由MOS场效应管组成的开关电源电路 UC3824 UC3842

合集下载

由MOS场效应管组成的开关电源电路 UC3824 UC3842

由MOS场效应管组成的开关电源电路 UC3824 UC3842

由MOS场效应管组成的开关电源电路 UC3824 UC3842————————————————————————————————作者:————————————————————————————————日期:2由MOS场效应管组成的开关电源电路UC3824 UC3842文章通过实际例子介绍了由MOS场效应管组成的串联型和并联型的开关电源, 随着MOS 半导体技术的迅速发展,MOS场效应管以燥声系数低、截止频率高、开关特性好、抗干扰能力强、增益高、功耗低、不存在二次热击穿等优点,广泛应用于彩色电视机、计算机等电器设备中。

本文以MOS场效应管组成的自激-串联型、他激-并联型两种类型电路示例作些介绍。

一、自激-串联型开关电源:这种类型电路结构比较简单,原器件比较节省,生产成本低,是彩色电视机中采用较多的一种电路,现以飞利浦彩电开关电源为例:工作原理:市电经整流滤波后在C606上取得300V左右的脉动直流电压,此电压一路经R616、L611加在场效应管V610的漏极;另一路经启动偏置电阻R610、R613向V610提供栅极电流,微导通后的V610漏极电流经R680、L612、L621及开关变压器的⑵-⑿绕组流向负载,同时产生⑵正⑿负的感生电动势,从而在反馈绕组上产生⑵负⒀正的感生电动势,经C613、R612向V610的G极提供正反馈电流,促进V610进一步导通、饱和。

随着V610进入饱和后漏极电流变化率开始降低,正反馈电容C613充电电流减小,导致V610栅极正反馈电压开始下降,开关变压器的绕组中产生极性相反的感生电动势,即主绕组上产生⑵负⑿正的电压,反馈绕组上产生⑵正⒀负的电压,负反馈导致V610由通导迅速转为截止。

此时主绕组上产生⑵负⑿正的电压经外部负载D620、L620、L621放电向负载供电。

自激振荡的第一个周期就这样得以完成,继而进入新的振荡周期,继而不断交替完成振荡过程。

为防止正反馈电压过高,同时也为了防止V610因漏极电流过大而损坏,电路中设置了过激励保护稳压二极管D610;考虑到场效应管输入阻抗大、输入电流小,电路中设立了电阻R611为反馈回路提供通道,保证反馈电容C613有一定的充放电电流。

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

(完整版)UC3842功能应用简介

(完整版)UC3842功能应用简介

UC3842的工作原理及3842在开关电源中的应用2008/11/20 02:55电流控制型脉宽调制器UC3842工作原理及应用UC3842是美国Unitrode公司(该公司现已被TI公司收购)生产的一种高性能单端输出式电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF 和IGBT 等功率型半导体器件,具有管脚数量少、外围电路简单、安装调试简便、性能优良等诸多优点,广泛应用于计算机、显示器等系统电路中作开关电源驱动器件。

1 UC3842 内部工作原理简介图1 示出了UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(R T×C T);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

图1 UC3842 内部原理框图2 UC3842 组成的开关电源电路图2 是由UC3842 构成的开关电源电路,220V 市电由C1、L1 滤除电磁干扰,负温度系数的热敏电阻R t1限流,再经VC 整流、C2滤波,电阻R1、电位器RP1降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842 提供正常工作电压,另一方面经R3、R4 分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。

用UC3842芯片设计开关电源

用UC3842芯片设计开关电源

用UC3842芯片设计开关电源笔者最近设计了由UC3842组成的DC-DC转换器,总的框架采用参考文献中现成的电路。

但由于输入电压和工作频率不同,重新设计了电路参数。

UC3842是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片。

UC3842为8脚双列直插式封装,其内部原理框图如图1所示。

主要由5.0V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成。

端1为COMP端;端2为反馈端;端3为电流测定端;端4接Rt、Ct确定锯齿波频率;端5接地;端6为推挽输出端,有拉、灌电流的能力;端7为集成块工作电源电压端,可以工作在8~40V;端8为内部供外用的基准电压5V,带载能力50mA。

2.1启动过程 首先由电源通过启动电阻R1提供电流给电容C2充电,当C2电压达到UC3842的启动电压门槛值16V时,UC3842开始工作并提供驱动脉冲,由6端输出推动开关管工作,输出信号为高低电压脉冲。

高电压脉冲期间,场效应管导通,电流通过变压器原边,同时把能量储存在变压器中。

根据同名端标识情况,此时变压器各路副边没有能量输出。

当6脚输出的高电平脉冲结束时,场效应管截止,根据楞次定律,变压器原边为维持电流不变,产生下正上负的感生电动势,此时副边各路二极管导通,向外提供能量。

同时反馈线圈向UC3842供电。

UC3842内部设有欠压锁定电路,其开启和关闭阈值分别为16V和10V,如图3所示。

在开启之前,UC3842消耗的电流在1mA以内。

电源电。

uc3842反激式开关电源

uc3842反激式开关电源

uc3842反激式开关电源
高频开关稳压电源由于具有效率高、体积小、重量轻等突出优点而得到了广泛应用。

传统的开关电源控制电路普遍为电压型拓扑,只有输出电压单闭控制环路,系统响应慢,线性调整率精度偏低。

随着PWM 技术的飞速发展产生的电流型模式拓扑很快被大家认同和广泛应用。

电流型控制系统是电压电流双闭环系统,一个是检测输出电压的电压外环,一个是检测开关管电流且具有逐周期限流功能的电流内环,具有更好的电压调整率和负载调整率,稳定性和动态特性也得到明显改善。

UC3842是一款单电源供电,带电流正向补偿,单路调制输出的高性能固定频率电流型控制集成芯片。

为了充分了解反激式开关电源的工作原理,本文中没有使用那种集成mos管的芯片,而是使用UC38XX芯片自己设计外围电路,自己来计算变压器参数,这样灵舌性较大的同时,能更好的看到各个点的波形。

方便分析。

甚至反馈环路都在一个电路里设计了两个不同的反馈方式,但需要注意的是,不能同时焊上去。

下面先来看看原理图吧。

图一原理图
如图1所示,原理图中既有辅助绕组电压反馈,又有TL431加光耦。

当然这两部分电路不会同时焊上去,为了以后以后的比实验。

需要说明。

UC3842芯片设计开关电源_中文资料

UC3842芯片设计开关电源_中文资料

UC3842芯片设计开关电源_中文资料UC3842芯片设计开关电源笔者最近设计了由UC3842组成的DC2DC转换器,总的框架采用参考文献中现成的电路。

但由于输入电压和工作频率不同,重新设计了电路参数。

UC3842的内部结构和特点UC3842是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片。

UC3842为8脚双列直插式封装,其内部原理框图如图1所示。

主要由5. 0V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成端1为COMP端;端2为反馈端;端3为电流测定端;端4接Rt、Ct 确定锯齿波频率;端5接地;端6为推挽输出端,有拉、灌电流的能力;端7为集成块工作电源电压端,可以工作在8~40V;端8为内部供外用的基准电压5V,带载能力50mA。

2 电路结构与工作原理图2所示为笔者在实际工作中使用的电路图。

输入电压为24V直流电。

三路直流输出,分别为+5V/4A, +12V/0. 3A和- 12V/0. 3A。

所有的二极管都采用快速反应二极管,核心PWM器件采用UC3842。

开关管采用快速大功率场效应管。

2. 1 启动过程首先由电源通过启动电阻R1提供电流给电容C2充电,当C2电压达到UC3842的启动电压门槛值16V时,UC3842开始工作并提供驱动脉冲,由6端输出推动开关管工作,输出信号为高低电压脉冲。

高电压脉冲期间,场效应管导通,电流通过变压器原边,同时把能量储存在变压器中。

根据同名端标识情况,此时变压器各路副边没有能量输出。

当6脚输出的高电平脉冲结束时,场效应管截止,根据楞次定律,变压器原边为维持电流不变,产生下正上负的感生电动势,此时副边各路二极管导通,向外提供能量。

同时反馈线圈向UC3842供电。

UC3842内部设有欠压锁定电路,其开启和关闭阈值分别为16V和10V,如图3所示。

UC3842典型应用电路

UC3842典型应用电路电路中的芯片有:UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

电流控制型脉宽调制器UC3842工作原理及应用UC3842是美国Unitrode公司(该公司现已被TI公司收购)生产的一种高性能单端输出式电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF 和IGBT 等功率型半导体器件,具有管脚数量少、外围电路简单、安装调试简便、性能优良等诸多优点,广泛应用于计算机、显示器等系统电路中作开关电源驱动器件。

1 UC3842 内部工作原理简介图1 示出了UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(R T×C T);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

UC3842 UC3843工作原理、参数资料、电路分析及维修方法 v

UC3842 UC3843原理UC3842A UC3843A 是高性能固定频率电流模式控制器专为离线和直流至直流变换器应用而设计,为设计人员提供只需最少外部元件就能获得成本效益高的解决方案。

这些集成电路具有可微调的振荡器、能进行精确的占空比控制、温度补偿的参考、高增益误差放大器。

电流取样比较器和大电流图腾柱式输出,是驱动功率MOSFET的理想器件。

其它的保护特性包括输入和参考欠压锁定,各有滞后、逐周电流限制、可编程输出静区时间和单个脉冲测量锁存。

这些器件可提供8脚双列直插塑料封装和14脚塑料表面贴装封装(SO-14)。

SO-14封装的图腾柱式输出级有单独的电源和接地管脚。

UC3842A 有16V(通)和10 伏(断)低压锁定门限,十分适合于离线变换器。

UC3843A是专为低压应用设计的,低压锁定门限为8.5伏(通)和7.6V(断)。

特点:微调的振荡器放电电流,可精确控制占空比.电流模式工作到500KHZ自动前馈补偿锁存脉宽调制,可逐周限流内部微调的参考电压,带欠压锁定大电流图腾柱输出欠压锁定,带滞后低启动和工作电流直接与安森美半导体的SENSEFET产品接口下图是一个显示器的UC3842应用电路图UC3842好坏的判断鉴别方法在国内电子设备当中,电源PWM控制电路最常用的集成电路型号就是UC3842(或KA3842)。

也就是因为常常遇到,对它也有一些之得,下面简单介绍一下UC3842好坏的判断方法:在更换完周边损坏的元件后,先不装开关管(MOSFET),加电测量UC3842的7脚电压,若电压在10-17V间波动,其余各脚也分别有波动的电压,则说明电路已起振,UC3842基本正常;若7脚电压低,其余接脚无电压或不波动,则UC3842已损坏。

在UC3842的7、5脚间外加+17V左右的直流电压,若测8脚有+5V电压,1、2、4、6脚也有不同的电压,则UC3842基本正常,工作电流小,自身不易损坏.它损坏的最常见原因是电源开关管(MOSFET)短路后,高电压从G极加到其6脚而致使其烧毁.而有些机型中省去了G极接地的保护二极体,则电源开关管(MOSFET)损坏时,UC3842和G极外接的限流电阻必坏.此时直接更换即可。

UC3842_UC3843隔离单端反激式开关电源电路图

UC3842/UC3843隔离单端反激式开关电源电路图开关电源以其高效率、小体积等优点获得了广泛应用。

传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM技术得到了飞速发展。

相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。

电流型PWM集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM控制小功率电源已经取代电压型PWM控制小功率电源。

Unitrode 公司推出的UC3842系列控制芯片是电流型PWM控制器的典型代表。

DC/DC转换器转换器是开关电源中最重要的组成部分之一,其有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。

下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。

M1导通与截止的等效拓扑如图2所示。

图2 M1导通与截止的等效拓扑电流型PWM与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一个电感电流反馈环节,并以此电流反馈作为PWM所必须的斜坡函数。

下面分析理想空载下电流型PWM电路的工作情况(不考虑互感)。

电路如图3所示。

设V导通,则有L·diL/dt = ui (1) iL以斜率ui/L线性增长,L为T1原边电感。

经无感电阻R1采样Ud=R1·iL送到脉宽比较器A2与Ue比较,当Ud>Ue,A2输出高电平,送到RS锁存器的复位端,此时或非门的两个输入中必有一个高电平,经过或非门输出低电平关断功率开关管V。

开关电源原理详解(UC3842电路)

开关电源原理及各功能电路详解一、 开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、 输入电路的原理及常见电路1、AC输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、 DC输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由MOS场效应管组成的开关电源电路UC3824 UC3842
文章通过实际例子介绍了由MOS场效应管组成的串联型和并联型的开关电源, 随着MOS 半导体技术的迅速发展,MOS场效应管以燥声系数低、截止频率高、开关特性好、抗干扰能力强、增益高、功耗低、不存在二次热击穿等优点,广泛应用于彩色电视机、计算机等电器设备中。

本文以MOS场效应管组成的自激-串联型、他激-并联型两种类型电路示例作些介绍。

一、自激-串联型开关电源:
这种类型电路结构比较简单,原器件比较节省,生产成本低,是彩色电视机中采用较多的一种电路,现以飞利浦彩电开关电源为例:
工作原理:
市电经整流滤波后在C606上取得300V左右的脉动直流电压,此电压一路经R616、L611加在场效应管V610的漏极;另一路经启动偏置电阻R610、R613向V610提供栅极电流,微导通后的V610漏极电流经R680、L612、L621及开关变压器的⑵-⑿绕组流向负载,同时产生⑵正⑿负的感生电动势,从而在反馈绕组上产生⑵负⒀正的感生电动势,经C613、R612向V610的G极提供正反馈电流,促进V610进一步导通、饱和。

随着V610进入饱和后漏极电流变化率开始降低,正反馈电容C613充电电流减小,导致V610栅极正反馈电压开始下降,开关变压器的绕组中产生极性相反的感生电动势,即主绕组上产生⑵负⑿正的电压,反馈绕组上产生⑵正⒀负的电压,负反馈导致V610由通导迅速转为截止。

此时主绕组上产生⑵负⑿正的电压经外部负载D620、L620、L621放电向负载供
电。

自激振荡的第一个周期就这样得以完成,继而进入新的振荡周期,继而不断交替完成振荡过程。

为防止正反馈电压过高,同时也为了防止V610因漏极电流过大而损坏,电路中设置了过激励保护稳压二极管D610;考虑到场效应管输入阻抗大、输入电流小,电路中设立了电阻R611为反馈回路提供通道,保证反馈电容C613有一定的充放电电流。

脉宽调节、稳压过程:
此电路稳压取样方式为直接取样方式,对负载供电端电压进行取样放大后,通过脉宽调节管控制开关的通导时间以达到稳压的目的。

在开关截止时间,开关变压器的⑷-⑾绕组上产生⑷负⑾正的感生电动势,经过D617、L617、R617对C616充电,对V614构成负偏置使之截止;当V610导通后开关变压器的⑷-⑾绕组上的极性变反,⑷端的感生电压经R618向C616充电,使C616端电压由负转为正。

当其正向电压达到0.7V时V614通导,分流了一部分正反馈电流使V610的G极电压下降,漏极电流减小,绕组上产生⑿正⑵负电动势,又经反馈电路后V610由通导迅速转为截止。

由此可见,控制V610导通时间可达到控制V610开关脉冲宽度的目的。

当某种原因使开关电源输出电压升高时,经V614的B极而使其提前导通,V610提前截止而使输出电压下降,从而达到保持输出电压不变的目的。

反之亦然。

二、他激-并联型开关电源:
由于早期集成电路控制芯片的功能不够完善,他激式并联开关电源多采用分立元件,电路结构复杂,元件很多,增加了成本给维修也带来不便。

近来控制型集成电路日益成熟,控制功能更趋完善,且电路简单,他激式并联开关电源应用也越来越广泛。

下面以EC-1428彩色显示器开关电源为例:
工作原理:
该电源的核心部件是控制芯片UC3824(振荡和电流控制),各引脚功能见上图右下角绿框内的引脚功能说明。

300V左右的脉动直流电分二路:一路经T101⑴--⑵绕组加至场效应管Q101的漏极;另一路经启动电阻R106、C112滤波加至IC101(UC3842)的7脚,以提供16V左右的工作电压,激发IC101内部的振荡器开始振荡,频率由IC101的4脚外接C115、R109决定,产生的脉冲信号经PWM 锁存器驱动放大后由IC101的6脚输出驱动脉冲,经R110、D107、R108加至Q101的G极,使Q101在脉冲信号控制下工作在开关状态。

Q101饱和时初级绕组⑴--⑵中流过电流,根据同名端相位关系,整流管D108、D109、D110、D111处于截止状态,开关变压器T101储能;当Q101的源极电流增长到一定值时,经取样电阻R104、R105及C109 滤波反馈至IC101的3脚,与其内部电流检测比较器进行比较,当达到一定值时,该比较器输出电压使IC101内部触发器反转,切断IC101的6脚驱动脉冲,于是Q101截止。

这时T101各绕组感生电动势的极性均相反,各路相应的整流二极管导通,T101释放电能向负载供电,其中T101的⑶--⑷的绕组产生的感生电动势经D103整流,C110 滤波产生16V左右的直流电压,经D104加至IC101的7脚维持IC101的供电,使电路的振荡得以继续。

该电源的C116、R115、D105、D106将行同步脉冲引入IC101的振荡电路,使IC101振荡与行扫描同步,消除开关干扰。

取样稳压过程:
T103的⒀--⒁绕组产生的感生电动势除了经D103、C110整流滤波后,经D104维持IC101的16V电压外,还通过R111、R129、C126、VR101、R114引回IC101的2脚,达到稳定T101次极直流输出电压的目的。

调整VR101可微调直流输出电压。

IC101⑴、⑵脚外接R113、C113形成环路负反馈补偿,使误差放大器工作稳定。

当输出电压因某种原因升高时,T101的⑶--⑷绕组中,间接取样电压也升高,经D103整流C110滤波后的电压也升高,升高后的电压经R111、R129、C126、VR101、R114取样电路分压后,加至IC101的2脚与基准电压比较,再输出控制电压,达到控制IC101的6脚脉冲宽度的目的,Q101导通时间变短,从而使输出电压下降,保持了电压的稳定。

相关文档
最新文档