春晓中八路桥梁施工监控方案与组织管理
桥梁施工监控技术(全文)

桥梁施工监控技术一.桥梁施工监控目的与意义桥梁施工监控的目的是为保证桥梁施工期间的安全、满足规范要求和设计质量。
桥梁施工监控对施工期间的桥梁结构应力状态、变形状态进行实时监测和操纵,使桥梁结构在恒荷载下的受力处于理论计算的容许范围内,使桥梁轴线偏差和挠度偏差在规范容许标准内,及时发现并修正施工中出现的偏差,达到理想的成桥线型和结构应力状态。
施工期间布设的监测系统,也为桥梁竣工验收、运营监测系统提供了监测基础,对于桥梁施工、竣工、运营期间的安全和质量跟踪监测以及治理维护等方面,都有重要的工程实际意义。
二.桥梁施工监测内容和监测技术在桥梁施工过程中,为保证桥梁结构的施工安全和质量,应对施工全过程进行监测和操纵。
桥梁施工监测是桥梁施工操纵的基础,主要对桥梁结构关键部位的位移、应变、应力、温度、材料性能参数、环境参数等力学物理量进行实时监测,以获得各施工工况下的结构实时状况,与理论分析计算结果进行比较,调整分析计算参数,操纵施工质量和精度。
通过施工监测数据,能够及时发现截面应力过大、几何线形超限的结构不利状态,以利查找原因,采取相应措施,及时防止出现桥梁安全事故和质量问题。
对于不同的桥梁结构类型和施工方法,采纳的监测内容和技术方法各有所不同。
对于拱桥,拱肋关键截面( 拱脚、拱顶、L/4,3L/4截面、吊杆附近截面) 的应力、拱肋线形、拱脚坐标、桥面线形、系杆拱桥中吊杆拉力、系梁应力、拱脚变形、拱墩应力和位移、构件内温度等,是施工监测的主要内容。
常采纳全站仪、周密水准仪等监测拱桥关键部位的变形和位移。
振弦式应变传感器常用于监测混凝土、钢筋应变和钢管应变; 穿心式压力传感器和振弦式索力传感器可用于监测吊杆拉力。
采纳智能型温度传感器监测构件内、外的温度。
在拱桥的主要施工工况,如拆除拱顶支撑、张拉系杆、灌注钢管混凝土、桥面铺装前后等,拱桥结构受力变化较大,需进行紧密的施工监测,以保证拱桥施工安全和结构合理受力、几何线形符合设计要求,确保拱桥施工质量。
大桥工程施工监控(3篇)

第1篇一、大桥工程施工监控的重要性1. 确保桥梁工程质量:通过对施工过程的实时监控,可以及时发现并纠正施工过程中的质量问题,确保桥梁结构安全可靠。
2. 保障施工安全:施工监控可以及时发现施工过程中的安全隐患,提前采取预防措施,降低安全事故发生的风险。
3. 控制施工进度:通过监控施工过程,可以实时掌握施工进度,合理调整施工计划,确保工程按时完成。
4. 提高施工效率:施工监控有助于优化施工方案,提高施工效率,降低工程成本。
二、大桥工程施工监控的主要内容1. 施工准备阶段:对施工图纸、施工方案、施工材料、施工设备等进行审查,确保其符合设计要求。
2. 施工过程监控:主要包括以下内容:(1)施工质量控制:对施工过程中的原材料、半成品、成品进行检验,确保其质量符合设计要求。
(2)施工进度监控:对施工进度进行跟踪,确保工程按时完成。
(3)施工安全监控:对施工现场进行巡查,及时发现安全隐患,采取措施消除风险。
(4)施工成本监控:对施工成本进行核算,确保工程在预算范围内完成。
3. 施工结束阶段:对已完成的工程进行验收,确保其符合设计要求。
三、大桥工程施工监控的方法与手段1. 监测仪器:采用高精度的监测仪器,如水准仪、全站仪、激光扫描仪等,对桥梁结构进行实时监测。
2. 软件分析:利用专业软件对监测数据进行分析,评估桥梁结构的应力、变形、稳定性等指标。
3. 现场巡查:对施工现场进行定期巡查,及时发现并解决施工过程中的问题。
4. 技术交流:与施工、设计、监理等单位保持密切沟通,共同探讨施工过程中遇到的问题。
四、大桥工程施工监控的实施要点1. 制定合理的监控方案:根据工程特点,制定切实可行的监控方案,确保监控工作有序进行。
2. 明确监控责任:明确各参与方的监控职责,确保监控工作落到实处。
3. 强化监控队伍建设:培养一支专业、高效的监控队伍,提高监控水平。
4. 加强信息化建设:利用现代信息技术,提高监控效率,降低施工成本。
桥梁监控工程施工方案

桥梁监控工程施工方案第一章绪论1.1 项目背景随着城市化进程的不断加快,交通基础设施的建设需求逐渐增大,其中桥梁作为重要的交通枢纽,其建设和维护尤为重要。
随着桥梁监控技术的不断发展,桥梁监控工程的施工及维护同样受到了重视。
本工程旨在对桥梁进行全面的监控和维护,确保桥梁的安全运行,保障交通安全。
1.2 项目概述本项目的主要内容包括桥梁监控系统的设计、安装和调试,以及相关设备的维护和保养工作。
整个工程的施工过程将分为多个阶段进行,其中包括前期准备、设备采购、安装调试、系统联调和最终验收等环节。
通过合理的施工方案和严格的施工管理,确保工程顺利进行并取得预期的效果。
1.3 项目目标本项目的最终目标是建设一套全面、稳定、可靠的桥梁监控系统,确保对桥梁的全面监控,并能及时发现并处理潜在的安全隐患。
同时,通过建设和完善桥梁监控系统,提高桥梁的安全性和运行效率,降低事故风险,从而保障交通安全和畅通。
第二章前期工作2.1 施工前准备在进行桥梁监控工程的施工前,首先要做好相应的前期准备工作。
包括桥梁监控系统的设计方案和施工方案,同时要对项目所需要的设备进行充分的调查和论证。
在此基础上,确定设备采购方案,并与供应商进行充分的洽谈和谈判,确保设备的质量和供应周期。
同时,在施工前还要对施工现场进行全面的调查和勘察,制定详细的施工方案和安全计划。
2.2 设备采购设备采购是桥梁监控工程的重要环节,采购的设备的质量和性能直接影响到整个工程的施工效果。
因此在采购过程中,需要严格按照相关法规和标准进行采购,同时对供应商的资质和信誉进行认真的审核,确保设备的质量和供货周期。
2.3 施工方案制定针对不同桥梁的特点以及具体的监控需求,需要制定相应的施工方案。
在制定施工方案时,需要综合考虑安全、质量和进度等多个方面因素。
通过合理的施工调度和流程设置,确保工程的顺利进行,最大限度地减少可能出现的风险和延误。
第三章施工阶段3.1 设备安装设备安装是桥梁监控工程的重要环节,它直接关系到监控系统的正常运行和使用效果。
桥梁监控管理制度

桥梁监控管理制度一、前言随着社会的不断发展和经济的快速增长,桥梁建设成为城市建设的重要组成部分。
桥梁在城市交通中起着重要作用,为人们的出行提供了便利。
然而,由于桥梁结构的复杂性和长期受到外部环境的影响,桥梁的安全问题一直备受关注。
为了确保桥梁的安全运行,建立一套科学有效的桥梁监控管理制度势在必行。
二、桥梁监控管理制度的必要性桥梁作为交通设施的重要组成部分,其安全运行直接关系到人们的生命财产安全。
为了提高桥梁的运行效率和延长使用寿命,建立桥梁监控管理制度具有重要的意义。
1.提高桥梁的安全性桥梁的安全性是保障人们安全出行的基础。
通过建立桥梁监控管理制度,可以及时监测桥梁的结构状态和运行情况,预防潜在的安全隐患,确保桥梁的安全运行。
2.延长桥梁的使用寿命桥梁一般都是长期使用的设施,长期受到外部环境的影响,容易出现老化和损坏。
通过桥梁监控管理制度,可以及时发现桥梁的问题并采取措施进行修复,延长桥梁的使用寿命。
3.提高桥梁的运行效率桥梁的正常运行对交通的畅通至关重要。
建立桥梁监控管理制度可以及时监测桥梁的运行情况,及时发现故障并进行修复,保证桥梁的正常运行,提高交通效率。
三、桥梁监控管理制度的内容1.桥梁结构监测桥梁结构监测是桥梁监控管理制度的重要组成部分。
通过监测桥梁的结构状态,可以及时发现结构问题并进行修复,保证桥梁的安全运行。
桥梁结构监测包括静载试验、动态监测、定期巡检等内容,可以通过各种传感器和监测设备进行监测。
2.桥梁设备监控桥梁设备监控是桥梁监控管理制度的重要组成部分。
桥梁设备包括桥面、栏杆、灯具等各种设备,通过监控这些设备的运行情况,可以及时发现设备故障并进行修复,确保桥梁设备的正常运行。
3.桥梁施工监管桥梁施工监管是桥梁监控管理制度的重要组成部分。
桥梁在施工过程中容易出现各种问题,通过建立桥梁施工监管制度,可以及时发现问题并及时解决,确保桥梁施工的质量和安全。
4.应急响应机制桥梁监控管理制度还应建立应急响应机制,一旦发生桥梁事故或故障,可以快速响应并采取有效措施,保证桥梁事故的后果最小化。
桥梁监控方案

六、法律法规与标准
1.严格遵守国家相关法律法规,如《中华人民共和国安全生产法》、《中华人民共和国道路交通安全法》等;
2.参照行业标准,如《公路桥梁养护技术规范》、《城市桥梁检测与评估技术规范》等;
3.遵循企业内部管理制度,确保项目合规、安全、高效运行。
七、保障措施
1.组织保障:成立项目组,明确职责,加强协作;
2.人员保障:配备专业技术人员,进行系统培训;
3.技术保障:采用先进、成熟的技术,确保系统稳定可靠;
4.资金保障:合理预算,确保项目资金充足;
5.安全保障:制定应急预案,加强安全防护。
本方案旨在为桥梁监控提供一套合法合规、科学有效的监测体系,为桥梁安全运行提供有力保障。希望相关部门认真组织实施,确保项目顺利推进。
4.数据存储与分析
数据存储采用分布式数据库,实现海量数据的存储与管理。数据处理与分析模块采用大数据分析技术,对桥梁结构健康状态进行实时评估。
5.预警与报警
当监测数据超过预设阈值时,系统自动发出预警信号,并通过短信、电话等方式通知相关人员。
五、实施步骤
1.调研与评估:对桥梁进行现场调研,评估监测需求,确定监测方案;
2.设备选型与采购:根据监测方案,选型采购相关传感器、数据采集设备等;
3.系统集成与调试:将传感器、数据采集设备等集成到监测系统中,进行系统调试;
4.数据采集与分析:启动监测系统,实时采集数据,进行数据分析;
5.预警与报警:根据数据分析结果,实施预警与报警;
6.养护与管理:根据监测数据,制定桥梁养护计划,指导养护工作;
5.数据采集与处理:启动监测系统,实时采集数据,进行数据处理与分析;
桥梁监控工程施工方案

桥梁监控工程施工方案一、施工前准备1. 项目背景桥梁监控工程是为了确保桥梁的安全运行,提前发现桥梁存在的问题并及时修复,减少事故发生的可能。
本项目选取了一座交通繁忙的桥梁进行监控工程施工,旨在提高桥梁的运行效率和安全性,保障道路交通的顺畅。
2. 施工范围本次桥梁监控工程的施工范围包括桥梁结构、设备安装、监控系统调试等内容。
具体包括桥梁梁体结构的巡检和维护、监控设备的安装和调试、监控系统的联网和测试等工作。
3. 施工方案制定根据桥梁监控工程的特点和施工环境,制定合理的施工方案是十分必要的。
施工方案应包括施工流程、施工计划、施工人员配置、工作安全等内容,确保施工全过程的有序进行。
二、施工流程安排1. 桥梁梁体结构巡检和维护首先,施工人员应进行桥梁梁体结构的巡检和维护工作。
通过视觉检查和仪器设备检测,确定桥梁梁体结构存在的问题和隐患,及时进行维修处理,确保桥梁结构的安全性。
2. 监控设备安装和调试接着,施工人员应根据监控方案,安装监控设备并进行调试工作。
监控设备包括摄像头、传感器、监测仪器等,需要确保设备安装稳固可靠,且能正常工作,以满足监控需求。
3. 监控系统联网和测试最后,施工人员应将各个监控设备与监控系统进行联网,并进行系统测试工作。
通过系统测试,确认监控系统的正常运行和监控数据的准确性,为桥梁监控工程的实施提供可靠的数据支持。
三、施工安全管理1. 安全教育培训在施工前,应对施工人员进行专业的安全教育培训,提高他们的安全意识和技能水平,确保施工过程中不发生事故。
2. 安全设备配备施工现场应配备必要的安全设备,如安全帽、安全绳、防护眼镜等,确保施工人员的人身安全。
3. 安全巡查监督施工过程中,应定期进行安全巡查监督,及时发现安全隐患并采取措施进行处理,确保施工现场的安全。
四、施工质量控制1. 质量监督检查在施工过程中,应定期进行质量监督检查,确认施工质量符合相关标准和规范要求,确保监控工程的质量可靠。
大桥施工监控方案技术要求

大桥施工监控方案技术规定一、施工监控旳目旳和意义大桥旳建成要经历一种较长而复杂旳施工过程,构造体系也将随施工阶段不同样而变化。
施工过程中,因设计参数误差、施工误差、构造分析模型误差等种种原因和湿度、温度、时间等原因旳影响,将导致施工过程中桥梁旳实际状态(线形、内力)与理想目旳存在一定旳偏差,这种偏差积累到一定程度如不及时加以识别和调整,成桥后旳构造安全状态难以保证。
施工监控就是在悬臂施工过程中,通过对主桥进行施工监控,抵达如下目旳:(1)保证主桥构造施工旳安全;(1)使施工阶段桥梁构造旳线形与应力变化与设计计算理论靠近;(3)成桥后构造旳线形及内力分充斥足设计和规范规定。
二、施工监控任务(1)标高控制标高控制旳最终目旳是使成桥线形符合设计规定。
为此,为了实现该目旳需要将目旳进行分解,确立每一种节段旳前端控制标高。
当施工中出现标高误差,则通过后续节段浇注标高旳调整来将该误差减到最小。
标高控制以梁底面光滑平顺为原则来合理分派标高误差。
(2)应力控制应力控制旳目旳是使成桥后旳各个设计控制截面旳应力状态满足设计规定。
因此,在施工过程中必须对每个施工环节旳多种作用(如混凝土容重、预加应力、临时荷载、温度变化)进行监视,控制施工过程中旳截面最大应力满足规范与设计规定,以防止意外状况对构造导致旳危害,保证施工过程中构造旳安全。
三、施工监控内容与措施1、理论分析计算建立分析计算模型,对施工过程进行模拟计算,给出施工理想状态旳预抛高和截面控制应力值。
2、主梁设计参数旳测定在施工监控前期,上述旳理论分析计算中旳设计参数是采用设计文献提供旳资料,但在施工过程中,实际旳设计参数往往与规定旳设计参数存在偏差。
因此需要对实际旳设计参数进行测定,测定措施按有关技术原则执行,测定内容为:作不少于三束预应力孔道旳摩阻试验3、温度测量(1)监测点布置本项目宜以中跨旳一种根部截面、L/4截面和边跨L/4截面作为温度监测截面,图1(2)测试措施箱梁体内温度分布旳测试措施提议采用将测温铂电阻贴在钢筋上,做防潮与保护处理后埋入箱梁体内对应旳位置中,通过导线引出箱梁,采用温度测试仪器进行读数测量,其测量精度为0.1℃。
桥梁工程监控方案

桥梁工程监控方案1施工监控的意义及目的桥梁施工监控不仅是桥梁施工技术的重要组成部分,也是确保桥梁施工宏观质量控制的关键及桥梁建设的安全保证,它在施工过程中起着安全预警、施工指导以及及时为设计提供依据。
任何体系的桥梁在每一个施工阶段的内力和变形时可以预计的,因此当施工中发现检测的实际值和预计值相差过大时,随即进行检查和分析,找出原因并排除问题后方可继续施工,避免出现事故,造成不必要的损失。
本工程桥梁规模较大、拖拉施工工艺复杂,并且没有成熟的经验可循,为了保证桥梁结构的建设质量,开展施工阶段的监控工作尤为重要,它不仅是保证大桥顺利建成的重要手段,也为成桥状态下结构的力学特性积累了原始资料,为大桥后期的运营管理提供对比依据。
通过本次施工监控,主要达到以下目的:(1)通过混凝土的强度、弹性模量及预应力损失的相关参数测试,为桥梁施工过程的精确分析提供计算参数,保证理论分析的正确性,为施工决策提供良好的理论基础。
(2)通过大体积混凝土的水化热温度测试及分析,及时掌握混凝土核心、表面、环境温度之间的差值,为模板的拆除提供合理的时间,避免温度裂缝的产生,保障大体积混凝土的浇筑质量。
(3)通过对拖拉段主梁、主塔关键截面的应力测试、拖拉段主梁线形测试、主塔变位测试、临时墩变形测试、临时索索力测试、拖拉前滑道摩擦系数测试、拖拉过程中主梁各截面反复应力测试等,了解预应力张拉效果、支架拆除后拖拉段主梁的应力状态,确保拖拉段主梁混凝土的强度、刚度及稳定性、安全性,保障拖拉过程的顺利进行。
(4)通过对主梁混凝土施工及预应力张拉过程中关键截面的应力及线形测试、合拢段截面的应力状态测试、斜拉桥索力测试、斜拉索张拉过程塔顶变位测试等,了解主梁结构连续后的受力状态、斜拉索的张拉控制质量及桥梁进行体系转换后的受力状态。
(5)通过桥面二期恒载施工过程中全桥(主梁、主塔)关键截面的应力测试、主梁线形测试、斜拉索索力测试、主塔变位测试,了解成桥状态,撰写检测报告,为桥梁结构的成桥验收提供基础资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
春晓中八路桥梁施工监控方案与组织管理秦玉霞(宁波经济技术开发区春晓开发建设指挥部浙江宁波315830)摘要:大跨径桥梁的施工监控每座桥都有其不同特点,如何保证不同桥型、不同施工特点的桥梁能满足设计的要求,是施工监控工作的重点,其中监控方案与组织管理工作尤为重要。
关键词:大跨径桥梁施工监控组织管理中图分类号:U448 文献标识码: A 文章编号:1672-3791(2009)08(c)-0000-001 工程概况春晓中八路2号桥上部结构形式为24.6+90+24.6m下承式连续梁拱组合体系。
纵梁采用预应力混凝土箱梁结构,单箱单室截面,桥台、跨中梁高180cm,桥墩处梁高360cm,箱梁顶宽900cm,底宽600cm,全桥共设2道纵梁,25道预应力混凝土横梁,其中2道桥台横梁,2道桥墩横梁,21道中横梁。
桥墩横梁采用单箱单室截面,高360cm,宽300cm,桥台横梁采用矩形实心截面,高180cm,宽230cm;中横梁采用T形截面,宽55cm,高180cm。
预应力束采用φ15.24mm 的高强度低松弛钢绞线,配套锚具采用OVM锚具,塑料波纹管成孔。
主拱理论跨径为90m,计算矢高20m,矢跨比1/4.5,理论拱轴线方程为:y=0.88889x-0.00988x2。
副拱肋拱轴线为圆弧线,圆弧半径为292.025m。
全桥共设两榀钢管混凝土拱,拱肋截面为矩形,主拱肋高160cm,宽190cm,钢管壁厚20mm,副拱肋高120cm,宽190cm,钢管壁厚12mm,主拱内灌C50微膨胀砼,其余为空钢管。
在主拱肋钢管顶设一组排气孔,在拱脚处各设一组进料口,待泵送砼完毕后,封死排气孔及进料口。
拱肋与纵梁固结,两榀拱肋横向间距为24.5m。
每榀拱肋设15根厂制吊杆,吊杆间距5.4m,吊杆采用PES(FD)7-85半平行钢丝成品索,外包双层高密度聚乙烯(PE)护套,配套锚具采用带有纠偏装置的OVMLZM(K)7-85锚具,吊杆标准强度为1670MPa,破断力为5463kN,吊杆采用单端张拉,张拉端设于拱肋顶部,固定端设于箱梁底部。
下部结构桥台采用一字型桥台,台身厚200cm,桥台基础采用φ125cm钻孔灌注桩基础;桥墩为立柱式,桥墩承台厚度250cm,桥墩基础采用φ125cm钻孔灌注桩基础;桩基按摩擦桩设计。
2 施工监控的具体内容2.1 计算模型的建立及对施工阶段的跟踪计算2.1.1 基本资料收集(1)钢管的弹性模量、泊松比及容重;混凝土龄期为3、7、14、28、90天的强度与弹性模量,混凝土的容重,混凝土的徐变收缩参数。
(2)气象资料:收集晴雨、气温、风向、风速等气象资料。
(3)实际工期与未来进度安排,此项内容施工单位必须提前通知施工监控方。
(4)满堂支架结构形式及材料特性,施工荷载在拱肋上布置的位置与数值,临时铰的位置及性质。
(5)本桥的设计图纸及相关的设计变更资料。
2.1.2 结构参数的初步选择结构参数是施工控制中模拟分析的基本资料,其准确性直接影响分析结构的准确性。
结构参数主要包括:结构构件截面尺寸、结构材料弹性模量、材料容重、材料热膨胀系数、施工荷载、预加的应力和索力。
以上这些参数需施工单位在每个工序施工前准确给出,有的参数需取规范中的建议值。
2.1.3 应力监测的理论计算在桥梁的应力监测中,对结构在每个施工阶段的变形和受力分析是其最基本的内容,因此,必须通过合理的计算方法和理论分析来确定桥梁结构在每个施工阶段的理想的受力和变形状态,以便控制施工过程中每个阶段的结构行为,使其最终的成桥线形和受力状态满足设计要求。
本桥监控中桥梁结构的计算方法采用正装分析和倒装分析相结合的方法。
正装分析法,又称前进分析法,是大跨度钢管砼拱桥施工控制的主要工作内容之一。
正装分析法根据确定的施工顺序完成各施工状态及成桥后的内力、位移与稳定性计算,进而确定出结构各施工阶段的内力、位移与稳定性理论值,作为施工控制的理论轨迹.计算可考虑施工的进程、时间、相应状态、临时荷载、环境温度、截面刚度变化、结构变化、砼的收缩与徐变等因素,以此确定出桥梁的预拱度,构件的无应力下料长度,预测下一施工状态及施工成桥状态的内力、位移与稳定性。
倒装分析法以成桥理想状态为初始条件,按实际施工相逆的步骤,逐步拆去每一个施工项对结构的影响,从而确定结构在施工各阶段的状态参数。
将上述两种方法交替使用、调整分析,以期真实地模拟各施工阶段结构的受力和变形,更好地指导施工。
2.2 应力监测施工监测过程中应力观测是整个控制工作的主要内容之一,必须认真执行,并保证数据的可靠性。
为此,应力测量工作应作为施工的一个工序来完成,测量所得的数据应经有关人员分析认可后方可进行下一工序的施工。
同时还要做到:所有观测记录都注明日期、时间、工况、气温、桥面特殊施工荷载和其他突变因素等。
应力监控将包括主梁和拱肋的各主要控制断面。
2.2.1 应力测点布置本桥应力测试截面分别布置在主梁和主拱的关键截面,共16个应力监控截面,其中主梁9个,主拱5个,副拱2个,如图1所示。
主梁为预应力混凝土箱形梁,每个截面布置7个内埋式混凝土应力传感器,应力测点布置如图2所示。
主拱为钢管混凝土结构,施工过程中主要监控钢管外表面的应力,每个监测截面布置4个外贴式应力传感器,分别设置在钢管的上、下缘和侧向外表面,如图3所示。
图1 应力监控截面布置图图2 主梁应力测点布置图3 主拱应力测点布置图2.2.2 测量方法与仪器由于应力监测是一个长时间的连续的量测过程,因此应力测量采用钢弦式应力传感器,因为这种传感器具有良好的稳定性,具有应变累积功能,抗干扰能力强,数据采集方便。
钢弦式传感器将包括以下类型:JXG-1型钢筋应力计和JMZX-212AT型表面式应变计。
这二种类型的传感器的技术参数见表4.1。
钢弦式应力计的采集系统采用振弦检测仪,它的测量范围、测量精度、存贮容量和使用环境温度如下。
(1)测量范围:振弦频率:600Hz~3000Hz;振弦温度:-40℃~125℃。
(2)测量精度:频率精度:0.1%±0.1Hz;温度精度:±1℃。
(3)存贮容量:2500个测试点。
(4)使用环境温度-10℃~40℃,相对湿度小于等于90%。
钢弦式传感器的技术参数表4.12.3 桥梁线型监测桥梁线形监测是施工监控工作的主要内容之一,其目的是通过各施工阶段结构线形的控制,保证桥梁结构的成桥线形与设计线形相符。
本桥线形控制主要包括主梁和主拱线形控制两部分。
2.3.1 测点布置(1)主梁线形控制断面:主跨跨中断面、主跨L/4断面、主跨3L/4断面;边跨跨中断面、支点断面,共计9个断面。
除支承处各断面布置2个高程测点外,其余均布置4个高程测点于断面上,分别位于箱梁腹板顶部。
(2)主拱线形控制断面:拱脚断面、L/4断面、拱顶断面、3L/4断面,共计5个断面。
标高测点布置在拱肋两侧侧面的钢箱表面,并在拱肋两侧布置拱肋侧倾传感器。
2.3.2 监测手段主梁线形采用精密水准仪测量。
主拱线形采用全站仪测量,每个控制点上安设反光棱镜或反光片,采用三角高程法测量各控制点的高程。
拱肋的侧倾观测,应对A2、A3、A4三个测点进行拱肋侧向位移变化。
2.4 吊杆张拉力的监测吊杆索力是设计的主要参数,也是施工监控中重要的控制参数,索力量测效果将直接对结构的施工质量和施工状态产生影响。
间接法测张拉力,利用吊索的索力和吊索的振动频率之间存在着一定的关系,因此如能测出吊索的振动频率,即能得到吊索的索力。
本桥索力的监测采用频率法,测量时人工激振使吊索振动,然后通过索力仪测量吊索的振动频率,代入以下公式即可算出索力。
2224n WL T f n g式中:f n —吊索第n 阶自振频率;L —计算索长;n —索的振动阶数。
考虑到吊索在张拉过程中存在各种非线性的影响,如吊索张拉对其他吊索力的影响、吊索张拉过程对主梁和支架间的相互作用的影响,这些非线性互相影响,使得吊索张拉过程结构受力相当复杂,也决定了吊索张拉力很难通过一次张拉就达到设计张拉值,因此本桥吊索采用4次张拉的方法,各次的张拉力分别为0.3P 、0.6P 、0.8P 、1.0P 。
由于受千斤顶数量的限制,难以将所有的吊索同时张拉,因此每次张拉的顺序为从跨中的吊索向两端逐根进行,且位于同一里程的上、下游两根吊索由两台千斤顶同时张拉。
吊索分四次张拉,每次张拉也分成若步进行,因此每完成一步张拉,均需要对所有吊索索力进行测量,以掌握被张拉吊索对相邻吊索索力的影响程度。
在吊索全部张拉完毕后,后续的每一施工工况结束后均应对全桥吊索进行索力测量,确保成桥索力与设计值相符。
2.5 监控工况及监控频率本桥为梁拱组合结构,施工步骤较多,工序复杂,为掌握施工过程中结构的受力和变形特点,保证施工的安全进行,需要对主要的施工工况进行线形和应力监控。
根据本桥的施工步骤,主要包括以下施工工况:1)主梁混凝土浇筑;2)主梁预应力筋张拉;3)主拱安装;4)主拱混凝土灌注;5)吊杆张拉;6)满堂支架拆除;7)桥面铺装。
上述每一施工工况又是由许多小工序组成的,所以应力的观测次数和时间由施工的工序来决定的,具体为:每个工序完成前、后必须观测2~3次,而且两次读数宜在结构温度基本一致的时间进行观测,具体的时间一般为早晨日出前,每次观测要迅速(控制在1小时以内)、准确。
2.6 施工监测有关误差分析由于结构实测值与分析值存在着一定的偏差,主要来源于以下几项:结构分析建模误差、弹性模量误差、截面特性误差、构件自重误差、混凝土龄期误差、测试误差等。
通过对各项误差的分析,结构参数敏感性分析,结构参数识别,进一步找出偏差原因,确定出设计参数真实值,从而为施工成桥符合设计要求服务,也为同类桥的设计与施工积累经验。
2.7监测结果的递交应力监测过程中按施工进度的要求及时提交监测结果,监测结果采用书面报告的形式,内容包括:应力实测结果、线形实测结果、经过参数修正后的理论值、并预告下一施工阶段应注意的地方及比较危险的截面。
现场数据交换采用固定格式,统一编号,并由各方认可。
所有实测数据首先应该及时汇总到监理处,然后分发每一单位。
同时应做好文件、资料的管理和签收工作。
3 施工监控的现场实施3.1施工控制的组织机构施工控制工作是一项涉及到建设、设计、施工、监理等单位的系统工作。
为做好该项工作,建议设立施工控制领导小组与施工控制工作小组两个组织来开展工作。
重大技术问题由领导小组讨论决定,具体工作由施工控制小组实施。
(1)施工控制领导小组由建设单位、设计单位、监理单位、施工单位和施工控制单位的领导和技术负责人参加,其中建设单位任组长。
施工控制领导小组不定期开会,由组长召集,讨论施工控制中出现的重大问题,并提出决策方案。
(2)施工控制工作小组由施工控制单位、施工单位、监理单位、设计单位和建设单位参加,包括施工控制单位的现场负责人、施工单位的现场负责人、监理单位的现场代表、设计单位的设计代表和建设单位的配合,其中施工控制单位的现场负责人任组长。