初二数学经典阅读理解题

合集下载

八年级数学阅读理解题集

八年级数学阅读理解题集

八年级数学阅读理解题集题目1:小明和小红共有20块糖果,小明的糖果数是小红的两倍。

问小明有多少块糖果?解析:设小红有x块糖果,则小明有2x块糖果。

根据题意得到方程2x + x = 20,解方程可得x = 5,所以小明有10块糖果。

题目2:某商店折扣价售卖一款原价为200元的电脑,打折后降价为原价的80%。

小明购买了这款电脑,他需要支付多少钱?解析:原价为200元,打折后为200 * 80% = 160元。

所以小明需要支付160元。

题目3:一个边长为3cm的正方形,内部有一条延长线,将该正方形分成一大角和三小角。

大角的度数是小角度数的两倍,求小角的度数。

解析:设小角的度数为x度,则大角的度数为2x度。

根据正方形内角和为360度,得到方程2x + 3x = 360,解方程可得x = 60,所以小角的度数为60度。

题目4:甲、乙两个人同时从两个不同的地点出发,相向而行,两人相距100km。

甲的速度是乙的两倍,乙每小时行驶的距离是多少?解析:设乙每小时行驶的距离为x km,则甲每小时行驶的距离为2x km。

根据题意得到方程x + 2x = 100,解方程可得x = 25,所以乙每小时行驶25km。

题目5:一个数乘以4再减去5等于17,这个数是多少?解析:设这个数为x,则根据题意得到方程4x - 5 = 17,解方程可得x = 6,所以这个数是6。

题目6:某书店有300本书,其中3/5是数学书,其余是故事书。

故事书的数量是数学书的几分之一?解析:数学书的数量为3/5 * 300 = 180本。

故事书的数量为300 - 180 = 120本。

所以故事书的数量是数学书的1/180。

通过以上题目的解析,我们可以发现在数学中,应用数学知识解决问题是非常重要的。

希望大家能够掌握数学的基础知识,提高自己的数学能力。

(完整版)初二数学经典阅读理解题

(完整版)初二数学经典阅读理解题

阅读理解题型训练1.阅读下面材料:小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形, ∠AOB =∠COD=90︒.若△BOC 的面积为1, 试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.图1 图2小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO 到E , 使得OE =CO , 连接BE , 可证△OBE ≌△OAD , 从而得到的△BCE 即是以AD 、BC 、OC+OD 的长度为三边长的三角形(如图2).请你回答:图2中△BCE 的面积等于 .2.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .3.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB = AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系. 小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE′,连结E′D , 使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明; 图(1)ADCOBBOCDA111210987654321图2图1A'PPA ABCBC(2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件 不变,(1)中探究的结论是否发生改变? 请说明你的猜想并给予证明.4.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。

(完整版)初二数学经典阅读理解题

(完整版)初二数学经典阅读理解题

阅读理解题型训练1.阅读下面材料:小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形, ∠AOB =∠COD=90︒.若△BOC 的面积为1, 试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.图1 图2小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO 到E , 使得OE =CO , 连接BE , 可证△OBE ≌△OAD , 从而得到的△BCE 即是以AD 、BC 、OC+OD 的长度为三边长的三角形(如图2).请你回答:图2中△BCE 的面积等于 .2.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .3.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB = AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系. 小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE′,连结E′D , 使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明; 图(1)ADCOBBOCDA111210987654321图2图1A'PPA ABCBC(2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件 不变,(1)中探究的结论是否发生改变? 请说明你的猜想并给予证明.4.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。

中考数学复习专题二《阅读理解》经典题型含答案

中考数学复习专题二《阅读理解》经典题型含答案

中考复习专题二阅读理解1.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1.例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2).若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)解析:由题意可知,在新序列里,2重复的次数为2的整数倍,3重复的次数为3的整数倍,选项A,B中,∵2有3个,∴不可以作为S1,故选项A,B错误;选项C中,∵3只有1个,∴不可以作为S1,故选项C 错误;选项D是符合定义的一种变换,故选D.答案:D2.定义新运算:a b=例如:4 5=,4 (-5)=,则函数y=2 x(x≠0)的图象大致是()解析:根据新运算可知y=2 x=故该函数的图象为双曲线y=在第一象限内的分支和双曲线y=-在第二象限内的分支.答案:D3.规定:sin(-x)=-sin x,cos(-x)=cos x,sin(x+y)=sin x·cos y+cos x·sin y,据此判断下列等式成立的是.(写出所有正确的序号)①cos(-60°)=-;②sin 75°=;③sin 2x=2sin x·cos x;④sin(x-y)=sin x·cos y-cos x·sin y.解析:①cos(-60°)=cos 60°=,故①不正确;②sin 75°=sin(30°+45°)=sin 30°·cos 45°+cos 30°·sin 45°=,故②正确;③sin 2x=sin(x+x)=sin x·cos x+cos x·sin x=2sin x·cos x,故③正确;④sin(x-y)=sin x·cos(-y)+cos x·sin(-y)=sin x·cos y-cos x·sin y,故④正确.所以正确的有②③④.答案:②③④4.对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,-1)=-2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?解:(1)①根据T(1,-1)=-2,T(4,2)=1,得②由①知T(x,y)=,由题意,可得∴要使得不等式组的整数解恰好为3个,必须满足:解得-2≤p<-.(2)由T(x,y)=T(y,x),得,去分母,整理得ax2+2by2=2bx2+ay2.由于上式对实数x,y都成立,∴a=2b.故存在非零常数a,b,且满足a=2b.5.阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法.解:将方程②变形,得4x+10y+y=5,即2(2x+5y)+y=5.③把方程①代入③,得2×3+y=5,∴y=-1.把y=-1代入①,得x=4.所以方程组的解为请你模仿小军的“整体代换”法解方程组解:将方程⑤变形,得3(3x-2y)+2y=19,⑥把方程④代入⑥,得3×5+2y=19,所以y=2.把y=2代入方程④,得x=3.故方程组的解为6.如果二次函数的二次项系数为1,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个二次函数的特征数为[-2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个二次函数的特征数为[4,-1],将此函数的图象先向右平移1个单位长度,再向上平移1个单位长度,求得到的图象对应的函数的特征数.②若一个二次函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?解:(1)由题意得y=x2-2x+1=(x-1)2,所以特征数为[-2,1]的函数图象的顶点坐标为(1,0).(2)①特征数为[4,-1]的函数为y=x2+4x-1,即y=(x+2)2-5.因为将函数y=x2+4x-1的图象先向右平移1个单位长度,再向上平移1个单位长度,所以y=(x+2-1)2-5+1,即y=x2+2x-3.所以该函数的特征数为[2,-3].②特征数为[2,3]的函数为y=x2+2x+3,即y=(x+1)2+2,特征数为[3,4]的函数为y=x2+3x+4,即y=,所以将函数y=x2+2x+3的图象先向左平移个单位长度,再向下平移个单位长度即可得到函数y=x2+3x+4的图象.注:符合题意的其他平移,也正确.。

八年级数学阅读理解练习题

八年级数学阅读理解练习题

八年级数学阅读理解练习题1. 一家餐馆每天都会提供两种套餐供顾客选择。

今天,餐馆提供了A套餐和B套餐。

其中,A套餐的价格为12元,B套餐的价格为15元。

某顾客购买了5份A套餐和3份B套餐,总共花费了多少元?2. 玛丽每天骑自行车上学。

她发现自己上学所需的时间与她骑车的速度成反比。

如果她以10公里/小时的速度骑车,她需要20分钟到达学校。

那么,以15公里/小时的速度骑车,她到学校需要多长时间?3. 一块蛋糕被等分成了8份。

小明吃了其中的3份,小红吃了其中的1份。

还剩下多少份蛋糕?4. 某公司一批产品中有72个次品。

如果这批产品总数的20%是次品,那么这批产品的总数是多少?5. 一个矩形花坛的长是12米,宽是8米。

花坛的周长上围绕着一条边长相等的石子路,石子路的宽度为1米。

那么,石子路的面积是多少平方米?6. 黄先生在一个月内每天都步行同样的距离上班。

他发现自己每天步行花费的时间与他的步行速度成正比。

如果他以5公里/小时的速度步行,他需要30分钟到达办公室。

那么,以6公里/小时的速度步行,他需要多长时间?7. 一家超市每袋糖果的重量不完全相同。

今天,小明购买了2袋糖果。

第一袋重量为0.3千克,第二袋重量为0.5千克。

那么,两袋糖果的总重量是多少千克?8. 某图书馆的图书总量为15000本。

其中,小说类图书占总量的20%,其余为非小说类图书。

那么,非小说类图书的数量是多少本?9. 某班级有40名同学,其中男生占总人数的35%。

那么,女生的人数是多少?10. 甲、乙两个人开始进行一场马拉松比赛。

甲每小时的速度为10公里,乙每小时的速度为12公里。

如果他们同时起跑,那么他们何时能够相遇?注意:以上每题都可以使用计算器进行计算。

人教版八年级数学上册八年级数学课外阅读训练题

人教版八年级数学上册八年级数学课外阅读训练题

人教版八年级数学上册八年级数学课外阅
读训练题
1. 课外阅读训练题概述
这份文档是关于人教版八年级数学上册的课外阅读训练题的内容概述。

这些训练题旨在帮助八年级学生巩固数学知识,提高数学技能,并拓宽数学思维。

有800字以上的内容。

2. 题目列表
以下是一些课外阅读训练题的题目列表:
1. 整数与有理数运算
2. 一元一次方程与一元一次方程组
3. 二次根式与二次方程
4. 分式与分式方程
5. 平面直角坐标系与图形的认识
6. 平面图形的性质
3. 内容简介
每个题目都涵盖了特定的数学主题,旨在通过阅读和解答问题
加深学生对数学知识的理解。

这些训练题不仅包括基础知识的应用,还涉及了解决实际问题的能力。

通过完成这些题目,学生不仅可以
提高数学成绩,还可以培养问题解决和逻辑思维能力。

4. 使用方法
学生可以根据自己的研究进程和需要选择合适的训练题进行研究。

每个题目都配有相关的阅读材料和问题,学生可以阅读材料,
理解题目要求,并尝试独立解答问题。

解答完毕后,可以对比答案,并进行自我评估。

5. 结语
这份人教版八年级数学上册的课外阅读训练题旨在提供一个辅
助研究的工具,帮助学生提高数学能力。

通过阅读和解答问题,学
生将能够更好地理解数学概念和知识,并应用于实际问题中。

> 注意:上述内容仅为例示,实际题目内容可能有所不同。

请根据课本内容编写具体的题目及相关说明。

初二数学应用英语阅读理解20题

初二数学应用英语阅读理解20题

初二数学应用英语阅读理解20题1<背景文章>Tom is a student in Grade Eight. One day, he went to the supermarket with his mother. They wanted to buy some fruits. When they came to the fruit section, Tom saw that apples were sold at 5 yuan per kilogram and oranges were sold at 8 yuan per kilogram. Tom's mother wanted to buy 3 kilograms of apples and 2 kilograms of oranges. Tom quickly calculated the total cost in his mind. He thought that 3 kilograms of apples cost 3 times 5 yuan, which is 15 yuan. And 2 kilograms of oranges cost 2 times 8 yuan, which is 16 yuan. So the total cost is 15 yuan plus 16 yuan, which is 31 yuan.After buying the fruits, they went to the cashier to pay. The cashier told them that there was a promotion. If they spent more than 30 yuan, they could get a discount of 5 yuan. Tom was very happy because they could save some money. He quickly calculated the new total cost. After deducting the discount, the new total cost is 31 yuan minus 5 yuan, which is 26 yuan.Tom and his mother left the supermarket happily. Tom realized that mathematics is very useful in daily life. It can help us solve many problems.1. Apples are sold at ___ yuan per kilogram.A.3B.4C.5D.6答案:C。

初二数学几何原理英语阅读理解20题

初二数学几何原理英语阅读理解20题

初二数学几何原理英语阅读理解20题1.Geometry is the study of shapes and their properties. Triangles have three sides. Which of the following is NOT a property of triangles?A.They have three angles.B.They can be equilateral.C.They always have a right angle.D.They can be isosceles.答案:C。

解析:三角形有三个角,选项 A 正确;三角形可以是等边三角形,选项B 正确;三角形不一定总有直角,所以选项C 错误;三角形可以是等腰三角形,选项D 正确。

2.In geometry, a quadrilateral is a polygon with four sides. Which of the following is an example of a quadrilateral?A.TriangleB.CircleC.SquareD.Cube答案:C。

解析:三角形有三条边,不是四边形,选项A 错误;圆不是多边形,不是四边形,选项B 错误;正方形有四条边,是四边形,选项C 正确;立方体是立体图形,不是四边形,选项D 错误。

3.Triangles can be classified by their sides and angles. A triangle with all sides equal is called _____.A.right triangleB.isosceles triangleC.equilateral triangleD.scalene triangle答案:C。

解析:有一个角是直角的三角形是直角三角形,选项A 错误;有两条边相等的三角形是等腰三角形,选项B 错误;三条边都相等的三角形是等边三角形,选项C 正确;三条边都不相等的三角形是不等边三角形,选项D 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阅读理解题型训练
1.阅读下面材料:
小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形, ∠AOB =∠COD
=90︒.若△BOC 的面积为1, 试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.
图1 图2
小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长
CO 到E , 使得OE =CO , 连接BE , 可证△OBE ≌△OAD , 从而得到的△BCE 即是以AD 、BC 、OC+OD 的长度为三边长的三角形(如图2).
请你回答:图2中△BCE 的面积等于 .
2.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一
步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .
3.请阅读下列材料:
已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB = AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系. 小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE′,连结E′D , 使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD 、DE 、EC 三条线段之间存在的数
量关系式,并对你的猜想给予证明; 图(1)
A
D
C
O
B
B
O
C
D
A
11
12109
87
6
543
21
图2
图1
A'
A A
B
C
B
C
(2)当动点E 在线段BC 上,动点D 运动在线
段CB 延长线上时,如图(2),其它条件 不变,(1)中探究的结论是否发生改变? 请说明你的猜想并给予证明.
4.阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ',当点A 落在C A '
上时,此题可解(如图2).
请你回答:AP 的最大值是 . 参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)
图3
A
B
P
5.问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点为顶点,可把原n 边形分割成多少个互不重叠的小三角形?
问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:
探究一:以△ABC的三个顶点和它内部的一个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△ABC的三个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:
一种情况,点Q在图①分割成的某个小三角形内部,不妨假设点Q在△PAC内部,如图②;
另一种情况,点Q在图①分割成的小三角形的某条公共边上,不妨假设点Q在PA上,如图③;
显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.
探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点可把△ABC分割成个互不重叠的小三角形,并在图④画出一种分割示意图.
探究四:以△ABC 的三个顶点和它内部的m 个点,共(m+3)个顶点可把△
ABC 分割成 个互不重叠的小三角形。

探究拓展:以四边形的4个顶点和它内部的m 个点,共(m+4)个顶点,可把四边形分割成 个互不重叠的小三角形。

问题解决:以n 边形的n 个顶点和它内部的m 个点,共(m+n )个顶点,可把△ABC 分割成 个互不重叠的小三角形。

实际应用:以八边形的8个顶点和它内部的2012个点,共2020个点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)
6.如图,直角三角形纸片AB C 中,A B=3,A C=4D 为斜边BC 中点,第1次将纸片折叠,使点A
与点D 重合,折痕与AD 交于点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;设P n -1D n -2的中点为D n -1,第n 次将纸片折叠,使点A 与点D n -1重合,折痕与AD 交于点P n (n >2),则AP 6的长为( )
A. 125235⨯
B. 95253⨯
C. 146235⨯
D. 11
7253⨯
.
第1次折叠 第2次折叠 第3次折叠
第7题图。

相关文档
最新文档