE与∠AOC(0∘⩽∠AOC⩽180∘,0∘⩽∠DOE⩽180∘)之间有怎样的数量关系?请你直接用含α的代数式表示∠DOE的度数.,19},我们28、把几个互不相等的数用大括号围起来,中间用逗号断开,如:{1,2,−3}、{−2,7,34称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,代数式的值6−a也必是这个集合的元素,这样的集合我们称为“完美”集合.例如集合{6,0}就是一个“完美”集合.因为:a=6时,6−a=0;a=0时,6−a=6;即这个集合中两个元素对应的代数式的值6,0也都是这个集合的元素.(1) 判断集合{1,2},{−2,1,3,5,8}中,是“完美”集合的是.(2) 已知有理数a,b,c(a<b<c)在数轴上分别对应为A,B,C三点,若{a,b,c}为“完美”集合,则称A,B,C为“完美点”:①若A,B,C为“完美点”,则b=,A,B,C在数轴上的位置关系是:.②数轴上P、Q两点对应的有理数为−10、30.动点A从P出发以每秒1个单位的速度沿数轴在P、Q两点之间往返运动,同时动点C从Q出发以每秒2个单位的速度沿数轴在Q、P两点之间往返运动,当运动时间为t秒时,存在点B使A,B,C为“完美点”(0<t<40),求t的值.1 、【答案】 A;【解析】将数字338600000用科学记数法可表示为3.386×108.故选A.2 、【答案】 B;【解析】由图可知,∠MON=70°,∴∠MON的余角大小为90°−70°=20°.故选B.3 、【答案】 C;【解析】A选项:∠1与∠2没有公共点,故A不是对顶角,故A错误;B选项:∠1与∠2的两边没有互为反向延长线,故B不是对顶角,故B错误;D选项:∠1与∠2的两边没有互为反向延长线,故D不是对顶角,故D错误;故选C.4 、【答案】 D;【解析】 A选项 : 原式=3m,所以本选项运算错误,不符合题意;B选项: a3和a2的次数不同,不是同类型,不能直接加减合并,所以本选项运算错误,不符合题意;C选项 : a2b和ab2相同字母的次数不同,不是同类型,不能直接加减合并,所以本选项运算错误,不符合题意;D选项 : 原式=xy,所以本选项运算正确,符合题意.5 、【答案】 D;【解析】 A选项 : 由−3+2x=1,得2x=1+3,故A错误.B选项 : 由3y=−4,得y=−4,故B错误.3C选项 : 由3=x+2,得x=2−3,故C错误.D选项 : 由x−4=9,得x=9+4,正确.6 、【答案】 C;【解析】由a、b、c在数轴上的关系可知c>b>a;b+a<0;|a|>|b|;abc<0,故选C.7 、【答案】 D;【解析】垂线段的长度即为点到直线的距离,垂线段最短,故选D.8 、【答案】 B;【解析】∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°−22°=68°,故选B.9 、【答案】 A;【解析】解:∵2x2+4y=−2,∴2(x2+2y)=−2,∴x2+2y=−1,∴x2+2y−6=−1−6=−7,故选:A.10 、【答案】 C;【解析】观察图形可发现不可能是C项的视图.11 、【答案】 B;【解析】由题意可知:−2x−5=3,∴−2x=8,∴x=−4.故选B.12 、【答案】 D;【解析】 A选项 : 如图所示,在一月份中,最高气温是10°C,最低气温是−10°C,所以本选项说法错误,不符合题意;B选项 : 如图所示,14号时,最高气温是6°C,最低气温是−8°C,温差是14°C,所以本选项说法错误,不符合题意;C选项 : 如图所示,9号时,最高气温是0°C,15号时,最高气温是−2°C,所以本选项说法错误,不符合题意;D选项 : 如图所示,从27号开始,每天的气温持续走低,所以本选项说法正确,符合题意.13 、【答案】34;14;24;【解析】0.24°×60=14.4′,0.4′×60=24′′,34.24°=34°14′24′′.14 、【答案】<;【解析】取格点E,连接OE,由图可知∠AOB=∠DOE,∠DOE>∠COD,∴∠AOB>∠COD,即∠COD<∠AOB,故答案为:<.15 、【答案】2x−3=7;【解析】写出一个一元一次方程,使它的解为x=5,方程可以是2x−3=7,故答案为:2x−3=7(答案不唯一).16 、【答案】22.5a;【解析】建筑面积=4×6a−(6a−3a−1.5a)=24a−1.5a=22.5a,故答案为:22.5a.17 、【答案】3或9;【解析】分两种情况,第一种情况如下图:∵AB=6,AB=2AC,∴AC=12AB=12×6=3,∴BC=AB−AC=6−3=3(cm),第二种情况如下图:∵AB=6,AB=2AC,AC=12AB=12×6=3,∴BC=AB+AC=6+3=9(cm),故答案为:3或9.18 、【答案】30°;【解析】∵AD//BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC =∠B +∠C ,∴∠C =∠EAC −∠B =30°.19 、【答案】 9x −11=6x +16;【解析】 等量关系为:9×买鸡人数−11=6×买鸡人数+16,即可解答.20 、【答案】 (6,8,13);(8,10,9);【解析】 ∵G 0=(3,5,19),∴G 1=(4,6,17),G 2=(5,7,15),G 3=(6,8,13),G 4=(7,9,11),G 5=(8,10,9),G 6=(9,8,10),G 7=(10,9,8),G 8=(8,10,9),G 9=(9,8,10),G 10=(10,9,8),⋯⋯∴从G 5开始每3次为一个周期循环,∵(2021−4)÷3=672⋯⋯1,∴G 2021=G 5=(8,10,9),故答案为:(6,8,13),(8,10,9),21 、【答案】 (1) 40.(2) 2.【解析】 (1) 原式=4+36=40.(2) 原式=−1+(−2)×(+3)+9=−1−6+9=2.22 、【答案】 (1) x =3.(2) x =910. 【解析】 (1) 2(x +1)=7−(x −4)2x +2=7−x +42x +x =7+4−23x=9x =3.(2) 4x−16=1−3x−134x −1=6−2(3x −1)4x −1=6−6x +24x +6x =6+2+110x=9x =910. 23 、【答案】 见解析【解析】 解:原式=3a 2b +3ab 2−3a 2b +1−ab 2−1=2ab 2,当a =1,b =−3时,原式=2×1×(−3)2=2×9=18.24 、【答案】 (1) 画图见解析.(2) 画图见解析.(3) 70;【解析】 (1) 线段BC :以点B 和点C 为端点,连接起来.射线BA :以点B 为端点,过点A 画射线BA .如图所示:(2) 过点A 向线段BC 作垂线,垂足为点D .如图所示:(3) 经测量∠ABC 的度数为70°.如图所示:25 、【答案】∠BCD;角平分线的定义;∠2;两直线平行,内错角相等;∠BCD;内错角相等,两直线平行.【解析】∵BE平分∠ABC,∠ABC,∴∠1=12∵CF平分∠BCD,∠BCD(角平分线的定义),∴∠2=12又∵BE//CF,∴∠1=∠2(两直线平行,内错角相等),∴∠ABC=∠BCD,∴AB//CD(内错角相等,两直线平行).26 、【答案】 (1) 见解析;(2) 见解析【解析】 (1) 解:设两人船每艘x元/小时,则八人船每艘(2x−30)元/小时,由题意,可列方程2x+3(2x−30)=630,解得:x=90,∴2x−30=150,答:两人船每艘90元/小时,则八人船每艘150元/小时.(2) 解:如下表所示:27 、【答案】 (1) ∠DOE=25∘,画图见解析,证明见解析.−45∘.(2) ∠DOE=α2α−45∘|.(3) ∠DOE=|12【解析】 (1) 如图1所示,依题意补全图形,∵点O是直线AB上一点,∴∠AOB=180∘,∵OD⊥OC,∴∠COD=90∘,∵∠AOC=α=40∘,∴∠BOD=∠AOB−∠AOC−∠COD=180∘−40∘−90∘=50∘,∵射线OE平分∠BOD,∴∠BOD=2∠DOE,则∠DOE=25∘.(2) 如图2所示,射线OD在直线AB下方,∵点O是直线AB上一点,∴∠AOB=180∘,∵OD⊥OC,∴∠COD=90∘,∵∠AOC=α,∴∠BOC=∠AOB−∠AOC=180∘−α,∴∠BOD=∠COD−∠BOC=90∘−(180∘−α)=α−90∘,∵射线OE平分∠BOD,∴∠BOD=2∠DOE,则∠DOE=α2−45∘.(3) 当射线OD在直线AB上方时,∠BOD=∠AOB−∠AOC−∠COD=180∘−α−90∘=90∘−α,∵OE平分∠BOD,∴∠DOE=12∠BOD=45∘−α2,即∠DOE=45∘−12∠AOC;当射线OD在直线AB下方时,∠BOC=∠AOB−∠AOC=180∘−α,∠BOD=∠COD−∠BOC=90∘−(180∘−α)=α−90∘.∵OE平分∠BOD,∴∠DOE=12∠BOD=12α−45∘,∠AOC−45∘,即∠DOE=12∠AOC−45∘|,∴∠DOE=|12α−45∘|.∠DOE=|1228 、【答案】 (1) {−2,1,3,5,8};(2)①3;点A在最左侧,点B在中间,点C在最右侧,且点A与点C关于点B对称②14或22.【解析】 (1) 由题意得:“完美集合”即当a是集合内的元素时,6−a也是集合内的元素,(新概念问题,理解题意),{1,2}中,当a=1时,6−a=5不在集合{1,2}内,故不是,而{−2,1,3,5,8}中,a=−2时,6−a=8,a=1时,6−a=5,a=3时,6−a=3,a=5时6−a=1,a=8时,6−a=−2,此时6−a均在集合内,故是“完美集合”.(2)①∵“完美集合”a与6−a要一一对应,而集合内仅有a、b、c且规定a<b<c,∴当B是在b=6−b时的点,那b=3时,明显b也是6−b,才会是奇数个的元素,而无论a取任何值时,c总是为6−a,故两者关于3对称,那关于点B对称,∴点A在最左侧,点B在中间,点C在最右侧,且点A与点C关于点B对称.②由题意得P=−10+1×t,Q=30−2×t(0<t<40),当点A与点C关于3对称,存在点B,∴−10+t+30−2t=6或−10+t+−10+2(t−20)=6,∴t=14或22.。
北京市海淀区七年级上学期期末考试数学试题(含答案)

海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学2014.1一、选择题(本题共36分,每题3分) 1、—6的相反数是 A 、—6B 、6C 、61-D 、61 2、下列四个数中,最小的数是 A 、|—6| B 、—2C 、0D 、21-3、右图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是A B C D4、据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,把数3 120 000用科学记数法表示为A 、51012.3⨯ B 、710312.0⨯ C 、5102.31⨯ D 、61012.3⨯5、若53=x 是关于x 的方程05=-m x 的解,则m 的值为 A 、3 B 、31 C 、-3 D 、31-6、如图,下列说法中不正确...的是 (A )直线AC 经过点A(B )射线DE 与直线AC 有公共点 (C )点B 在直线AC 上(D )直线AC 与线段BD 相交于点A 7、下列运算正确的是A 、42633=-a a B 、532532b b b =+ C 、b a ba b a 22245=- D 、ab b a =+8、将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是A B C D9、若α∠与β∠互为补角, β∠是α∠的2倍,则α∠为A 、30°B 、40°C 、60°D 、120°10、如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,且︒=∠140BOE ,则BOC ∠为 A 、140° B 、100° C 、80° D 、40°11、如图,从边长(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形ABCD (不重叠无缝隙),则AD 、AB 的长分别是 A 、3、2a+5 B 、5、2a+8 C 、5、2a+3 D 、3、2a+212、在三角形ABC 中,AB=8,AC=9,BC=10.o P 为BC 边上的一点,在边AC 上取点1P ,使得01CP CP =。
北京市海淀区七年级上期末考试数学试题有答案

七 年 级 上 册 期 末 调 研数 学学校 班级 姓名 成绩 一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个. 1. 5-的相反数是( )A .15B .15- C .5 D .5-2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应 为( )A .517.410⨯B .51.7410⨯C .417.410⨯D .60.17410⨯ 3. 下列各式中,不相等...的是( )A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32-4. 下列是一元一次方程的是( )A .2230x x --=B .25x y +=C .112x x+= D .10x += 5. 如图,下列结论正确的是( )A. c a b >>B.11b c> C. ||||a b <D. 0abc >6. 下列等式变形正确的是( )A. 若35x -=,则35x =-B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+ D. 若3(1)21x x +-=,则3321x x +-= 7. 下列结论正确的是( )A. 23ab -和2b a 是同类项B.π2不是单项式 C. a 比a -大D. 2是方程214x +=的解8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( )A. B. C. D.9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是( )A. 点A 在线段BC 上B. 点B 在线段AC 上C. 点C 在线段AB 上D. 点A 在线段CB 的延长线上10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是 ( )A. 6B. 5C. 4D. 3二、填空题(每小题2分,共16分) 11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费 元.(用含a ,b 的代数式表示) 13.已知2|2|(3)0a b -++=,则a b = .14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站, 经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC = °.若2是关于x 的一元15.一次方程的解,则a = ________. 16. 规定图形a b c --,图形表示运算x z y w --+.则+=________________(直接写出答案). 17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为 .18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次从正面看从上面看BC变化,再对图(2)的每个边做相同的变化, 得到图形如图(3),称为第二次变化.如此 连续作几次,便可得到一个绚丽多彩的雪花 图案.如不断发展下去到第n 次变化时,图 形的面积是否会变化,________(填写“会” 或者“不会”),图形的周长为 . 三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分) 19.计算:(1)()()21862⎛⎫-⨯-+- ⎪⎝⎭;(2)()411293⎛⎫-+-÷--- ⎪⎝⎭.20.解方程:(1) 3(21)15x -=;(2)71132x x-+-=. 21.已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值. 22. 作图题:如图,已知点A ,点B,直线l 及l 上一点M .(1)连接MA ,并在直线l 上作出一点N ,使得点N 在点M 的左边, 且满足MN =MA ;(2)请在直线l 上确定一点O ,使点O 到点A 与点O 到点B 的距 离之和最短,并写出画图的依据.23. 几何计算:如图,已知∠AOB =40°,∠BOC =3∠AOB ,OD 平分∠AOC ,求∠COD 的度数. 解:因为∠BOC =3∠AOB ,∠AOB =40°所以∠BOC =__________°所以∠AOC =__________ + _________ =__________° + __________° =__________° 因为OD 平分∠AOC 所以∠COD =12__________=__________°24. 如图1, 线段AB =10,点C , E , F 在线段AB 上.(1)如图2, 当点E , 点F 是线段AC 和线段BC 的中点时,第二次变化第一次变化(3)(2)(1)AA图1求线段EF 的长;(2)当点E , 点F 是线段AB 和线段BC 的中点时,请你 写出线段EF 与线段AC 之间的数量关系并简要说明理由.25. 先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。
北京市海淀区七年级上数学期末试题及答案案

海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 2017.1学校 班级 姓名 成绩 一、选择题本题共36分;每小题3分在下列各题的四个备选答案中;只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.根据国家旅游局数据中心综合测算;今年国庆期间全国累计旅游收入4 822亿元;用科学记数法表示4 822亿正确的是A .8482210⨯ B . 114.82210⨯ C . 1048.2210⨯ D . 120.482210⨯ 2.从正面观察如图的两个立体图形;得到的平面图形是 3.若30a +=;则a 的相反数是 A .3 B .13 C .13-D .3- 4.将下列平面图形绕轴旋转一周;可得到图中所示的立体图形的是 5.下列运算结果正确的是A. 55=-x xB. 532422x x x =+ C. b b b 34-=+- D. 022=-ab b a 6.西山隧道段是上庄路南延工程的一部分;将穿越西山山脉;隧道全长约4km .隧道贯通后;往来海淀山前山后地区较之前路程有望缩短一半;其主要依据是A .两点确定一条直线B .两点之间;线段最短C .直线比曲线短D .两条直线相交于一点7.已知线段10AB =cm ;点C 在直线AB 上;且2AC =cm ;则线段BC 的长为 A .12 cm B .8 cm C .12 cm 或8 cm D .以上均不对 8.若关于x 的方程042=-+a x 的解是2=x ;则a 的值等于 A . 8- B .0 C .2 D .89.下表为某用户银行存折中2015年11月到2016年5月间代扣水费的相关数据;其中扣缴水费最多的一次的金额为A .738.53元B .125.45元C .136.02元D .477.58元 10.如图所示;数轴上点A 、B 对应的有理数分别为a 、b ;下列说法正确的是A .0ab >B .0a b +>C .0a b -< D .0a b -<11.已知点A 、B 、C 、D 、E 的位置如图所示;下列结论中正确的是A .=130AOB ∠︒ B .AOB ∠=DOE ∠C .DOC ∠与BOE ∠互补D .AOB ∠与COD ∠互余12. 小博表演扑克牌游戏;她将两副牌分别交给观众A 和观众B ;然后背过脸去;请他们各自按照她的口令操作:a .在桌上摆3堆牌;每堆牌的张数要相等;每堆多于10张;但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数;从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌;我就能告诉你们最初的每堆牌数.”观众A 说5张;观众B 说8张;小博猜两人最初每一堆里放的牌数分别为 A .14;17 B .14;18 C .13;16 D .12;16 二、填空题本题共24分;每小题3分13. 用四舍五入法;精确到百分位;对2.017取近似数是 . 14. 请写出一个只含有字母m 、n ;且次数为3的单项式 . 15.已知()2120x y ++-=;则yx 的值是 .16.已知2=-b a ;则多项式233--b a 的值是 .17. 若一个角比它的补角大3648'︒;则这个角为 ︒ '. 18.下面的框图表示解方程320425x x +=-的流程.第1步的依据是日期 摘要 币种 存/取款金额 余额 操作员 备注151101 北京水费 RMB 钞 -125.45 874.55 010005B25 折 160101 北京水费 RMB 钞 -136.02 738.53 010005Y03折160301 北京水费 RMB 钞 -132.36 606.17 010005D05 折 160501北京水费RMB 钞-128.59477.5801000K19折.19.如图;在正方形网格中;点O 、A 、B 、C 、D 均是格点.若OE 平分∠BOC ;则∠DOE 的度数为︒.20.下面是一道尚未编完的应用题;请你补充完整;使列出的方程为24(35)94x x +-=.七年级一班组织了“我爱阅读”读书心得汇报评比活动;为了倡导同学们多读书;读好书;老师为所有参加比赛的同学都准备了奖品;. 三、解答题本题共40分;第21题8分;每小题各4分;第22-26题;每小题5分;第27题7分 21.计算:1111()12462+-⨯. 21031(1)2()162-÷+-⨯. 22.解方程:12324x x+--=. 23.设11324()()2323A x x y x y =---+-+.1当1,13x y =-=时;求A 的值;2若使求得的A 的值与1中的结果相同;则给出的x 、y 的条件还可以是 . 24.如图;平面上有四个点A ;B ;C ;D . 1根据下列语句画图: ①射线BA ;②直线AD ;BC 相交于点E ;③在线段DC 的延长线上取一点F ;使CF=BC ;连接EF . 2图中以E 为顶点的角中;小于平角的角共有 个.25.以下两个问题;任选其一作答;问题一答对得4分;问题二答对得5分. 如图;OD 是∠AOC 的平分线;OE 是∠BOC 的平分线. 问题一:若∠AOC =36°;∠BOC =136°;求∠DOE 的度数. 问题二:若∠AOB =100°;求∠DOE 的度数.26.如图1;由于保管不善;长为40米的拔河比赛专用绳AB 左右两端各有一段AC 和BD 磨损了;磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀剪刀只用于剪断麻绳就可以得到一条长20米的拔河比赛专用绳EF .请你按照要求完成下列任务:1在图1中标出点E 、点F 的位置;并简述画图方法; 2说明1中所标EF 符合要求.A图1 图227.在数轴上;把表示数1的点称为基准点;记作点O •. 对于两个不同的点M 和N ;若点M 、点N 到点O •的距离相等;则称点M 与点N 互为基准变换点. 例如:图1中;点M 表示数1-;点N 表示数3;它们与基准点O •的距离都是2个单位长度;点M 与点N 互为基准变换点.图11已知点A 表示数a ;点B 表示数b ;点A 与点B 互为基准变换点.① 若a =0;则b = ;若4a =;则b = ; ② 用含a 的式子表示b ;则b = ; 2对点A 进行如下操作:先把点A 表示的数乘以52;再把所得数表示的点沿着数轴向左移动3个单位长度得到点B . 若点A 与点B 互为基准变换点;则点A 表示的数是 ;3点P 在点Q 的左边;点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动kk >0个单位长度得到1P ;2P 为1P 的基准变换点;点2P 沿数轴向右移动k 个单位长度得到3P ;4P 为3P 的基准变换点;……;依此顺序不断地重复;得到5P ;6P ;…;n P . 1Q 为Q 的基准变换点;将数轴沿原点对折后1Q 的落点为2Q ;3Q 为2Q 的基准变换点; 将数轴沿原点对折后3Q 的落点为4Q ;……;依此顺序不断地重复;得到5Q ;6Q ;…;n Q .若无论k 为何值;n P 与n Q 两点间的距离都是4;则n = .海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案 2017.1一、选择题本题共36分;每小题3分二、填空题本题共24分;每小题3分13.2.02 ; 14. 22m n -答案不唯一; 15.1; 16. 4; 17.108 ;24; 18.等式两边加或减同一个数或式子;结果仍相等;19.22.5 ; 20.奖品为两种书签;共35份;单价分别为2元和4元;共花费94元;则两种书签各多少份.答案不唯一三、解答题本题共40分;第21题8分;每小题各4分;第22-26题;每小题5分;第27题7分 21.1解:原式326=+- ----------------------3分 1=-. ----------------------4分 2解:原式11()1628=+-⨯ --------------------2分 122=- --------------------3分 32=-. ----------------------4分 22.解:()2+1122x x -=- . ---------------------2分2+2122x x -=-. ----------------------3分 312x =. ---------------------- 4分4x =. ---------------------- 5分 23.解:1143242323A x x y x y =--+-+ ---------------------2分 62x y =-+ . ---------------------3分当1,13x y =-=时;=4.∴A 的值是4. ----------------4分 232x y -+= .答案不唯一 ---------------5分 24.1---------------4分28. ---------------5分 25.解:问题一:∵ OD 平分AOC ∠;36AOC ∠=︒;∴ 1182DOC AOC ∠=∠=︒. …………………2分 ∵ OE 平分BOC ∠;136BOC ∠=︒; ∴ 1682EOC BOC ∠=∠=︒. …………………3分 ∴ 50DOE EOC DOC ∠=∠-∠=︒. ……………… 4分 问题二:∵ OD 平分AOC ∠; ∴ 12DOC AOC ∠=∠. …………………1分 ∵ OE 平分BOC ∠; ∴ 12EOC BOC ∠=∠. …………………2分 ∴ DOE EOC DOC ∠=∠-∠12AOB =∠. ……………… 4分 ∵ 100AOB ∠=︒;∴ 50DOE ∠=︒. ……………… 5分 注:无推理过程;若答案正确给2分 26.解:1解法不唯一……………… 2分如图;在CD 上取一点M ;使CM =CA ; F 为BM 的中点;点 E 与点C 重合. …3分 2∵F 为BM 的中点; ∴MF =BF .∵AB =AC +CM +MF +BF ;CM =CA ; ∴AB =2CM +2MF =2CM +MF =2EF . ∵AB =40m ;∴EF =20m .……………… 4分∵20AC BD +<m;40AB AC BD CD =++=m; ∴CD >20m.∵点E与点C重合;20EF=m;∴20CF=m.∴点F落在线段CD上.∴EF符合要求.……………… 5分27.解:1①2;-2;……………… 2分②2a-;……………… 4分2107;……………… 5分34或12.……………… 7分。
北京市海淀区七年级上数学期末试题及答案案

海淀区七年级第一学期期末练习数学2017.1学校班级姓名成绩一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入 4 822亿元,用科学记数法表示 4 822亿正确的是A.8482210B. 114.82210C. 1048.2210D. 120.4822102.从正面观察如图的两个立体图形,得到的平面图形是3.若30a ,则a 的相反数是A .3B .13C .13D .34.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是5.下列运算结果正确的是A. 55x x B. 532422x x xC.bbb 34 D. 022abba 6.西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4km .隧道贯通后,往来海淀山前山后地区较之前路程有望缩短一半,其主要依据是A .两点确定一条直线B .两点之间,线段最短C .直线比曲线短D .两条直线相交于一点7.已知线段10AB cm ,点C 在直线AB 上,且2ACcm ,则线段BC 的长为A .12 cmB .8 cmC .12 cm 或8 cmD .以上均不对8.若关于x 的方程042a x 的解是2x ,则a 的值等于A .8B .0C .2D .89.下表为某用户银行存折中2015年11月到2016年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为A .738.53元B .125.45元C .136.02元D .477.58元10.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是A .0abB .0ab C .a b D .0ab 11.已知点A 、B 、C 、D 、E 的位置如图所示,下列结论中正确的是A .=130AOB B .AOB =DOEC .DOC 与BOE 互补D .AOB 与COD 互余12. 小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;日期摘要币种存/取款金额余额操作员备注151101北京水费RMB 钞 -125.45874.55010005B25折160101北京水费RMB 钞 -136.02738.53010005Y03 折160301北京水费RMB 钞 -132.36606.17010005D05折160501北京水费RMB 钞-128.59477.5801000K19折e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为A .14,17B .14,18C .13,16D .12,16二、填空题(本题共24分,每小题3分)13. 用四舍五入法,精确到百分位,对 2.017取近似数是. 14. 请写出一个只含有字母m 、n ,且次数为3的单项式.15.已知2120x y ,则yx 的值是.16.已知2ba,则多项式233b a 的值是.17. 若一个角比它的补角大3648',则这个角为'.18.下面的框图表示解方程320425x x 的流程.第1步的依据是.19.如图,在正方形网格中,点O 、A 、B 、C 、D 均是格点.若OE 平分∠BOC ,则∠DOE 的度数为.20.下面是一道尚未编完的应用题,请你补充完整,使列出的方程为24(35)94x x .七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,.三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分)21.计算:(1)111()12462.(2)1031(1)2()162.22.解方程:12324x x.23.设11324()() 2323A x x y x y.(1)当1,13x y时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的x、y的条件还可以是 . 24.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:①射线BA;②直线AD,BC相交于点E;③在线段DC的延长线上取一点F,使CF=BC,连接EF.(2)图中以E为顶点的角中,小于平角的角共有个.25.以下两个问题,任选其一作答,问题一答对得4分,问题二答对得5分.如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线. 问题一:若∠AOC=36°,∠BOC=136°,求∠DOE 的度数. 问题二:若∠AOB=100°,求∠DOE 的度数.26.如图1,由于保管不善,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF.请你按照要求完成下列任务:(1)在图1中标出点E 、点F 的位置,并简述画图方法;(2)说明(1)中所标EF 符合要求.图1 图2COABD E27.在数轴上,把表示数1的点称为基准点,记作点O . 对于两个不同的点M 和N ,若点M 、点N到点O 的距离相等,则称点M 与点N 互为基准变换点. 例如:图1中,点M 表示数1,点N 表示数3,它们与基准点O 的距离都是2个单位长度,点M 与点N 互为基准变换点.图1(1)已知点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点.①若a,则b=;若4a,则b=;②用含a 的式子表示b ,则b=;(2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B. 若点A 与点B 互为基准变换点,则点A 表示的数是;(3)点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动k (k>0)个单位长度得到1P ,2P 为1P 的基准变换点,点2P 沿数轴向右移动k 个单位长度得到3P ,4P 为3P 的基准变换点,,,,依此顺序不断地重复,得到5P ,6P ,,,n P . 1Q 为Q 的基准变换点,将数轴沿原点对折后1Q 的落点为2Q ,3Q 为2Q 的基准变换点, 将数轴沿原点对折后3Q 的落点为4Q ,,,,依此顺序不断地重复,得到5Q ,6Q ,,,n Q .若无论k 为何值,n P 与nQ 两点间的距离都是4,则n=.海淀区七年级第一学期期末练习数学参考答案2017.1一、选择题(本题共36分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B A A B C B C B C D C A二、填空题(本题共24分,每小题3分)13.2.02 ;14.22m n(答案不唯一);15.1;16.4;17.108,24;18.等式两边加(或减)同一个数(或式子),结果仍相等;19.22.5 ; 20.奖品为两种书签,共35份,单价分别为2元和4元,共花费94元,则两种书签各多少份.(答案不唯一)三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分)21.(1)解:原式326----------------------3分1. ----------------------4分(2)解:原式11()1628--------------------2分122--------------------3分32. ----------------------4分22.解:2+1122x x . ---------------------2分2+2122x x. ----------------------3分312x. ---------------------- 4分4x. ---------------------- 5分23.解:(1)143242323A x x y x y---------------------2分62x y. ---------------------3分当1,13x y时,16()213A=4.∴A的值是4. ----------------4分(2)32x y .(答案不唯一)---------------5分24.(1)---------------4分(2)8. ---------------5分25.解:问题一:∵OD平分AOC,36AOC,∴1182DOC AOC. …………………2分∵OE平分BOC,136BOC,∴1682EOC BOC. …………………3分∴50DOE EOC DOC. ……………… 4分问题二:∵OD平分AOC,∴12DOC AOC. …………………1分∵OE 平分BOC ,∴12EOC BOC . …………………2分∴DOEEOCDOC1122BOCAOC12AOB .……………… 4分∵100AOB ,∴50DOE.……………… 5分(注:无推理过程,若答案正确给2分)26.解:(1)(解法不唯一)……………… 2分如图,在CD 上取一点M ,使CM=CA ,F 为BM 的中点,点E 与点C 重合. …3分(2)∵F 为BM 的中点,∴MF =BF.∵AB=AC+CM+MF +BF ,CM=CA ,∴AB=2CM+2MF =2(CM +MF )=2EF. ∵AB=40m ,∴EF =20m.……………… 4分∵20ACBD m ,40AB AC BD CD m ,∴CD >20m.∵点E 与点C 重合,20EF m ,∴20CFm.∴点F 落在线段CD 上.∴EF 符合要求.……………… 5分27.解:(1)①2,-2;……………… 2分②2a ;……………… 4分(2)107;……………… 5分(3)4或12.……………… 7分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 11 页
2020-2021学年北京市海淀区七年级上期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列说法中,正确的是( )
A .绝对值等于他本身的数必是正数
B .若线段A
C =BC ,则点C 是线段AB 的中点
C .角的大小与角两边的长度有关,边越长,则角越大
D .若单项式12x n y 与x 3y m
﹣1是同类项,则这两个单项式次数均为4
【解答】解:A .绝对值等于他本身的数必是正数或0,故本选项错误;
B .若线段A
C =BC ,且点C 在线段AB 上,则点C 是线段AB 的中点,故本选项错误;
C .角的大小与角两边的长度无关,故本选项错误;
D .若单项式12x n y 与x 3y m
﹣1是同类项,则这两个单项式次数均为1+3=4,故本选项正确;
故选:D .
2.(3分)近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基
站达16.4万个,将数据16.4万用科学记数法表示为( )
A .164×103
B .16.4×104
C .1.64×105
D .0.164×106
【解答】解:16.4万=164000=1.64×105.
故选:C .
3.(3分)在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是( )
A .﹣5
B .﹣0.9
C .0
D .﹣0.01
【解答】解:∵|﹣5|>|﹣0.9|>|﹣0.01|,
∴﹣5<﹣0.9<﹣0.01,
∴在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是﹣0.01.
故选:D .
4.(3分)下列运算正确的是( )
A .3a +2a =5a 2
B .3a ﹣a =3
C .2a 3+3a 2=5a 5
D .﹣0.25ab +14ab =0
【解答】解:A .2a +3a =5a ,故本选项不合题意;
B .3a ﹣a =2a ,故本选项不合题意;。