沪科版一元二次方程典型应用题
一元二次方程应用题(含答案)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元要找准关系式2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?解:设增加x(8+x)(12+x)=96+69x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元. 依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m?(2)从开始加速到行驶64m处是用多长时间?4解:(0+10)除2为平均增加为5(0+5a)除2乘a5解:2.5*8=20 100-20=80 80/8=10100/【(0+10a)/2】=10解方程为264/【(0+2a)/2】=a解方程为86.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=106.1一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。
一元二次方程应用题(含答案)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元:要找准关系式2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且22=26500元.∴销售单价最高时获总利最多,且多获利26500元.4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s解:!(0+10)除2为平均增加为5(0+5a)除2乘a5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m(2)从开始加速到行驶64m处是用多长时间解:*8=20 100-20=80 80/8=10100/【(0+10a)/2】=10解方程为2:64/【(0+2a)/2】=a解方程为86.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=10一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。
第17章 一元二次方程-利用一元二次方程解决实际问题拓展 22--23学年沪科版数学八年级下册

利用一元二次方程解决传播问题
例7 2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类
的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有
效隔离,经过两轮传染后共有256人感染新冠肺炎,求: (1)每轮传染中平均每个人传染了几个人? (2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多
(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.若围成的面积为180
m2,试求出自行车车棚的长和宽;
19米
A
D
分析 设AB=x,则BC=38﹣2x,则可表示出矩形面积,列方程求解即可,x
根据墙长19m这个限制条件确定正确答案.
B
C
38﹣2x
解答 设AB=x,则BC=38﹣2x;
例4 某钢厂1月份钢产量4万吨,2,3月份产量持续增长,第一季度共生产13.24万吨,求2,3月 份平均每月的增长率.
分析 设平均每月的增长率为x,根据1月份的产量依次求出2月份,3月份的产量,
根据:1月份钢产量+2月份钢产量+ 3月份钢产量= 13.24,列方程求解即可. 解答 解:设2、3月份平均每月的增长率为x,
解答 解:设月平均增长率为x,5月份的营业额为2800×(1+x),6月份的营业额为2800(1+x)2 根据题意列方程得:2800(1+x)2=3388, 解得:x=110 或 x -1201(舍去) 答:月平均增长率为10%.
求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过 两次变化后的数量关系为a(1±x)2=b.其中增长取“+”,降低取“﹣”
(1)设每件衬衫降价x元时,每天可销售__(__2_0_+__2_x_)__件,每件盈利__(__4_0_﹣__x_)___元;
(完整版)一元二次方程应用题20及答案

一元二次方程应用题20及答案1、有两个连续整数,它们的平方和为25,求这两个数。
解:设这两个数分别是a和a+1. 根据题意列方程:a²+(a+1)²=25整理得:a²+a-12=0 解得:a1=3 a2=-4当a=3时,两个数分别是3和4 当a=-4时,两个数分别是-3和-42、有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之积的3倍刚好等于这个两位数。
求这个两位数。
解:设个位数为x,则十位数为x-2 x(x-2)3=10(x-2)+x3 a²2-17x+20=0 (3x-5)(x-4)=0 x=5/3(舍去)或x=4则这两位数为243、有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。
解:设这个两位数个位数为x,则(10x+6-x)(10(6-x)+x) = 1008,化简得到x ²-6x+8=0,所以x=2或4面积问题4、用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的边长为Xcm的小正方形,然后做成底面积为1500cm2的无盖的长方形盒子,求X的值。
解:设小正方形的边长为X厘米(80-2X)(60-2X)=1500 x² -70X+825=0(X-15)(X-55)=0 X=15或X=55(不符合,舍去)X=155、如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m2,道路的宽应为多少?解:设宽度为xm,640-(20*2*x+32*x)+2x^=570x²-36x+35=0 (X-1)(X-35)=0x=1 或35(不合题意,舍去)x=1增长率问题6、某新华书店计划第一季度共发行图书122万册,其中一月份发行图书32万册,二、三月份平均每月增长率相同,求二、三月份各应发行图书多少万册?解:设增长率为x,则 32+32(1+x)+32(1+x)(1+x)=122(4x-1)(4x+13)=0 x=0.25或-3.25(不合题意,舍去)二月发行图书32(1+x)=40册三月发行图书32(1+x)(1+x)=50册7、某校2009年捐款1万元给希望工程,以后每年都捐款,计划到2011年共捐款4.75万元,问该校捐款的平均年增长率是多少?解:设平均年增长率为X。
一元二次方程应用题(含答案)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元要找准关系式2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?解:(0+10)除2为平均增加为5(0+5a)除2乘a5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m?(2)从开始加速到行驶64m处是用多长时间?解:2.5*8=20 100-20=80 80/8=10100/【(0+10a)/2】=10解方程为264/【(0+2a)/2】=a解方程为86.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=106.1一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。
[数学]-专项17.5 一元二次方程的实际应用【九大题型】(举一反三)(沪科版)(原版)
![[数学]-专项17.5 一元二次方程的实际应用【九大题型】(举一反三)(沪科版)(原版)](https://img.taocdn.com/s3/m/33a9b7f7970590c69ec3d5bbfd0a79563c1ed49f.png)
专题17.5 一元二次方程的实际应用【九大题型】【沪科版】【题型1 数字问题】 ................................................................................................................. 错误!未定义书签。
【题型2 平均变化率问题】 . (2)【题型3 销售利润问题】 (3)【题型4 传播问题】 (4)【题型5 循环问题】 (4)【题型6 树枝分叉问题】 (5)【题型7 工程问题】 (6)【题型8 图形问题】 (8)【题型9 面积问题】 (10)【题型1 数字问题】【例1】(2022•苏州期末)一个两位数,它的两个数字之和为6,把这两个数字交换位置后所形成的两位数与原两位数的积是1008,求原来的两位数.【变式1-1】(2022•沙坪坝区校级模拟)小北同学在学习了“一元二次方程”后,改编了苏轼的诗词《念奴娇•赤壁怀古》:“大江东去浪淘尽,千古风流人物.而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿同.哪位学子算得快,多少年华数周瑜?”大意为:“周瑜去世时年龄为两位数,该数的十位数字比个位小3,个位的平方恰好等于该数.”若设周瑜去世时年龄的个位数字为x,则可列方程()A.10(x+3)+x=x2B.10(x﹣3)+x=(x﹣3)2C.10(x﹣3)+x=x2D.10(x+3)+x=(x﹣3)2【变式1-2】(2022•浦东新区校级期末)已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个两位数小4,则这个两位数是.【变式1-3】(2022•秦都区期末)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.【题型2 平均变化率问题】【例2】(2022春•钟山县期末)某商品原价为20元,连续两次降价后售价为8元,设平均降价率为x,根据题意,可列方程为()A.20(1+x)2=8 B.8(1+x)2=20 C.20(1﹣x)2=8 D.8(1﹣x)2=20【变式2-1】(2022•安徽二模)某市决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.20% B.11% C.22% D.44%【变式2-2】(2022春•芝罘区期末)某种药品原来售价200元,连续两次降价后售价为162元.若平均每次下降的百分率相同,则这个百分率是.【变式2-3】(2022•秀峰区校级期中)某小区2013年屋顶绿化面积为2000平方米,计划2015年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是多少?【题型3 销售利润问题】【例3】(2022•大庆模拟)某口罩经销商批发了一批口罩,进货单价为每盒50元,若按每盒60元出售,则每周可销售80盒.现准备提价销售,经市场调研发现:每盒每提价1元,每周销量就会减少2盒,为保护消费者利益,物价部门规定,销售时利润率不能超过50%,设该口罩售价为每盒x(x>60)元,现在预算销售这种口罩每周要获得1200元利润,则每盒口罩的售价应定为()A.70元B.80元C.70元或80元D.75元【变式3-1】(2022春•乳山市期末)某商场将进价为30元的台灯以单价40元售出,平均每月能售出600个.调查表明:这种台灯的单价每上涨1元,其销售量将减少10个.为实现平均每月10000元的销售利润,从消费者的角度考虑,商场对这种台灯的售价应定为元.【变式3-2】(2022春•垦利区期末)第24届冬季奥林匹克运动会将于2022年2月4日在北京开幕,北京成为历史上第一个既举办夏奥会又举办冬奥会的城市.某批发商最近以2元/张的价格订购了一批具有纪念意义的书签进行销售.经调查发现,每个定价3元,每天可以卖出500件,而且定价每上涨0.1元,其销售量将减少10张.根据规定:纪念品售价不能超过批发价的2.5倍.(1)当每张书签定价为3.5元时,商店每天能卖出件;(2)如果商店要实现每天800元的销售利润,那该如何定价?【变式3-3】(2022•市中区校级一模)今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售20m%;为了保护农户的收益与种植积极性,政3府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.【题型4 传播问题】【例4】(2022•射洪市期中)新冠病毒主要是经呼吸道飞沫传播的,在无防护下传播速度很快.已知有1个人患了新冠肺炎,经过两轮传染后共有169个人患了新冠肺炎,每轮传染中平均一个人传染m人,则m的值为()A.11 B.12 C.13 D.14【变式4-1】(2022•长兴县校级期中)截止4月15日全国已通报确诊63例人感染H7N9禽流感病例,H7N9是禽流感的一种亚型,在禽类中传播速度较快,上海等地已开始捕杀活禽.如果一只活禽,经过两轮感染后就会有36只活禽被感染,假设每轮传染中平均每只活禽传染了x只活禽,那么可列方程为;n轮感染后,被感染的活禽只数为只.(用含n的代数式表示)【变式4-3】(2022•汕头)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【题型5 循环问题】【例5】(2022春•百色期末)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排21场比赛,则八年级班级的个数为()A.5 B.6 C.7 D.8【变式5-1】(2022•大连一模)第24届北京冬奥会冰壶混合双人循环赛在冰立方举行.参加比赛的每两队之间都进行一场比赛,共要比赛45场,共有多少个队参加比赛?【变式5-2】(2022•保亭县校级月考)要组织一次排球循环赛,参赛的每两队之间赛一场.赛程计划7天,每天安排4场,比赛组织者应邀请多少个队参加?【变式5-3】(2022•中山市模拟)某市计划举办青少年足球比赛,赛制采取双循环形式(即每两队之间都要打两场比赛),一共组织30场比赛.计分规则为胜一场得3分,平一场得1分,负一场得0分.(1)该市举办方应该邀请多少支球队参赛?(2)此次比赛结束后,如果其中一支参赛球队共平了4场,负了2场,则该球队此次比赛的总积分是多少?【题型6 树枝分叉问题】【例6】(2022春•启东市期末)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,则这种植物每个支干长出的小分支个数是()A.8 B.7 C.6 D.5【变式6-1】(2022秋•鼓楼区校级期末)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,设每个支干长出x个小分支,则下列方程中正确的是()A.1+x2=43 B.1+x+x2=43 C.x+x2=43 D.(1+x)2=43【变式6-2】(2018秋•同安区校级期中)某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是31,则每个枝干长出()小分支.A.7根B.6根C.5根D.4根【变式6-3】(2022•河西区期中)某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,每个枝干长出多少小分支?若设每个枝干长出x个小分支.(Ⅰ)分析:根据问题中的数量关系,填表:①主干的数目为1;②从主干中长出的枝干的数目为;(用含x的式子表示)③又从上述枝干中长出的小分支的数目为;(用含x的式子表示)(Ⅱ)完成问题的求解.【题型7 工程问题】【例7】(2022•渝中区校级自主招生)工程队在完成某项工程的过程中,因提高了工作效率从而缩短了工作时间.经测试:工作时间缩短的百分率是工作效率提高的百分率的2倍,且提高工作效率后的工作量是原来工作量的0.88倍.若完成原来工作量的时间为3小时,求提高工作效率后完成工作量所花的时间.【变式7-1】(2022•沙坪坝区校级开学)“农村道路改造”是重庆市政府一项重要的惠民工程.某条需要改造的农村道路共54000米,需要甲、乙两工程队合作施工完成.已知甲、乙两队分别从道路两头同时开始施工,乙队每天比甲队多修100米(1)现市政府要求甲、乙两队共同施工40天之后剩余的工程总量不得超过18000米,则甲队每天至少修路多少米?(2)为了保证施工的质量,甲、乙两队计划按照(1)中的最施工速度进行施工,但在实际的施工过程中,由于天气过于炎热,甲、乙队每天的施工速度都降低了m%.市政府的有关部门立即对完工时间进行了评估:如果炎热的天气一直持续,则甲、乙两队同时施工60天,再由乙单独多施工(m+7)天恰好就可以完成该项道路改造任务.求m的值.【变式7-2】(2022•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程并且甲、乙两队的工作效率与题干的不同,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)【变式7-3】(2022•开州区期中)为进一步改善路容路貌,提升干线公路美化度,某地相关部门初步拟定派一个工程队对一段长度不少于39000米的公路进行路基标准化整修.该工程队以旧设备与新设备交替使用的方式施工,原计划旧设备每小时整修公路30米,新设备每小时整修公路60米.,当这个工程完(1)出于保护旧设备的目的,该工程队计划使用新设备的时间比使用旧设备的时间多23工时,旧设备的使用时间至少为多少小时?(2)通过精确的勘察、测量、规划,以及新增了部分支线公路整修,此工程的实际施工里程比最初拟定的最少里程39000米多了9000米.于是在实际施工中,旧设备在整修公路效率不变的情况下,使用时间比(1)中的最小值多 3.2a%,同时,因为工人操作新设备不够熟练,使得新设备整修公路的效率比原计划下降了a%,使用时间比(1)中新设备使用的最短时多(1a+30)%,求a的值.2【题型8 图形问题】【例8】(2022春•海安市期末)某校准备在一块长为25米,宽为20米的长方形花园内修建一个底部为正方形的亭子(如图所示),在亭子四周修四条宽度相同,且与亭子各边垂直的小路,亭子边长是小路宽度的5倍,花园内的空白地方铺草坪,设小路宽度为x米.(1)花园内的小路面积为平方米(用含x的代数式表示).(2)若草坪面积为440平方米时,求这时道路宽度x的值.【变式8-1】(2022•峄城区期末)有一张长40cm,宽30cm的长方形硬纸片(如图1),截去四个全等的小正方形之后,折成无盖的纸盒(如图2).若纸盒的底面积为600cm2,则纸盒的高为.【变式8-2】(2022•沈阳模拟)如图,某建筑物的窗户如图所示,它的上半部分是半圆,半径为x米,下半部分是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15米.当x等于多少时,窗户通过的进光面积是4平方米.【变式8-3】(2021秋•朝阳区校级月考)如图,要设计一个等腰梯形的花坛,花坛上底长100m,下底长180m,上下底相距80m,在两腰中点连线外有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等,甬道的面积是梯形面积的六分之一.甬道的宽应是多少(精确到0.01m)?(友情提示:中间甬道的中位线就是等腰梯形的中位线)【题型9 面积问题】【例9】(2022•蜀山区校级模拟)我国南宋数学教杨辉曾经提出这样的一个问题,“直田积,八百六十四,只云阔不及长十二步,问阔及长各几步”.大意:矩形田地的面积为864平方步,宽比长少12步,问矩形田地的长与宽各几步?(请你利用所学知识解决以上问题)【变式9-1】(2022•淮安区期中)用条长40厘米的绳子围成一个矩形,设其一边长为x厘米.(1)若矩形的面积为96平方厘米,求x的值;(2)矩形的面积是否可以为101平方厘米?如果能,请求x的值;如果不能,请说明理由.【变式9-2】(2022•贵阳期末)我们规定:如果一个矩形的周长和面积分别是另一个矩形的周长和面积的n倍,则称这个矩形是另一个矩形的“加倍矩形”.已知一个矩形的长为5,宽为3,是否存在这样的“加倍矩形”,它的周长和面积分别是已知矩形的周长和面积的3倍,请说明理由.【变式9-3】(2022•达川区校级月考)某农场要建一个长方形的养鸡场,鸡场的一边靠长为18m的墙,另三边用木栏围成,木栏长为32m.(1)鸡场的面积能围成120m2吗?(2)鸡场的面积能围成130m2吗?。
一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总列一元二次方程解应用题中遇到的常见的典型题目,举例说明.一、增长率问题例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额到达了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,那么根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1〔舍去〕.答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,假设经过两次相等下降后,那么有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,假设每件商品售价a元,那么可卖出〔350-10a〕件,但物价局限定每件商品的利润不得超过20%,商店方案要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a 2=31不合题意,舍去.所以350-10a =350-10×25=100〔件〕.答需100件,每件商品应定价25元. 商品的定价问题是商品交易中的重要问题,也点. 三、储蓄问题 例3王红梅同学将100元压岁钱第一次按一年定期含蓄存入“行〞, 到期后将本金和利息取出,并将其中的500元捐给“希望工程〞,剩余的又全部按 一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期 后,可得本金和利息共530元,求第一次存款时的年利率.〔假设不计〕 解设第一次存款时的年利率为x. 那么根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x 2+145x -3=0. 解这个方程,得x 1≈0.0204=2.04%,x 2≈-1.63所以将x 2≈-1.63舍去. 答第一次存款的年利率约是2.04%. 这里是按教育储蓄求解的,应注意不计. 四、趣味问题 例4一个醉汉拿着一根竹竿进城,横着怎么也拿4米,旁边一个醉汉嘲笑他,你没看城门高吗,城门高2米,二人没方法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.1那么根据题意,得(x+0.1+x+1.4+0.1)x=·1.8,整理,得x2+0.8x-1.8=0.2解这个方程,得x1=-1.8〔舍去〕,x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解此题开场时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.例5读诗词解题:〔通过列方程式,算出周瑜去世时的年龄〕.大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,那么十位数字为x-3.那么根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x =6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.说明此题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.六、象棋比赛例6象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总1局数应为n(n-1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显2然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44〔舍去〕.答参加比赛的选手共有45人.说明类似于此题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7春秋旅行社为吸引市民组团去XX湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去XX湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去XX湾风景区旅游?解设该单位这次共有x名员工去XX湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.那么根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去XX湾风景区旅游.说明求解此题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.如果人数超过25人,每增加1如果人数不超过25人,人,人均旅游费用降低20元,人均旅游费用为1000元.但人均旅游费用不得低于700图1八、等积变形例8长18米,宽15米的矩形荒地修建成一个花园〔阴影局部〕所占 的面积为原来荒地面积的二.〔准确到0.1m 〕 〔1〕设计方案1〔如图2〕花园中修两条互相垂直且宽度相等的小路. 〔2〕设计方案2〔如图3〕花园中每个角的扇形都一样. 以上两种方案是否都能符合条件?假设能,2中的小路图3中 扇形的半径;假设不能符合条件,请由. 解都能.〔1=0, 解这个方程,得x =〔2〕设扇形说明等积变形一般都是涉及的是常见图形的体积,积不变;或形变积也变,不变,等等. BQ 图2 图3 A PC 图4九、动态几何问题例9如图4所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点 A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.〔1〕如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?〔2〕点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.假设存在,求出运动的时间;假设不存在,说明理由.解因为∠C =90°,所以AB =22 ACBC = 2268=10〔cm 〕.〔1〕设xs 后,可使△PCQ 的面积为8cm 2,所以AP =xcm ,PC =(6-x)cm , CQ =2xcm.那么根据题意,得 1 2·(6-x)·2x =8.整理,得x 2-6x+8=0,解这个方程,得x 1= 2,x2=4.所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2.〔2〕设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半.那么根据题意,得 1 2 (6-x)·2x = 1 2 ×1 2 ×6×整8.理,得x 2-6x+12=0. 由于此方程没有实数根,所以不存在使△PCQ 的面积等于ABC 面积一半的时刻.说明此题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必 须依据路程=速度×时间.十、题例10为10m 的梯子斜靠在墙上,梯子的底端6m.〔1〕假设梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? 〔2〕假设梯子的底端水平向外滑动1m ,梯子的顶端滑动多少米? 〔3〕如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距 离是多少米? 解依题意,梯子的顶端距墙角 22 106=8〔m 〕.〔1〕假设梯子顶端下滑1m ,那么顶端距地面7m.设梯子底端滑动xm. 那么根据勾股定理,列方程72+(6+x)2=102,整理,得x 2+12x -15=0, 解这个方程,得x 1≈1.14,x 2≈-13.14〔舍去〕,所以梯子顶端下滑1m ,底端水平滑动约1.14m.〔2〕当梯子底端水平向外滑动1m 时,设梯子顶端向下滑动xm.那么根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x 2-16x+13=0. 解这个方程,得x 1≈0.86,x2≈15.14〔舍去〕.所以假设梯子底端水平向外滑动〔3〕设梯子顶端向下滑动xm 时,底端向外也滑动xm. 那么根据勾股定理,列方程(8-x)2+(6+x)2=102,整理,得2x 2-4x =0,解这个方程,得x1=0〔舍去〕,x2=2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南A方向200海里处有一重要目标B,在B的正东方向200海D 里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航.一艘补FBE图5C给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.〔1〕小岛D和小岛F相距多少海里?〔2〕军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?〔准确到0.1海里〕解〔1〕F位于D的正南方向,那么DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=12AB=100海里,所以,小岛D与小岛F相距100海里.〔2〕设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.解这个方程,得x1=200-10063 ≈118.4,x2=200+10063〔不合题意,舍去〕.所以,相遇时补给船大约航行了118.4海里.说明求解此题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n〔n为整数,且2≤n≤11〕的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一Xn×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二X纸片盖住第一X纸片的局部恰好为(n-1)×n(-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后答复以下问题:〔1〕由于正方形纸片边长n的取值不同,?完成摆放时所使用正方形纸片的X 数也不同,请填写下表:纸长n23456使用的纸片X数〔2〕设正方形ABCD被纸片盖住的面积〔重合局部只计一次〕为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?假设存在,请求出来;假设不存在,请说明理由.解〔1〕依题意可依次:11、10、9、8、7. 〔2〕S 1=n 2+(12-n)[n 2-(n -1)2]=-n 2+25n -12. 图6①当n =2时,S 1=-22+25×2-12=34,S2=12×12-34=110.所以S 1∶S2=34∶110=17∶55.②假设S 1=S 2,那么有-n 2+25n -12= 1 2 ×122,即n 2-25n+84=0,解这个方程,得n 1=4,n2=21〔舍去〕.所以当n =4时,S 1=S 2.所以这样的n 值是存在的.说明求解此题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第〔3〕小题,可以先假定问题的存在,进而构造一元二次方程,看 得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13将一2c m的铁丝剪成两段,并以每一一个正方形. 〔1〕要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分少? 〔2〕两个正方形的面积之和可假设不能,请说明理由. 解〔1〕设剪成两段后其中一段为x cm ,那么另一段为〔20-x 〕cm.x 4 2 + 20 4x 2 那么根据题意,得=17,解得x 1=16,x2=4,当x =16时,20-x =4,当x =4时,20-x =16,答这段铁丝剪成两段后是4cm 和16cm. 〔2〕不能.理由是:不妨设剪成两段后其中yc m ,那么另〔20-y 〕 y 4 2 + 20 4 y 2 cm.那么由题意得=12,整理,得y 2-20y+104=0,移项并配方, 得(y -10)2=-4<0,所以此方程无解,即不能剪成两段使得面12cm 2. 说明此〔2〕小问也可以运用求根公式中的b 2-4ac 来判定.假设b 2-4ac ≥0,方程有两个实数根,假设b 2-4ac <0,方程没有实数根,此题中的b 2-4ac =- 16<0即无解. 十四、平分几何图形的面积问题 例14如图7,在等腰梯形ABCD 中,AB =DC =5,AD =4,BC =10.点E?在下 BC 上,点F 在腰AB 上. 〔1〕假设E F平分等腰梯形A B CD的周长,设B x,x 的代数式表示△BEF 的面积; 〔2〕是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?假设存在,求 出此时BE 的长;假设不存在,请说明理由; 〔3〕是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部 分?假设存在,求此时BE 的长;假设不存在,请说明理由.解〔1〕由条件得,梯形12,高4,28.AD F F 作F G ⊥B C 于G A 作AK ⊥BC 于K.那么可得,FG = 12x 5 ×4, B C E GK 图7 所以S △BEF = 1 2 BE ·FG =- 2 5 x 2+ 24 5 x 〔7≤x ≤10〕. 〔2〕存在.由〔1〕得-2 5 x 2+ 24 5 x =14,解这个方程,得x 1=7,x 2=5〔不合 题意,舍去〕,所以存在线段E F 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7.〔3〕不存在.假设存在,显然有S △BEF ∶S 多边形AFECD =1∶2, 即(BE+BF)∶(AF+AD+DC)=1∶2.那么有- 2 5 x 2+ 16 5 x = 28 3,整理,得3x 2-24x+70=0,此时的求根公式中的b 2-4ac =576-840<0, 所以不存在这数x .即不存EF 将等腰梯形ABCD 的周长和面积同时 分成1∶2的两局部.求解此题时应注意:一是要x 的取值X 围;二是在求得x 2= 5时,并不属于7≤x ≤10,应及时地舍用一元二次方程来探索问题的. 十五、利用图形律 例15在如图8中,每个正方形有图8〔1〕观察图形,请填写 正长1357⋯n 〔奇数〕黑色小正方形个数⋯ 正长2468⋯n 〔偶数〕 黑色小正方形个数⋯〔2n 〔n ≥1〕的正方形中,设黑色小正方形的个数为P 1,白色小 正方形的个数为P 2,问是否在偶数.n ,使P 2=5P 1?假设存在,n 的值;假设 不存在,请由. 解〔1〕观察分析图案可知正方1、3、5、7、⋯、n 时,黑色正方 形的个数为1、5、9、13、2n-1〔奇数〕;正方2、4、6、8、⋯、n 时,黑色正方形的个数为4、8、12、16、2n 〔偶数〕. 〔2〕由〔1〕可知n 为偶数时P 1=2n ,所以P 2=n 2-2n.根据题意,得n 2-2n =5×2n ,即n 2-12n =0,解得n 1=12,n2=0〔不合题意,舍去〕.所以存在偶数 n =12,使得P2=5P1.说明此题的第〔2〕小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和开展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少〞等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
沪科版一元二次方程典型应用题

1.某商店从厂家以每件21元的价格购进一批商品,若每件商品的售价为x元,则每天可卖出(350-10x)件,但物价局限定每件商品加价不能超过进价的20%,商店要想每天赚400元,需要卖出多少件商品?每件商品的售价应是多少元?2.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件。
已知这种衬衫每件涨价1元,其销售量要减少10件。
为在月内赚取8000元的利润。
售价应定为每件多少元?3.如图,一条长64 cm的铁丝被剪成两段,每段均折成正方形.若两个正方形的面积和等于160 cm2,求两个正方形的边长.4.利用旧墙为一边(旧墙长为7m),再用13米长的篱笆围成一个面积为20m²的长方形场地,则长方形场地的长和宽分别是多少米?5.如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?6.小明将1000元存入银行,定期一年,到期后他取出600元后,将剩下部分(包括利息) 继续存入银行,定期还是一年,到期后全部取出,正好是550元,请问定期一年的利率是多少?7 .国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x元(叫做税率x%), 则每年的产销量将减少10x万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?18. 解:根据题意,得(x -21)(350-10x )=400,解这个方程,得x 1=25,x 2=31.当x =25时,2521420%2121-=<,符合题意,此时350-10×25=100; 当x =31时,31211020%2121-=>,故x =31不符合题意,舍去. 答:需要卖出商品100件,每件商品的售价应为25元.19. 解:设一个正方形的边长是x cm ,则另一个正方形的边长为644cm 4x -, 根据题意,得22644()1604x x -+=. 整理,得x 2-16x +48=0,解得x 1=12,x 2=4.当x =12时,64444x -=; 当x =4时,644124x -=. 答:两个正方形的边长分别是12 cm 和4 cm.25.税率应确定为6%.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.某商店从厂家以每件21元的价格购进一批商品,若每件商品的售价为x元,则每天可卖出(350-10x)件,但物价局限定每件商品加价不能超过进价的20%,商店要想每天赚400元,需要卖出多少件商品?每件商品的售价应是多少元?
2.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件。
已知这种衬衫每件涨
价1元,其销售量要减少10件。
为在月内赚取8000元的利润。
售价应定为每件多少元?
3.如图,一条长64 cm的铁丝被剪成两段,每段均折成正方形.若两个正方形的面积和等于160 cm2,求两个正方形的边长.
4.利用旧墙为一边(旧墙长为7m),再用13米长的篱笆围成一个面积为20m²的长方形场地,则长方形场地的长和
宽分别是多少米?
5.如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?
6.小明将1000元存入银行,定期一年,到期后他取出600元后,将剩下部分(包括利息) 继续存入银行,定期
还是一年,到期后全部取出,正好是550元,请问定期一年的利率是多少?
7 .国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市
场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x元(叫做税率x%), 则每年的产销量将减少10x万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?
18. 解:根据题意,得(x -21)(350-10x )=400,解这个方程,得x 1=25,x 2=31. 当x =25时,2521420%2121
-=<,符合题意,此时350-10×25=100; 当x =31时,
31211020%2121-=>,故x =31不符合题意,舍去. 答:需要卖出商品100件,每件商品的售价应为25元.
19. 解:设一个正方形的边长是x cm ,则另一个正方形的边长为644cm 4x -, 根据题意,得22644()1604
x x -+=. 整理,得x 2-16x +48=0,
解得x1=12,x2=4.
当x=12时,644
4
4
x
-
=;
当x=4时,644
12
4
x
-
=.
答:两个正方形的边长分别是12 cm和4 cm.
25.税率应确定为6%.。