数学教案-两圆的公切线

合集下载

24.2 《两圆的公切线》教案(人教新课标九年级上)doc

24.2 《两圆的公切线》教案(人教新课标九年级上)doc

两圆的公切线(三)教学目标:1、使学生理解两圆公切线在解决有关两圆相切的问题中的作用;2.掌握辅助线规律,并能熟练应用.2、通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力.教学重点:使学生学会在证明两圆相切问题时,辅助线的引法规律,并能熟练应用于几何题证明中.教学难点:在证明中学生引出辅助线后,新旧知识结合得不好,难以打开证题思路.教学过程:一、新课引入:我们已经学习了圆的切线在几何证明中的重要作用,这节课,我们来学习两圆公切线在证明中的作用.实际上两圆的公切线,对两圆起着一个桥梁的作用,首先,对于每一个圆,公切线都会产生切线的性质.另外公切线和过切点的两圆的弦,会产生弦切角定理运用的前提,从而把两个圆中的圆周角建立相等关系,我们有下面的例子.二、新课讲解:例4 教材P.144如图7-110,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.求证:AB⊥AC.分析:题目中已知⊙O1和⊙2外切于点A.这是一个非常特殊的点,过点A我们引两圆的内公切线,产生了三种可能:①运用弦切角定理.②切线的性质定理.③切线长定理.在一道关于两圆相切的问题中,作出公切线后,还要针对已知条件,选择之,本例中已知两圆的外公切线BC,所以过点A的内公切线与之相交,必然产生切线长定理运用的前提,使问题得证.证明:过点A作⊙O1和⊙O2的内公切线交BC于点O.练习一,P.145中2如图7-111,⊙O1和⊙O2相切于点T,直线AB、CD经过点T,交⊙O1于点A、C,交⊙O2于点B、D,求证:AC∥BD.分析:欲证AC∥BD,须证∠A=∠B,图(1)中∠A和∠B是内错角,图(2)中∠A和∠B是同位角.而∠A和∠B从图形中的位置看是两个圆中的圆周角,必须存在第三个角,使∠A和∠B都与之相等,从而∠A和∠B相等.证明:过点T作两圆的内公切线TE.练习二,P.153中14 已知:⊙O和⊙O′外切于点A,经过点A作直线BC和DE,BC交⊙O于点B,交⊙O′于点C,DE交⊙O于点D,交⊙O′于E,∠BAD=40°,∠ABD=70°,求∠AEC的度数.分析:已知⊙O中的圆周角求⊙O′中的圆周角,而两圆外切,作内公切线即可.解:过点A作⊙O和⊙O′的内公切线AF.练习三,P.153中15.经过相内切的两圆的切点A作大圆的弦AD、AE,设AD、AE分别和小圆相交于B、C.求证:P.153中AB∶AC=AD∶AE.分析:证比例线段,一是三角形相似,二是平行线.由题设两圆相切,可作出切线,证平行线所成比例线段.证明:连结BC、DE.过点A作两圆的公切线AF.三、课堂小结:学习了两圆的公切线,应该掌握以下几个方面;(让学生自己总结,并全班交流).1.由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上.2.公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形.3.常用的辅助线:(1)两圆在各种情况下常考虑添连心线;(2)两圆外切时,常添内公切线;(3)两圆内切时,常添外公切线;(4)计算公切线长时,常平移公切线,使它过其中一个圆的圆心.四、布置作业:1.教材P.154中B组2.。

两圆的公切线(3)PPT课件

两圆的公切线(3)PPT课件

在Rt△O1EO2中,易得∠O1O2E=30°,
故可推知∠O1=60° ∴可求得AB=3,
然后在Rt△BAC中,
利用AB=3,∠ABC=30°, 即可求出AC、BC, 从而可求得△ABC的周长。
2020年10月2日
8
解:
(1)连结O1B、O2C ∵BC为外公切线
BM
C
∴O1B⊥BC,O2C⊥BC,
2020年10月2日
11
例2 如图,两圆内切于点P,CD为小圆的直径,连结PC、PD 并延长 交大圆于E、F,大圆的弦切小圆于D,交EF
求证:(1)AG=GB;(2)AD·DB=CD·FG 。
E
分析:(1)要证AG=GB,
T
C
只要证明EF是⊙O2的直径,且EF⊥AB, P O1 O2
故只需证明EF∥CD即可,
(3)
1.通过解题实践进一步加深对两圆内外公切线性质的认识。 2.掌握两圆公切线在几何证题中的运用,学会在证题中适时 地添加两圆的内(或外)公切线。
2020年10月2日
1
1.复习与回顾:
通过前面两讲的学习,我们不但了解了两圆公切线的概念, 而且还掌握了它们的性质、画法以及切线长的计算方法。
(1)公切线的概念:
1 2
从而∠O1=60°
BM
E
C
O1 A O2 D P
∴AB=O1B=O1A=3
在△ABC中, ∠ABC=
1 2
∠O1=30°
∴∠60°∠ACBBA=C=12 9∠0°O1O2C=
1 2
(180°-60°)=
∴CB=
2 3
AB=
23 3
×3=2
3
AC=
1+ 3+2 3=3+3 3

数学教案-两圆的公切线

数学教案-两圆的公切线

数学教案-两圆的公切线引言数学中,圆是一种基本的几何形状,而公切线是指两个圆之间的切线。

研究两个圆的公切线对于培养学生的几何思维、分析问题的能力以及解决实际问题有着重要的作用。

本教案将引导学生通过探究两个圆的公切线的性质,加深对圆形和切线的理解。

教学目标1.了解切线的定义和性质。

2.探究两个圆的公切线的存在条件。

3.理解和应用两个圆的公切线的性质。

教学重点1.公切线的定义和性质。

2.两个圆的公切线的存在条件。

3.两个圆的公切线的性质。

教学内容1. 切线的定义和性质切线的定义在平面几何中,给定一个圆和其上的一个点,过这个点可以作出无数条切线。

切线是与圆仅有一个交点的直线。

切线的性质1.切线与半径的垂直关系:切线与过切点的半径垂直。

2.切线与圆弧的夹角:切线和过切点的切线与圆弧之间的夹角为直角。

2. 两个圆的公切线的存在条件外公切线当两个圆半径之和大于两圆心之间的距离时,两圆存在两条外公切线。

#### 内公切线当两个圆半径之差大于两圆心之间的距离时,两圆存在两条内公切线。

3. 两个圆的公切线的性质1.公切线与两个圆心的关系:两个圆的公切线与两个圆心的连线垂直。

2.公切线的切点:两个圆的公切线与两个圆的切点在一条直线上。

3.外公切线和内公切线的夹角:两个圆的外公切线和内公切线的夹角为直角。

教学步骤1.导入知识:回顾切线的定义和性质。

2.提出问题:给定两个圆,请确定它们的公切线是否存在。

3.探究实践:让学生自主探究两个圆的公切线的存在条件。

4.总结归纳:让学生总结并提出存在条件和性质。

5.拓展应用:将所学的知识运用到解决实际问题中。

6.小结复习:对所学知识进行小结和复习。

教学资源•教材:数学教材•演示工具:黑板和粉笔思考题1.两个圆的半径分别为r1和r2,它们的圆心距离为d。

请推导出两个圆的外公切线的长度的表达式。

2.两个圆的半径分别为r1和r2,它们的圆心距离为d。

请推导出两个圆的内公切线的长度的表达式。

京改版九年级上册22.2圆的切线教学设计

京改版九年级上册22.2圆的切线教学设计
3.教学评价:
(1)关注学生的课堂参与程度,鼓励学生积极发言,培养学生的表达能力和思维能力。
(2)关注学生的作业完成情况,对学生的掌握程度进行评估,及时发现问题并进行针对性指导。
(3)通过阶段测试,了解学生对圆的切线知识点的掌握情况,调整教学策略。
4.教学拓展:
(1)鼓励学生课后自主探究圆的切线在其他几何问题中的应用,提高学生的自主学习能力。
(三)情感态度与价值观
1.培养学生对圆的几何性质的好奇心,激发学生学习圆的切线知识的兴趣。
2.培养学生勇于探究、善于思考的精神,使学生在解决问题的过程中体验到成就感。
3.培养学生严谨、踏实的科学态度,让学生认识到几何知识在实际生活中的重要性。
4.通过对圆的切线知识的探究,引导学生感悟几何美,培养学生的审美情趣。
三、教学重难点和教学设想
(一)教学重难点
1.重点:圆的切线判定定理的理解与应用;圆的切线方程的求解方法;切线在实际问题中的运用。
2.难点:对圆的切线判定定理的深入理解;切线方程求解过程中涉及的计算技巧;几何作图中切线的准确运用。
(二)教学设想
1.教学方法:
(1)采用情境导入法,通过实际问题引入圆的切线概念,激发学生兴趣。
(2)运用启发式教学法,引导学生发现圆的切线判定定理,培养学生的观察能力和逻辑思维能力。
(3)采用的实际应用能力。
(4)小组合作学习,让学生在讨论和交流中加深对知识点的理解,培养合作精神。
2.教学过程:
(1)导入:以生活中的实例(如汽车行驶轨迹)引入圆的切线概念,引发学生的好奇心。
(二)过程与方法
1.通过观察和实际操作,让学生发现圆的切线与半径的关系,培养学生的观察能力和动手能力。
2.引导学生运用数形结合的思想,分析圆的切线性质,培养学生的逻辑思维能力。

两圆的公切线(2)

两圆的公切线(2)

82 6 2 =10(cm)
例3 如图5,已知⊙O1和⊙O2的内公切线CD和外公切 线AB分别与连心线O1O2相交于P、Q, A 求证: 分析:
O 1P
O2P
=OQ
2
O 1Q
.
Q
B
C O2 D
直接证明这个比例式较困难,
为此先看比 O 1P ,
2
O1 P
OP
注意CD为内公切线, 连O1C、O2D可得O1C∥O2D, O 1C 1P 因此可得 O = , OP OD
6.若两圆外离且外公切线长m与内公切线长n的大小关系 是( ) A.m>n B.m=n C.m<n D.不能确定 7.如果两圆的半径和它们的圆心距分别等于一个三角 形的三条边,那么 这两圆的公切线的条数是( ) A.4 B.3 C.2 D.1
8.如图,两圆的两条内公切线和一条外公切线围成△ABC, 则△ABC的周长等于( )
A.一条外公切线长的二倍。 B.两条内公切线长的和。 C.一条外公切线长和一条内公切线长的和。 D.两条内公切线长和一条外公切长的和的一半。
9.设相离的半径分别为4cm和2cm,且它们的两条内公切线 互相垂直,则内公切线的长为_______cm。
10.若两外切,内公切线和一条外公切线相交成60°的角, 则小圆半径与大圆半径之比为_______ 。
当两圆外离时,有两条内公切线,当两圆外切时有一内公切线的性质: 两圆外离时,有两条内公切线、由圆的对称性可知这 两条内公切线的长相等,且两公切线的交点在连心线上, 连心线平分两内公切线的夹角。如图(1)所示:内公切线 AB =CD,AB与CD的交点P在连心线O1O2上, ∠APO1=∠CPO2 . 3.内公切线长的计算: 如图,作O1E∥AB交O2B的延长线于E,

九年级:数学教案-两圆的公切线

九年级:数学教案-两圆的公切线

初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 初中数学 / 九年级数学教案编订:XX文讯教育机构数学教案-两圆的公切线教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中九年级数学科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

第一课时两圆的公切线(一)教学目标:(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;(2)培养学生的归纳、总结能力;(3)通过两圆外公切线长的求法向学生渗透“转化”思想.教学重点:理解两圆相切长等有关概念,两圆外公切线的求法.教学难点:两圆外公切线和两圆外公切线长学生理解的不透,容易混淆.教学活动设计(一)实际问题(引入)很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象.(这里是一种简单的数学建模,了解数学产生与实践)(二)两圆的公切线概念1、概念:教师引导学生自学.给出两圆的外公切线、内公切线以及公切线长的定义:和两圆都相切的直线,叫做两圆的公切线.(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.(3)公切线的长:公切线上两个切点的距离叫做公切线的长.2、理解概念:(1)公切线的长与切线的长有何区别与联系?(2)公切线的长与公切线又有何区别与联系?(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长.但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点.(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量.(三)两圆的位置与公切线条数的关系组织学生观察、概念、概括,培养学生的学习能力.添写教材p143练习第2题表.(四)应用、反思、总结例1、已知:⊙o₁、⊙o₂的半径分别为2cm和7cm,圆心距o₁o₂=13cm,ab是⊙o₁、⊙o₂的外公切线,切点分别是a、b.求:公切线的长ab.分析:首先想到切线性质,故连结o₁a、o₂b,得直角梯形ao₁o₂b.一般要把它分解成一个直角三角形和一个矩形,再用其性质.(组织学生分析,教师点拨,规范步骤)解:连结o₁a、o₂b,作o₁a⊥ab,o₂b⊥ab.过 o₁作o₁c⊥o₂b,垂足为c,则四边形o₁abc为矩形,于是有o₁c⊥c o₂,o₁c=ab,o₁a=cb.在rt△o₂co₁和.o₁o₂=13,o₂c=o₂b- o₁a=5ab=o₁c= (cm).反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法.例2*、如图,已知⊙o₁、⊙o₂外切于p,直线ab为两圆的公切线,a、b为切点,若pa=8cm,pb=6cm,求切线ab的长.分析:因为线段ab是△apb的一条边,在△apb中,已知pa和pb的长,只需先证明△pab是直角三角形,然后再根据勾股定理,使问题得解.证△pab是直角三角形,只需证△apb 中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过p作两圆的公切线cd如图,因为ab是两圆的公切线,所以∠cpb=∠abp,∠cpa=∠bap.因为∠bap+∠cpa+∠cpb+∠abp=180°,所以2∠cpa+2∠cpb=180°,所以∠cpa+∠cpb=90°,即∠apb=90°,故△apb是直角三角形,此题得解.解:过点p作两圆的公切线cd∵ ab是⊙o₁和⊙o₂的切线,a、b为切点∴∠cpa=∠bap ∠cpb=∠abp又∵∠bap+∠cpa+∠cpb+∠abp=180°∴ 2∠cpa+2∠cpb=180°∴∠cpa+∠cpb=90°即∠apb=90°在 rt△apb中,ab²=ap²+bp²说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系.(五)巩固练习1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( )(a)直角三角形 (b)等腰三角形 (c)等边三角形 (d)以上答案都不对.此题考察外公切线与外公切线长之间的差别,答案(d)2、外公切线是指(a)和两圆都祖切的直线 (b)两切点间的距离(c)两圆在公切线两旁时的公切线 (d)两圆在公切线同旁时的公切线直接运用外公切线的定义判断.答案:(d)3、教材p141练习(略)(六)小结(组织学生进行)知识:两圆的公切线、外公切线、内公切线及公切线的长概念;能力:归纳、概括能力和求外公切线长的能力;思想:“转化”思想.(七)作业:p151习题10,11.第二课时两圆的公切线(二)教学目标:(1)掌握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;(2)培养的迁移能力,进一步培养学生的归纳、总结能力;(3)通过两圆内公切线长的求法进一步向学生渗透“转化”思想.教学重点:两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.教学难点:两圆内公切线和两圆内公切线长学生理解的不透,容易混淆.教学活动设计(一)复习基础知识(1)两圆的公切线概念:公切线、内外公切线、内外公切线的长.(2)两圆的位置与公切线条数的关系.(构成数形对应,且一一对应)(二)应用、反思例1、(教材例2)已知:⊙o₁和⊙o₂的半径分别为4厘米和2厘米,圆心距为10厘米,ab是⊙o₁和⊙o₂的一条内公切线,切点分别是a,b.求:公切线的长ab。

两圆的公切线方程

两圆的公切线方程

两圆的公切线方程全文共四篇示例,供读者参考第一篇示例:两圆的公切线是指能同时切到两个圆的直线或射线。

在解析几何中,我们常常需要研究圆与圆之间的关系,其中两圆的公切线就是一个重要的问题。

本文将讨论两个圆的公切线方程的推导过程和应用实例。

一、两个圆的公切线分类在二维平面上,两个圆可能存在以下几种情况:1. 内含关系:一个圆完全包含在另一个圆内部,此时两圆没有公共切线。

2. 相交关系:两个圆相交于两个点,此时存在两条外公切线和两条内公切线。

3. 外切关系:两个圆相切于外部,此时存在一条外公切线。

4. 内切关系:一个圆完全包含在另一个圆内部且二者相切,此时存在一条内公切线。

下面我们以相交关系为例,推导两个圆的公切线方程。

二、两个圆的公切线方程的推导设两个圆的方程分别为:圆1:(x - a1)² + (y - b1)² = r1²圆2:(x - a2)² + (y - b2)² = r2²(a1, b1)和(a2, b2)分别为两个圆的圆心坐标,r1和r2分别为两个圆的半径。

圆1和圆2相交于两个点P1(x1, y1)和P2(x2, y2),则有:(x1 - a1)² + (y1 - b1)² = r1²(x2 - a1)² + (y2 - b1)² = r1²(x1 - a2)² + (y1 - b2)² = r2²(x2 - a2)² + (y2 - b2)² = r2²由上述四个方程可得到两个未知数x1和y1的线性方程组,通过求解线性方程组即可得到两个公切点P1和P2的坐标。

进一步,我们可以根据两点式求得直线P1P2的方程,即为两个圆的公切线方程。

计算两个圆的圆心坐标和半径:圆1:圆心坐标(2, 3),半径4圆2:圆心坐标(-1, -1),半径3根据上述推导方法,可以求得两个公切点P1(1, 2)和P2(-0.5, -0.5)的坐标,进而求得公切线P1P2的方程。

九年级数学6.9两圆相切 6.10 两圆的位置关系 6.11 两圆的公切线浙江版知识精讲

九年级数学6.9两圆相切 6.10 两圆的位置关系 6.11 两圆的公切线浙江版知识精讲

九年级数学两圆相切 6.10 两圆的位置关系 两圆的公切线某某版【同步教育信息】一. 本周教学内容:两圆相切 6.10 两圆的位置关系 两圆的公切线二. 教学目标:1. 了解两圆的五种位置关系,了解两圆的公切线的概念。

2. 理解、学会判定两圆的位置关系。

3. 掌握两圆相切,相交的性质定理,并学会计算两圆公切线长三. 重、难点: 1. 重点:两圆相切、相交的有关性质及判定定理。

2. 难点:【典型例题分析】[例1] 如图,⊙1O 与⊙D 。

求证:BD AD =证明:证法1:过P 作⊙ 所以TPA ∠=∠ 又因为AB 切⊙O 因为TPC ∠=∠所以∠证法2:连结21O O 2112 因为P O D O 22=,所以P D ∠=∠ 同理1PCO P ∠=∠ 所以1PCO D ∠=∠ 所以D O C O 21//因为AB 切⊙1O 于点C ,所以AB C O ⊥1。

所以AB D O ⊥2。

所以AD=BD⊙ [例为30cm ,21cm ,10cm ,5cm 时相应的两圆的位置关系。

解:设两圆的半径分别为R ,r因为两圆的半径之比为2:5,所以可设x R 5=cm ,cm x r 2=。

又因为当两圆内切时,圆心距为9cm ,故有925=-x x ,解得3=x ,所以R=cm 15,cm r 6=。

当当 当 当精析:[例3] 半径为10。

求:(解:(1) 在338=。

所以ππ364)338(21=⨯=O S 。

(2)在1ACO Rt ∆中,因为A O C O AC O 111sin =∠,所以33430sin 11=︒⋅=A O C O 。

所以1O 在精析:[例4] 延长线于点(1)∠证明:(1 (211 因为∠=∠Rt APB ,所以∠=∠+∠Rt APO BPC 1PAC AP O ∠+∠=1 又因为PA O AP O 11∠=∠,所以PAC BPC ∠=∠。

又因为C C ∠=∠,所以PBC ∆∽APC ∆,所以PCBCAC PC =, 所以BC AC PC ⋅=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教案-两圆的公切线第一课时两圆的公切线(一)教学目标:(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;(2)培养学生的归纳、总结能力;(3)通过两圆外公切线长的求法向学生渗透“转化”思想.教学重点:理解两圆相切长等有关概念,两圆外公切线的求法.教学难点:两圆外公切线和两圆外公切线长学生理解的不透,容易混淆.教学活动设计(一)实际问题(引入)很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象.(这里是一种简单的数学建模,了解数学产生与实践)(二)两圆的公切线概念1、概念:教师引导学生自学.给出两圆的外公切线、内公切线以及公切线长的定义:和两圆都相切的直线,叫做两圆的公切线.(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.(3)公切线的长:公切线上两个切点的距离叫做公切线的长.2、理解概念:(1)公切线的长与切线的长有何区别与联系?(2)公切线的长与公切线又有何区别与联系?(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长.但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点.(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量.(三)两圆的位置与公切线条数的关系组织学生观察、概念、概括,培养学生的学习能力.添写教材P143练习第2题表.(四)应用、反思、总结例1、已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆心距O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.分析:首先想到切线性质,故连结O1A、O2B,得直角梯形AO1O2B.一般要把它分解成一个直角三角形和一个矩形,再用其性质.(组织学生分析,教师点拨,规范步骤)解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.过O1作O1C⊥O2B,垂足为C,则四边形O1ABC为矩形,于是有O1C⊥CO2,O1C=AB,O1A=CB.在Rt△O2CO1和.O1O2=13,O2C=O2B-O1A=5AB=O1C=(cm).反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法.例2*、如图,已知⊙O1、⊙O2外切于P,直线AB为两圆的公切线,A、B为切点,若PA=8cm,PB=6cm,求切线AB的长.分析:因为线段AB是△APB的一条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直角三角形,然后再根据勾股定理,使问题得解.证△PAB是直角三角形,只需证△APB中有一个角是90(或证得有两角的和是90),这就需要沟通角的关系,故过P作两圆的公切线CD 如图,因为AB是两圆的公切线,所以∠CPB=∠ABP,∠CPA=∠BAP.因为∠BAP+∠CPA+∠CPB+∠ABP=180,所以2∠CPA+2∠CPB=180,所以∠CPA+∠CPB=90,即∠APB=90,故△APB是直角三角形,此题得解.解:过点P作两圆的公切线CD∵AB是⊙O1和⊙O2的切线,A、B为切点∴∠CPA=∠BAP∠CPB=∠ABP又∵∠BAP+∠CPA+∠CPB+∠ABP=180∴2∠CPA+2∠CPB=180∴∠CPA+∠CPB=90即∠APB=90在Rt△APB中,AB2=AP2+BP2说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系.(五)巩固练习1、当两圆外离时,外公切线、圆心距、两半径之差一定组成()(A)直角三角形(B)等腰三角形(C)等边三角形(D)以上答案都不对.此题考察外公切线与外公切线长之间的差别,答案(D)2、外公切线是指(A)和两圆都祖切的直线(B)两切点间的距离(C)两圆在公切线两旁时的公切线(D)两圆在公切线同旁时的公切线直接运用外公切线的定义判断.答案:(D)3、教材P141练习(略)(六)小结(组织学生进行)知识:两圆的公切线、外公切线、内公切线及公切线的长概念;能力:归纳、概括能力和求外公切线长的能力;思想:“转化”思想.(七)作业:P151习题10,11.第二课时两圆的公切线(二)教学目标:(1)掌握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;(2)培养的迁移能力,进一步培养学生的归纳、总结能力;(3)通过两圆内公切线长的求法进一步向学生渗透“转化”思想.教学重点:两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.教学难点:两圆内公切线和两圆内公切线长学生理解的不透,容易混淆.教学活动设计(一)复习基础知识(1)两圆的公切线概念:公切线、内外公切线、内外公切线的长.(2)两圆的位置与公切线条数的关系.(构成数形对应,且一一对应)(二)应用、反思例1、(教材例2)已知:⊙O1和⊙O2的半径分别为4厘米和2厘米,圆心距为10厘米,AB是⊙O1和⊙O2的一条内公切线,切点分别是A,B.求:公切线的长AB。

组织学生分析,迁移外公切线长的求法,既培养学生解决问题的能力,同时也培养学生学习的迁移能力.解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.过O1作O1C⊥O2B,交O2B的延长线于C,则O1C=AB,O1A=BC.在Rt△O2CO1和.O1O2=10,O2C=O2B+O1A=6∴O1C=(cm).∴AB=8(cm)反思:与外离两圆的内公切线有关的计算问题,常构造如此题的直角梯行及直角三角形,在Rt△O2CO1中,含有内公切线长、圆心距、两半径和重要数量.注意用解直角三角形的知识和几何知识综合去解构造后的直角三角形.例2(教材例3)要做一个图那样的矿型架,将两个钢管托起,已知钢管的外径分别为200毫米和80毫米,求V形角α的度数.解:(略)反思:实际问题经过抽象、化简转化成数学问题,应用数学知识来解决,这是解决实际问题的重要方法.它属于简单的数学建模.组织学生进行,教师引导.归纳:(1)用解直角三角形的有关知识可得:当公切线长l、两圆的两半径和R+r、圆心距d、两圆公切线的夹角α四个量中已知两个量时,就可以求出其他两个量.,;(2)上述问题可以通过相似三角形和解三角形的知识解决.(三)巩固训练教材P142练习第1题,教材P145练习第1题.学生独立完成,教师巡视,发现问题及时纠正.(四)小结(1)求两圆的内公切线,“转化”为解直角三角形问题.公切线长、圆心距、两半径和三个量中已知任何两个量,都可以求第三个量;(2)如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在两圆的连心线上;(3)求两圆两外(或内)公切线的夹角.(五)作业教材P153中12、13、14.第三课时两圆的公切线(三)教学目标:(1)理解两圆公切线在解决有关两圆相切的问题中的作用,辅助线规律,并会应用;(2)通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力.教学重点:会在证明两圆相切问题时,辅助线的引法规律,并能应用于几何题证明中.教学难点:综合知识的灵活应用和综合能力培养.教学活动设计(一)复习基础知识(1)两圆的公切线概念.(2)切线的性质,弦切角等有关概念.(二)公切线在解题中的应用例1、如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B,C为切点.若连结AB、AC会构成一个怎样的三角形呢?观察、度量实验(组织学生进行)猜想:(学生猜想)∠BAC=90证明:过点A作⊙O1和⊙O2的内切线交BC于点O.∵OA、OB是⊙O1的切线,∴OA=OB.同理OA=OC.∴OA=OB=OC.∴∠BAC=90.反思:(1)公切线是解决问题的桥梁,综合应用知识是解决问题的关键;(2)作两圆的公切线是常见的一种作辅助线的方法.例2、己知:如图,⊙O1和⊙O2内切于P,大圆的弦AB交小圆于C,D.求证:∠APC=∠BPD.分析:从条件来想,两圆内切,可能作出的辅助线是作连心线O1O2,或作外公切线.证明:过P点作两圆的公切线MN.∵∠MPC=∠PDC,∠MPN=∠B,∴∠MPC-∠MPN=∠PDC-∠B,即∠APC=∠BPD.反思:(1)作了两圆公切线MN后,弦切角就把两个圆中的圆周角联系起来了.要重视MN的“桥梁”作用.(2)此例证角相等的方法是利用已知角的关系计算.拓展:(组织学生研究,培养学生深入研究问题的意识)己知:如图,⊙O1和⊙O2内切于P,大圆⊙O1的弦AB与小圆⊙O2相切于C点.是否有:∠APC=∠BPC即PC平分∠APB.答案:有∠APC=∠BPC即PC平分∠APB.如图作辅助线,证明方法步骤参看典型例题中例4.(三)练习练习1、教材145练习第2题.练习2、如图,已知两圆内切于P,大圆的弦AB切小圆于C,大圆的弦PD过C点.求证:PAPB=PDPC.证明:过点P作两圆的公切线EF∵AB是小圆的切线,C为切点∴∠FPC=∠BCP,∠FPB=∠A又∵∠1=∠BCP-∠A∠2=∠FPC-∠FPB∴∠1=∠2∵∠A=∠D,∴△PAC∽△PDB∴PAPB=PDPC说明:此题在例2题的拓展的基础上解得非常容易.(三)总结学习了两圆的公切线,应该掌握以下几个方面1、由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上.2、公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形.3、常用的辅助线:(1)两圆在各种情况下常考虑添连心线;(2)两圆外切时,常添内公切线;两圆内切时,常添外公切线.4、自己要有深入研究问题的意识,不断反思,不断归纳总结.(四)作业教材P151习题中15,B组2.探究活动问题:如图1,已知两圆相交于A、B,直线CD与两圆分别相交于C、E、F、D.(1)用量角器量出∠EAF与∠CBD的大小,根据量得结果,请你猜想∠EAF 与∠CBD的大小之间存在怎样的关系,并证明你所得到的结论.(2)当直线CD的位置如图2时,上题的结论是否还能成立?并说明理由.(3)如果将已知中的“两圆相交”改为“两圆外切于点A”,其余条件不变(如图3),那么第(1)题所得的结论将变为什么?并作出证明.提示:(1)(2)(3)都有∠EAF+∠CBD=180.证明略(如图作辅助线).说明:问题从操作测量得到的实验数据入手,进行数据分析,归傻贸霾孪耄っ鞑孪氤闪ⅲ庖彩?ahref=/Class/034/target=_blank数学发现的一种方法.第(2)、(3)题是对第(1)题结论的推广和特殊化.第(3)题中若CD移动到与两圆相切于点C、D,那么结论又将变为∠CAD =90.。

相关文档
最新文档