机械通气的应用基础及常见呼吸波形解读

合集下载

呼吸机波形分析-中文分析

呼吸机波形分析-中文分析

Lower
Paw
cmH2O
Inflection Point
低位拐点代表大多数塌陷肺泡的开放点(肺复张)
ARDS的保护性肺通气建议PEEP应设置于地位拐点之上
流速容积(FV)曲线
Flow
(L/min)
Inspiration Expiration
Y轴表示流速,X轴表示容积
吸气支位于X轴上方并且其波形与流速时间波形一致
Volume mode
压力波形常为斜波
压力时间曲线
Pressure mode
压力波形常为方波 吸气时压力持续不变
Paw (cm H2O)
Time (sec)
压力时间曲线的意义
P
可用于评估:
T
❖ 气体陷闭 (auto-PEEP) ❖ 气道阻塞 ❖ 支气管扩张药物的疗效 ❖ 呼吸系统力学 (顺应性/阻力) ❖ 过度呼气 ❖ 通气模式 (容量 vs. 压力) ❖ 了解气道峰压(PIP), 平台压(Pplat) ❖ CPAP, PEEP ❖ 人机同步性 ❖ 吸气触发努力
常见于: 肺气肿, 表面活性剂治疗后
Paw
cmH2O
常见于: ARDS, CHF, 肺不张
Paw
cmH2O
VT
LITERS
漏气
Paw
cmH2O
PV环的呼气支曲线未回到基线水平提示漏气存在
VT
LITERS
Upper Inflection Point
PV曲线的拐点
(Third Inflection Point)
如果上升时间过短,可见压力波形上见一突起部,称为压力“波峰” ——需要减慢呼吸机送气阀的开放,增加上升时间
如果上升时间过长,压力波形将变得光滑且倾斜,将降低呼吸机气流的输出并且 可能无法满足病人的吸气需求 ——需加快送气阀的开放,降低上升时间

呼吸机波形分析

呼吸机波形分析

我们都知道机械通气时有四个最基本的变量:容量、压力、流量、时间。

这四个变量是机械通气的核心。

所谓的波形其实就是反映这四个变量之间关系的曲线,包括容量、压力、流量这三个变量的时间曲线以及压力-容量、流量-容量和压力-流量等三个环。

其中以压力-时间曲线、流量-时间曲线和压力-容量环最为常用,在基础讲座中我们将着重讲解。

这是几种最常见的流量时间曲线。

(本图引自PB840呼吸机的波形说明,绿色表示强制通气的吸气过程,红色表示自主呼吸的吸气过程,黄色表示呼气过程)横轴代表时间,单位是秒s;纵轴代表流量,单位是升/分L/min。

曲线上任意一点的流量都是由流量传感器测得的。

呼吸机送气时,气流通过吸气端流量传感器,此时流量曲线位于横轴上方。

呼吸机送气停止,如果此时有平台时间,则流量时间曲线的这一段与横轴重合。

开始呼气时,送气阀关闭,呼气阀打开,气流通过呼气端流量传感器,此时流量曲线位于横轴下方。

呼吸机送气的容量就等于吸气曲线下的面积。

我们先来看一下上图的左半部分。

左边三个图都是强制通气时的流量曲线。

第一个就是最经典,以前也最常用的方波square(矩形波)。

方波是定容通气时可选择的流量波形之一。

我们知道,定容通气时需要设置的参数有潮气量、呼吸频率、峰流量(或吸气时间或吸呼比)、流量波形、平台时间、氧浓度、PEEP等等。

方波的特点就是呼吸机在整个吸气时间内所输送的流量均是恒定的,吸气开始后很快就达到峰值,并保持恒定直到吸气结束才降为0,故形态呈方形(临床实际的情况是由于流量从0上升到最大值多多少少会需要一点时间,因此流量曲线就象是个梯形)。

第二个是递减波(线性)。

线性递减波也是定容通气时可选择的流量波形之一。

其特点是呼吸机输送的流量在吸气时间刚开始时立即达到峰值,然后呈线性递减至0(吸气结束)。

方波和线性递减波都是定容通气时的流量曲线,在其他所有参数都相同的情况下,方波的吸气时间短(如果设定了吸气时间,则峰流量较小),但气道峰压高;而线性递减波的吸气时间稍长(如果设定了吸气时间,则峰流量较大),气道峰压较低。

机械通气的基本模式及波形分析 ppt课件

机械通气的基本模式及波形分析  ppt课件

3L/min
No patient effort
吸入端流-呼出端流速> 触发灵敏度
无触发: 吸入端流速 = 呼出端流速 PPT课件
--病人触发 16
流速触发
流速触发灵敏度一般设置在2~5L/min,根据 具体情况而定
降低病人触发所作的呼吸功 可减少病人吸气和呼吸机供气之间的时间延迟 克服气道漏气(设置超过漏气的触发灵敏度),
压力 Patient effort
Patient effort
PPT课件
PEEP
触发灵敏度设置水平
8
-1cmH2O
PPT课件
9
-2cmH23ccmmHH22OO
PPT课件
11
Dynamic hyperinflation plus intrinsic expiratory flow limitation
高压报警
Pressure Inspiration Expiration
Paw
DP
时间
PPT课件
Time 31
容量控制与容量辅助/控制通气
跟随自主呼吸的触发 提供容量通气支持;
触发后每一次送气与 控制通气一样
频率可能增加; 分钟通气量可能增加
PPT课件
32
气道峰压过高与PLV
容量控制通气的限压PLV 通过设置Pmax实现; 送气流量变为减速波 吸气时间足够的情况下, 容量保证
用于小儿病人
PPT课件
17
Question
呼吸机设置流速触发灵敏度 3 L/min ,呼吸机在 呼气末提供的基础流速为5 L/min ,患者呼吸回路 存在持续漏气2 L/min,请问患者吸气流速至少为 多少时才能触发呼吸机

机械通气之如何观察呼吸机波形

机械通气之如何观察呼吸机波形

机械通气之如何观察呼吸波形先从最简单、最重要的两个呼吸波形开始学习。

分别是压力时间曲线、容量时间曲线。

如下图所示。

这个图片代表随着时间的变化,呼吸机使得气道压力产生周期性的变化,肺的容积也随之产生周期性的变化。

压力升高代表呼吸机送气,患者开始吸气;压力降低代表呼吸机停止送气,患者开始呼气。

频率不快不慢最好,15-20次/分,呼气时间要比吸气时间长。

压力不能太高,否则会把肺“吹爆”造成气压伤,一般不超过30cmH2O。

潮气量不能太低,否则会因为通气不足造成呼吸衰竭,潮气量一般不低于6ml/kg。

整个波形要规律、整齐。

一定要牢记这个波形,凡是与此不同的呼吸波形,往往提示存在呼吸机异常或患者病情变化,需要及时查找原因调整参数。

如果你是一个对呼吸机不感兴趣却又不得不面对呼吸机的呼吸科或者ICU医生、护士,或者你要教一个不会用呼吸机的夜班护士观察呼吸机,那么学到这里就已经足够日常使用了。

发现波形不规律,及时通知上级医生调整。

万万不能等到呼吸机、监护仪开始报警才想到叫人。

再进一步,学习流速时间曲线。

流速时间曲线相对比较抽象,因为它纵坐标有正负两个值,没有绝对正常高限和低限,主要是通过形态进行观察。

正常人呼吸——没有使用呼吸机的人——吸气时流速先较快,随后逐渐降低至0——这叫递减波,然后开始呼气,呼气流速也是从快到慢。

呼气和吸气时气体的流动方向相反,因此就有了正负之分。

如下图所示:如上图所示,绝大多数呼吸机的通气方式是按照递减波进行,这更符合生理状态,舒适性相对较好。

但呼吸机还可以按照恒定的流速送气——这叫方波,如下图所示。

虽然这样的送气方式不符合生理,但加上吸气暂停,可用于测量患者肺部的呼吸力学指标。

比如肺顺应性、气道阻力,这会在后面的呼吸力学相关章节讲解。

上面的呼吸波形反应的是10秒钟左右的患者呼吸参数变化。

对呼吸波形熟悉以后,可以学习观察趋势图。

趋势图反映的是患者在半小时-72小时之内的呼吸参数变化。

它可以用来评估当你不在病房的那段时间,患者病情的变化。

呼吸机波形及临床应用

呼吸机波形及临床应用

呼吸机波形及临床应用呼吸机波形是通过连续监测患者的呼吸运动所得到的一种表示方法,能够提供有关患者的呼吸状态和效果的宝贵信息。

通过观察和分析呼吸机波形,可以评估患者的呼吸力度、呼吸模式以及是否存在呼吸不同步等问题,从而为临床应用提供参考依据。

一般来说,呼吸机波形可以分为压力波形、流量波形和容量波形等几种类型。

压力波形反映了患者受到的气道或肺泡内压力变化情况,流量波形反映了患者呼吸流量的变化情况,容量波形则是通过连续测定患者的呼吸流量以及呼吸时间来对患者的呼吸容量进行示波分析。

在临床应用中,呼吸机波形可以广泛用于各种情况的监测和评估。

在机械通气中,呼吸机波形可以帮助医生判断通气的有效性和患者对机械通气的耐受性。

例如,在呼吸机波形中可以观察到患者的吸气峰值压力、呼气末正压水平等指标,这些指标可以反映患者的呼吸力度和肺排气情况,从而对机械通气的效果进行评估。

另外,在呼吸支持模式下,呼吸机波形也可以用于监测患者的呼吸模式和呼吸同步情况。

例如,在辅助控制通气模式下,医生可以通过观察呼吸机波形中的流速曲线和流量曲线来了解患者的吸气和呼气时间以及流速的变化情况,从而判断患者对该模式的适应性和呼吸同步性。

此外,呼吸机波形还可以用于评估呼吸道阻力、肺顺应性等指标,从而判断患者的呼吸状况和肺功能。

例如,在呼气末正压水平的调整过程中,观察呼吸机波形中的顺应性曲线变化情况,可以帮助医生判断患者的肺顺应性是否正常,从而调整呼吸机参数,提高机械通气效果。

除了以上的临床应用,呼吸机波形还可以帮助医生判断患者的气道情况和呼吸机连接是否正常。

例如,呼吸机波形中的流速曲线可以反映气道阻力的变化情况,如果流速曲线不正常,可能提示患者的气道存在狭窄或者阻塞等问题。

此外,呼吸机波形中的压力曲线和流量曲线也可以帮助医生判断呼吸机连接是否正常,如是否存在漏气等情况。

总之,呼吸机波形作为一种重要的监测手段,可以提供有关患者的呼吸状态和效果的宝贵信息。

机械通气的基本模式及波形分析 ppt课件

机械通气的基本模式及波形分析  ppt课件

吸气峰值流速的5%
Siemens Servo 900
吸气峰值流速的25%
VersaMed iVent
吸气峰值流速的25%
Newport E200
(Ti) PF
、和常数,Ti本呼吸周期过去吸气时间,PF吸气峰流速
PPT课件
58
PSV注意事项
适应证:自主呼吸,呼吸中枢稳定 监测参数: VT
24
容量控制通气
呼吸机按预设的频率、按预设的潮气量送气 流速恒定
PPT课件
25
容量控制通气
设置参数
---基本参数
潮气量、吸气时间、呼吸频率、气道压力上限
---不同呼吸机上述参数设置方式不全相同
-VT,RR,Ti%,Tpause%
-VT,RR,Ti,Flow
(其他参数:PEEP、FiO2)
X
X -2c触发灵敏度设置 -2cmH2O--触发 -3cmH2O--不能触发
PPT课件
7
压力触发
压力触发灵敏度一般设置在2~4cmH2O,根据具体情况而定 存在PEEPi,触发较困难(须克服PEEPi) 气道漏气时无法应用
当压力下降至灵敏度时 呼吸机开始送气
当压力下降未达灵敏度 时,呼吸机不送气
指令通气 在触发窗外,患者可进行自主呼吸
还允许对自主呼吸进行一定水平的压力支持(SIMV+PSV)
PPT课件
50
同步间歇指令通气(SIMV)
基本设置参数:Vt、RR、吸气时间 (其他参数:PEEP、触发灵敏度)
触发窗(不同呼吸机触发窗设置不同)
PPT课件
51
自主呼吸触发
SIMV波形
3L/min
No patient effort

机械通气模式与波形

机械通气模式与波形

机械通气模式与波形机械通气是临床治疗中常用的辅助呼吸方法,通过不同的通气模式和波形,可以满足患者不同的呼吸需求。

本文将介绍机械通气模式与波形的基本概念和常见类型。

一、定容通气模式定容通气模式是指在机械通气过程中,通过设定一定的潮气量(VT)来控制患者的呼吸。

以下是几种常见的定容通气模式:1. 容量控制通气(VCV):通过设定一定的VT和呼吸频率(RR),来控制患者的呼吸。

VCV适用于大多数需要机械通气的患者。

2. 容量辅助/控制通气(V A V/VCV):在VCV的基础上,给予一定的辅助通气,以增加患者的自主呼吸能力。

V A V适用于具有一定自主呼吸能力的患者。

3. 压力控制通气(PCV):通过设定一定的吸气峰压(PIP)来控制患者的呼吸。

PCV适用于肺顺应性较差的患者。

4. 压力辅助/控制通气(PACV/PCV):在PCV的基础上,给予一定的辅助通气,以增加患者的自主呼吸能力。

PACV适用于具有一定自主呼吸能力的患者。

二、定压通气模式定压通气模式是指在机械通气过程中,通过设定一定的气道压力来控制患者的呼吸。

以下是几种常见的定压通气模式:1. 压力控制持续气道正压通气(CPAP):通过设定一定的气道压力,来保持患者的呼吸道通畅。

CPAP适用于治疗睡眠呼吸暂停等疾病。

2. 自主呼吸试验(SBT):通过逐渐降低气道压力,来评估患者的自主呼吸能力。

SBT适用于准备撤离机械通气的患者。

3. 压力支持通气(PSV):通过设定一定的气道压力,来辅助患者的自主呼吸。

PSV适用于具有一定自主呼吸能力的患者。

4. 部分通气支持(PVS):在PSV的基础上,给予一定的限制性通气,以增加患者的自主呼吸能力。

PVS适用于具有一定自主呼吸能力的患者。

三、特殊模式1. 双水平气道正压通气(BiPAP):通过设定两个不同的气道压力水平,来辅助患者的呼吸。

BiPAP适用于治疗慢性阻塞性肺疾病等疾病。

2. 高频通气(HFV):通过高频振荡产生气流,来维持患者的呼吸道通畅。

呼吸机波形分析入门

呼吸机波形分析入门

呼吸机波形分析入门引言:呼吸机波形是指通过呼吸机监护系统获得的呼吸机输出的波形图像。

波形图像是由时间作为横轴,压力、流量或体积作为纵轴所构成的图像。

通过对呼吸机波形进行分析可以了解患者的呼吸状况、通气情况以及呼吸机的设置是否合理等。

本文将介绍呼吸机波形的基本分析方法,以帮助初学者快速入门。

一、呼吸机波形的采集和显示常见的呼吸机波形包括压力波形、流量波形和体积波形。

压力波形显示了呼吸机输出的气道压力变化情况,流量波形显示了气体进出肺部的速度变化情况,体积波形显示了肺部的体积变化情况。

在呼吸机波形中,一般以吸气期为正,呼气期为负。

二、呼吸机波形的常见特征1.呼吸频率:通过计算波形上吸气峰值或呼气峰值的数量,可以得到呼吸频率。

常用的方法是计算每分钟的呼吸次数。

2.吸气时间和呼气时间:从吸气峰值到呼气峰值的时间间隔为一个完整的吸呼气周期。

通过计算吸气时间和呼气时间的长短,可以了解患者的通气情况。

3.吸气峰值压力和呼气峰值压力:波形中的压力峰值反映了肺的通气效果,通常情况下,吸气峰值压力应该较呼气峰值压力高。

4.呼气末正压(PEEP):波形中的底线或基线表示了呼气末正压。

PEEP是在呼气末保持气道压力的一种方式,能保持肺泡的开放性,增加氧合和通气效果。

5. 吸气延迟时间(inspiratory delay):吸气波形图中延迟时间指的是吸气流量波形开始上升直到达到吸气峰值的时间。

延迟时间过长可能表明存在气道阻力或机械问题。

三、呼吸机波形的分析方法1.波形形状:通过观察波形的形状可以判断患者的通气状态,如是否存在阻塞或排空障碍等。

正常的吸气波形应该是上升快、下降缓慢的斜坡状。

2.吸气和呼气峰值压力:通过分析吸气和呼气峰值压力的变化,可以判断患者的通气状态。

吸气峰值压力过高可能表明气道阻塞或气道峰压过高,呼气峰值压力过低可能表明肺容积不足。

3.吸气延迟时间:延迟时间过长可能表明存在气管插管位置不当、气道阻力增加或呼吸机设置不当等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 8ηl/(πr4)
22
气体
肺泡
• 顺应性↓ → 气道压力↑ • 气道阻力↑ → 气道压力↑ • 气流速度↑ → 动态阻力↑
23

C`

C
D E
B
F A
•BC段的斜率与系统静态顺应性有关
时间
•平均气道压直接受吸气时间影响
•峰压C的上下波动反映人机不协调(从而增加呼吸功)
24
呼吸力学监测三要素
(包含气道阻力因素)
Cdyn = Vt/( Ppeak-PEEP)
C (Ppeak)
D
E (Pplat)
F 时间
20
气体
肺泡
肺通气的阻力
– 弹性阻力:肺、胸廓,占70%; – 非弹性阻力:
• 气道阻力:占非弹性阻力的80% ~ 90%
• 惯性阻力 • 粘滞阻力
21
气道阻力(RAW)
动态:
RAW =(P peak-P plat)/流速 静态:
• 相对禁忌证:气胸、纵隔气肿。
5
• 要注意区分机械通气的适应证 和建立人工气道的适应证。
• 建立人工气道的目的:
1. 解除气道梗阻 2. 及时清除呼吸道内的分泌物 3. 防止误吸 4. 实施有创机械通气
6
2.常用的呼吸机
7
8
9
10
11
无创机械通气
(经鼻持续正压通气)
12
• 适合于:
63
六、呼吸波形解读
64
漏气或气道陷闭
65
V
T
66
流 速
时间
67
流 速
容积
68
流 速
容积
69
V
P
70
71
72
73
74
75
76
77
78
– 神志清楚、呼吸道分泌物少的病人 – 有足够的呼吸驱动
• 优点:
1. 创伤性少,方便,病人易于接受 2. 便于说话和进食 3. 对循环系统影响小 4. 易于护理,减少感染
• 缺点:
• 易漏气、易引起胃肠胀气 • 不利于气道湿化和吸痰
13
附一

C

D
E
C
D
E
AFAFຫໍສະໝຸດ 时间14附二
15

C

D
E
C
• 触发窗内触发或触发窗结束时均行指令 通气。
• 对在触发窗以外的吸气触发,呼吸机予 压力支持通气。
43
同步间歇指令通气(SIMV)
44
45
46
压力支持通气(PSV)
• SPONE • ASB
只有在病人产生吸 气触发时,呼吸机 才予气道正压。
47
48
49
何时用何模式
50
BIPAP
51
气道阻力
57
I:E
• Ti: 0.8 ~ 1.2 s
• I:E 1:2 ~ 1:1.5
• 延长Ti或增加I:E ,可增加气道压力和加 强氧合。
58
• 辅助呼吸时,Ti宜短(1s),以改善人— 机协调。
压力
时间
59
• 吸气触发 • 呼气触发
P
触发敏感度
流 速
压力触发
流量触发 时间触发
时间
t
60
FiO2
D
E
A
FA
F
时间
16
附三 报警设置
1. 压力:40 cmH2O 10 cmH2O
2. MV:4 L/min
视病情
17
三、生理基础
18
呼吸力学
19
总静态顺应性(Cst) 压
又称呼吸系统顺应性 力 (CRS)(肺和胸廓) Cst = Vt/( Pplat-PEEP)
B
总动态顺应性(Cdyn) A
压力 流速 容积
25
26
V
P
27
28
29
30
31
32
33
34
血气监测
35
PaO2
• 正常人一般不低于70mmHg。 • 一般认为COPD病人保持在60mmHg以上。 • 建议保持SaO2在90%以上。 • 目前尚无关于早期氧中毒的敏感指标。
36
• 功能性分流:部分静脉血未经充分气
四、常用通气模式
39
辅助—控制通气
• A—CV • CMV • IPPV
病人有吸气触发时,呼吸机予辅 助通气,按预设的潮气量(压 力)、吸气时间送气;
病人没有吸气触发时,呼吸机予 控制通气,按预设的频率、潮气 量(压力)、吸气时间送气。
40
41
42
SIMV
• 呼吸机按预设的频率、潮气量(压力)、 吸气时间进行指令送气。
体交换就掺入动脉血内。正常人占肺血 流量的3%。
• 肺内分流:部分肺泡完全无通气。
– Qs/Qt ≥ 30%时,吸入纯氧不能有效纠正低 氧血症。
• V/Q比例失调所致的低氧血症常对纯氧 有反应。
37
吸纯氧 20 min后 Qs / Qt 即:静脉分流量/心排血量
≈ (700-PaO2)× 5%
38
Auto-Flow
• 吸气流速自动地随肺的顺应性和气道阻力 变化而调整到适应患者自主呼吸的要求。

C

D
E
C
D
E
A
FA
F
时间
52
五、呼吸机参数调整
53
潮气量或压力 通气频率 吸氧浓度 PEEP
PaCO2 PaO2
54
• 潮气量 Vt:4 ~ 15 ml / kg。
• 压力限制或压力支持:
平台压不超过 30 cmH2O; 峰压不超过 40 cmH2O。
• FiO2 > 50%,有吸收性肺不张的危险。 • 吸纯氧后约6小时内可发生肺型氧中毒。
61
• PEEP建议 3 ~ 5 cmH2O。 • PEEP下调的速度不宜过快。
62
PEEPi
产生原因
1. 呼气阻力增加 2. 系统顺应性增高 3. 呼气时间不足
4. 呼气气流受限 5. 分钟通气量较大 6. 呼气肌的作用
55
通气频率
• 控制通气:12 ~ 20 次 / 分。 • 辅助—控制通气:当自主呼吸频率恰当
时,就预设比自主呼吸低 2 ~ 4 次 / 分的 备用频率。
56
吸气流速(Flow)
• 定容型:可40 ~ 100 L / min。
气体在肺内的分布
Flow
气道峰压
PaCO2 VD / VT、 Qs / Qt 、PaO2
• 为免影响他人,请把手机调至静音。
1
机械通气的应用基础 及常见呼吸波形解读
广东省人民医院急危重症医学部 叶珩
2
3
1. 机械通气和建立人工气道的适应证 2. 常用的呼吸机 3. 生理基础 4. 常用呼吸模式 5. 呼吸机参数调整 6. 呼吸波形解读
4
• 当出现致命性通气和氧合障碍时, 机械通气无绝对禁忌证。
相关文档
最新文档