高二数学春季学期期中考试.doc

合集下载

山东省德州市2023-2024学年高二上学期期中考试 数学含解析

山东省德州市2023-2024学年高二上学期期中考试 数学含解析

2023-2024学年上学期期中考试高二数学试题(答案在最后)第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知双曲线222:1y C x b -=的一个焦点为(2,0)-,则双曲线C 的一条渐近线方程为()A.0x +=B.0y +=C.10x -=D.10y +-=2.若向量()1,,0a λ= ,()2,1,2b =- ,且,a b的夹角的余弦值为23,则实数λ等于().A.0B.43-C.0或43-D.0或433.已知直线1l :10x my -+=过定点A ,直线2l :30mx y m +-+=过定点B ,1l 与2l 相交于点P ,则22PA PB +=()A.10B.12C.13D.204.直线():120l kx y k k ---=∈R 与圆22:5C x y +=的公共点个数为().A.0个B.1个C.2个D.1个或2个5.如图,在三棱锥O ABC -中,点P ,Q 分别是OA ,BC 的中点,点G 是PQ 的中点,若记OA a = ,OB b =,OC c = ,则OG =()A.111444a b c ++B.113444a b c ++C.311444a b c ++D.113444a b c -+ 6.如图,已知大小为60︒的二面角l αβ--棱上有两点A ,B ,,AC AC l α⊂⊥,,BD BD l β⊂⊥,若3,3,7AC BD CD ===,则AB 的长度()A.22B.40C.10D.227.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为224x y +≤,若将军从点()3,1A 处出发,河岸线所在直线方程为5x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为().A.102B.52- C.10 D.258.已知椭圆()2222:10y x C a b a b+=>>的长轴长为26,且与x 轴的一个交点是(2,0),过点13,22P ⎛⎫ ⎪⎝⎭的直线与椭圆C 交于A ,B 两点,且满足0PA PB +=,若M 为直线AB 上任意一点,O 为坐标原点,则OM的最小值为()A.1B.2C.2D.22二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆M 的标准方程为22(4)(3)25x y -++=,则下列说法正确的是()A.圆M 的圆心为()4,3-B.点()1,0在圆内C.圆M 的半径为5D.点()3,1-在圆内10.已知椭圆22116x y m+=的焦距是23m 的值可能是()A.13B.13C.19D.1911.已知直线:0l kx y k --=,圆22:10M x y Dx Ey ++++=的圆心坐标为()2,1,则下列说法正确的是()A.直线l 恒过点()1,0B.4,2D E =-=-C.直线l 被圆M 截得的最短弦长为D.当1k =时,圆M 上存在无数对点关于直线l 对称12.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为AD ,AB ,11B C 的中点,以下说法正确的是()A.1A C ⊥平面EFGB.C 到平面EFG 的距离为C.过点E ,F ,G 作正方体的截面,所得截面的面积是D.平面EGF 与平面11BCC B 夹角余弦值为3第II 卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.过直线30x y +-=和260x y -+=的交点,且与直线230x y +-=垂直的直线方程是____.14.已知()1,2,3PA = ,()1,1,2PB = ,()2,3,PC λ=,若P ,A ,B ,C 四点共面,则λ=______.15.已知椭圆22:1204x y C +=的两焦点为1F ,2F ,P 为椭圆C 上一点且12PF PF ⊥,则12||||||PF PF -=___________.16.若点P 在曲线C :222610x y x y +--+=上运动,则3yx +的最大值为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知(3,2,1),a =- (2,1,2)b =.(1)求()()2a b a b +⋅-;(2)求a 与b夹角的余弦值;(3)当()()ka b a kb +⊥- 时,求实数k 的值.18.已知直线2310x y -+=和直线20x y +-=的交点为P .(1)求过点P 且与直线310--=x y 平行的直线方程;(2)若直线l 与直线310--=x y 垂直,且P 到l 的距离为5,求直线l 的方程.19.已知圆C 经过()2,0A ,()0,4B 两点,且圆C 的圆心在直线60x y +-=上.(1)求圆C 的标准方程;(2)若直线370x y +-=与圆C 相交于M ,N 两点,O 为坐标原点,求OM ON ⋅.20.设抛物线C :22(0)y px p =>的焦点为F ,A 是抛物线上横坐标为4的点,5AF =.(1)求抛物线C 的方程;(2)设过点F 且斜率为1的直线l 交抛物线C 于M ,N 两点,O 为坐标原点,求OMN 的面积.21.如图,ABC 内接于⊙O ,AB 为⊙O 的直径,10AB =,6BC =,8CD =,E 为AD 的中点,且平面BCE ⊥平面ACD .(1)证明:BC ⊥平面ACD ;(2)若AD =,求二面角A BD C --的正弦值.22.如图,经过点()2,3P ,且中心在坐标原点,焦点在x 轴上的椭圆C 的离心率为12.(1)求椭圆C的方程;(2)若椭圆C的弦,PA PB所在直线交x轴于点,C D,且PC PD.求证:直线AB的斜率为定值.2023-2024学年上学期期中考试高二数学试题第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知双曲线222:1y C x b -=的一个焦点为(2,0)-,则双曲线C 的一条渐近线方程为()A.0x +=B.0y +=C.10x -=D.10y +-=【答案】B 【解析】【分析】由双曲线中a ,b ,c 的关系先求出b ,进而可求焦点在x 轴上的双曲线的渐近线方程.【详解】解:由题意,1,2a c ==,又222c a b =+,解得b =.所以双曲线C的一条渐近线方程为by x a=-=0y +=.故选:B.2.若向量()1,,0a λ= ,()2,1,2b =- ,且,a b的夹角的余弦值为23,则实数λ等于().A.0B.43-C.0或43-D.0或43【答案】C 【解析】【分析】根据空间向量的数量积运算及夹角公式,代入坐标计算即可.【详解】由题意得2cos ,3a b a b a b ⋅=== ,解得0λ=或43λ=-,故选:C .3.已知直线1l :10x my -+=过定点A ,直线2l :30mx y m +-+=过定点B ,1l 与2l 相交于点P ,则22PA PB +=()A.10B.12C.13D.20【答案】C 【解析】【分析】根据题意,求得直线1l 过定点(1,0)A -,直线2l 恒过定点(1,3)B -,结合1()10m m ⨯+-⨯=,得到PA PB ⊥,利用勾股定理,即可求解.【详解】由直线1:10l x my -+=过定点(1,0)A -,直线2:30l mx y m +-+=可化为(1)30m x y -++=,令1030x y -=⎧⎨+=⎩,解得1,3x y ==-,即直线2l 恒过定点(1,3)B -,又由直线1:10l x my -+=和2:30l mx y m +-+=,满足1()10m m ⨯+-⨯=,所以12l l ⊥,所以PA PB ⊥,所以22222(11)(03)13PA PB AB +==--++=.故选:C.4.直线():120l kx y k k ---=∈R 与圆22:5C x y +=的公共点个数为().A.0个B.1个C.2个D.1个或2个【答案】D 【解析】【分析】求直线过的定点,再判断直线与圆位置关系,【详解】():120l kx y k k ---=∈R 为(2)10k x y ---=,故l 过定点(2,1)-,在圆225x y +=上,故直线l 与圆相切或相交,公共点个数为1个或2个,故选:D5.如图,在三棱锥O ABC -中,点P ,Q 分别是OA ,BC 的中点,点G 是PQ 的中点,若记OA a = ,OB b =,OC c = ,则OG =()A.111444a b c ++B.113444a b c ++C.311444a b c ++ D.113444a b c -+【答案】A 【解析】【分析】根据题意,结合空间向量的线性运算法则,准确化简、运算,即可求解.【详解】由在三棱锥O ABC -中,点P ,Q 分别是OA ,BC 的中点,点G 是PQ 的中点,如图所示,连接OQ ,根据空间向量的线性运算法则,可得:11111111()[()]22222222OG OP PG OA PQ a OQ OP a OB OC OA =+=+=+-=+⋅+-1111[()]2222111444a b c a a b c =+⋅+++-= .故选:A.6.如图,已知大小为60︒的二面角l αβ--棱上有两点A ,B ,,AC AC l α⊂⊥,,BD BD l β⊂⊥,若3,3,7AC BD CD ===,则AB 的长度()A.22B.40C. D.【答案】C 【解析】【分析】过A 作AE BD 且AE BD =,连接,CE DE ,易得60CAE ︒∠=,通过线面垂直的判定定理可得ED ⊥平面AEC ,继而得到ED EC ⊥,由勾股定理即可求出答案.【详解】解:过A 作AE BD 且AE BD =,连接,CE DE ,则四边形ABDE 是平行四边形,因为BD AB ⊥,所以平行四边形ABDE 是矩形,因为BD l ⊥,即AE l ⊥,而AC l ⊥,则CAE ∠是二面角l αβ--的平面角,即60CAE ︒∠=,因为3BD AE AC ===,即ACE △为正三角形,所以3CE =,因为,ED AE l AC ⊥⊥,即ED AC ⊥,,,AE AC A AE AC ⋂=⊂平面AEC ,所以ED ⊥平面AEC ,因为EC ⊂平面AEC ,所以ED EC ⊥,所以在Rt EDC中,ED ==,所以AB ED ==故选:C7.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为224x y +≤,若将军从点()3,1A 处出发,河岸线所在直线方程为5x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为().A.2B.2-C.D.【答案】B 【解析】【分析】利用点关于直线的找到最短距离,根据两点之间的距离公式即可求得.【详解】由已知得()3,1A 关于直线5x y +=的对称点为(),A a b ',AA '中点坐标为31,22a b ++⎛⎫⎪⎝⎭,且直线AA '斜率为1所以31=522113a b b a ++⎧+⎪⎪⎨-⎪=⎪-⎩解得4a =,2b =即()4,2A '圆心()0,0O,可知OA '=2OA r '-故选:B8.已知椭圆()2222:10y x C a b a b+=>>的长轴长为,且与x轴的一个交点是(,过点13,22P ⎛⎫ ⎪⎝⎭的直线与椭圆C 交于A ,B 两点,且满足0PA PB +=,若M 为直线AB 上任意一点,O 为坐标原点,则OM 的最小值为()A.1B.C.2D.【答案】B 【解析】【分析】由题意可求得椭圆方程为22162y x +=,由0PA PB += ,得点P 为线段AB 的中点,然后利用点差法可求出直线AB 的方程,则OM 的最小值为点O 到直线AB 的距离,再利用点到直线的距离公式可求出结果.【详解】由题意得2a b ==,则a b ==,2c ==,所以椭圆方程为22162y x +=,因为22311221622⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=<,所以13,22P ⎛⎫ ⎪⎝⎭在椭圆内,所以直线AB 与椭圆总有两个交点,因为0PA PB +=,所以点P 为线段AB 的中点,设1122(,),(,)A x y B x y ,则12121,3x x y y +=+=,22112222162162y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩,所以22222121062y y x x --+=,所以21212121()()3()()0y y y y x x x x +-++-=,所以21213()3()0y y x x -+-=,即2121()()0y y x x -+-=,所以21211y y x x -=--,所以直线AB 为3122y x ⎛⎫-=-- ⎪⎝⎭,即20x y +-=,因为M 为直线AB 上任意一点,所以OM 的最小值为点O 到直线AB的距离d ==,故选:B 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆M 的标准方程为22(4)(3)25x y -++=,则下列说法正确的是()A.圆M 的圆心为()4,3- B.点()1,0在圆内C.圆M 的半径为5D.点()3,1-在圆内【答案】ABC【解析】【分析】根据给定圆的方程,结合点与圆的位置关系逐项判断作答.【详解】圆22:(4)(3)25M x y -++=的圆心为()4,3-,半径为5,AC 正确;由22(14)(03)2518+=-+<,得点()1,0在圆内,B 正确;由22(34)(13)2565-+=-+>,得点()3,1-在圆外,D 错误.故选:ABC 10.已知椭圆22116x y m+=的焦距是m 的值可能是()A. B.13C. D.19【答案】BD【解析】【分析】利用椭圆焦距的定义和性质即可求解.【详解】由题知,==解得13m =或19m =.故选:BD11.已知直线:0l kx y k --=,圆22:10M x y Dx Ey ++++=的圆心坐标为()2,1,则下列说法正确的是()A.直线l 恒过点()1,0B.4,2D E =-=-C.直线l 被圆M 截得的最短弦长为D.当1k =时,圆M 上存在无数对点关于直线l 对称【答案】ABD【解析】【分析】求解直线系结果的定点判断A ;圆的圆心求解D 、E 判断B ;求解直线被圆截的弦长判断C ,利用圆的圆心到直线的距离判断D .【详解】直线:0l kx y k --=,恒过点(1,0),所以A 正确;圆22:10M x y Dx Ey ++++=的圆心坐标为(2,1),4D =-,2E =-,所以B 正确;圆22:4210M x y x y +--+=的圆心坐标为(2,1),圆的半径为2.直线:0l kx y k --=,恒过点(1,0),直线l 被圆M 截得的最短弦长为=≠,所以C 不正确;当1k =时,直线方程为:10x y --=,经过圆的圆心,所以圆M 上存在无数对点关于直线l 对称,所以D 正确.故选:ABD .12.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为AD ,AB ,11B C 的中点,以下说法正确的是()A.1A C ⊥平面EFGB.C 到平面EFG 的距离为C.过点E ,F ,G 作正方体的截面,所得截面的面积是D.平面EGF 与平面11BCC B 夹角余弦值为3【答案】ABD【解析】【分析】建立空间直角坐标系,对于A ,用空间向量计算证明垂直即可判断;对于B ,用空间向量求平面EFG 的法向量,再CF在法向量上的投影即可判断;对于C ,补全完整截面为正六边形,直接计算面积即可判断;对于D ,用空间向量求平面的法向量再计算二面角的余弦值即可判断.【详解】以DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,(0,2,0)C ,1(2,0,2)A ,(1,0,0)E ,(2,1,0)F ,(1,2,2)G ,则1(2,2,2)A C =-- ,(1,1,0)EF = ,(0,2,2)EG = ,10A C EF ⋅= ,10A C EG ⋅= ,则1A C ⊥平面EFG ,故A 正确;向量1AC 为平面EFG 的法向量,且1(2,2,2)A C =-- ,(2,1,0)CF =- ,所以C 到平面EFG的距离为11|(2,1,0)(2,2,2)||(2,2,2)|CF A C A ⋅-⋅--==-- ,故B 正确;作11C D 中点N ,1BB 的中点M ,1DD 的中点T ,连接GN ,GM ,FM ,TN ,ET ,则正六边形EFMGNT 为对应截面面积,则截面面积为:2364S =⨯⨯=C 错误;平面11BCC B 的一个法向量为(0,1,0)n = ,平面EGF 的一个法向量为1(2,2,2)A C =--,设两个平面夹角为θ,11cos 3||n A C n A C θ⋅=== ,故D 正确.故选:ABD .第II 卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.过直线30x y +-=和260x y -+=的交点,且与直线230x y +-=垂直的直线方程是____.【答案】290x y -+=【解析】【分析】通过解方程组,利用互相垂直直线的方程的特征进行求解即可.【详解】两直线方程联立,得3012604x y x x y y +-==-⎧⎧⇒⎨⎨-+==⎩⎩,所以交点为()1,4-设与直线230x y +-=垂直的直线方程为20x y c -+=,把()1,4-代入20x y c -+=中,得12409c c --⨯+=⇒=,故答案为:290x y -+=14.已知()1,2,3PA = ,()1,1,2PB = ,()2,3,PC λ= ,若P ,A ,B ,C 四点共面,则λ=______.【答案】5【解析】【分析】根据P ,A ,B ,C 四点共面,由PA xPB yPC =+ 求解.【详解】解:因为()1,2,3PA = ,()1,1,2PB = ,()2,3,PC λ= ,且P ,A ,B ,C 四点共面,所以PA xPB yPC =+ ,则122332x y x y x y λ=+⎧⎪=+⎨⎪=+⎩,解得115x y λ=-⎧⎪=⎨⎪=⎩,故答案为:515.已知椭圆22:1204x y C +=的两焦点为1F ,2F ,P 为椭圆C 上一点且12PF PF ⊥,则12||||||PF PF -=___________.【答案】43【解析】【分析】根据椭圆的定义以及焦点三角形的性质即可求解.【详解】解: 椭圆22:1204x y C +=得25a =,2b =,4c =,设1||PF m =,2||PF n =,则45m n +=,12PF PF ⊥ ,2264m n ∴+=,2222()()16mn m n m n ∴=+-+=,22()()4803248m n m n mn ∴-=+-=-=,||43m n ∴-=,即12||||||43PF PF -=.故答案为:4316.若点P 在曲线C :222610x y x y +--+=上运动,则3y x +的最大值为__________.【答案】247##337【解析】【分析】先根据已知求出圆心,半径,再把分式转化为斜率,最后化简为直线结合直线和圆的位置关系应用点到直线距离求解即可.【详解】曲线C 方程化为()()22139x y -+-=,是以()1,3为圆心,3为半径的圆,3y x +表示点(),P x y 与点()3,0-连线的斜率,不妨设3y k x =+即直线l :30kx y k -+=,又P 在圆上运动,故直线与圆C3≤,化简得27240k k -≤解得2407k ≤≤,故3y x +的最大值为247.故答案为:247.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知(3,2,1),a =- (2,1,2)b = .(1)求()()2a b a b +⋅- ;(2)求a 与b夹角的余弦值;(3)当()()ka b a kb +⊥- 时,求实数k 的值.【答案】(1)-10(2)7(3)32k =或23-【解析】【分析】(1)根据空间向量的坐标运算律,即可求解.(2)根据空间向量的夹角公式,代入求解.(3)由()()ka b a kb +⊥- ,转化为数量积为0即可.【小问1详解】()()2a b a b +⋅- ()()5,3,11,0,510=⋅--=-;【小问2详解】cos ,7||||a b a b a b ⋅<>==⋅ ;【小问3详解】当()()ka b a kb +⊥- 时,()()0ka b a kb +⋅-= ,得(32,21,2)(32,2,12)k k k k k k ++-+⋅----=0,(32)(32)(21)(2)(2)(12)0k k k k k k +-++-+-+⋅--=,32k =或23-.18.已知直线2310x y -+=和直线20x y +-=的交点为P .(1)求过点P 且与直线310--=x y 平行的直线方程;(2)若直线l 与直线310--=x y 垂直,且P 到l 的距离为5,求直线l 的方程.【答案】(1)320x y -+=;(2)320x y +-=或360x y +-=.【解析】【分析】(1)联立直线方程求得交点(1,1)P ,根据直线平行及点在直线上求平行直线方程;(2)设垂直直线为2:30l x y c ++=,由已知及点线距离公式列方程求参数,即可得直线方程.【小问1详解】联立231020x y x y -+=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,交点(1,1)P ,设与直线310--=x y 平行的直线方程为130x y c -+=把(1,1)P 代入可得1130c -+=,可得12c =,∴所求的直线方程为:320x y -+=.【小问2详解】设与直线310--=x y 垂直的直线方程为2:30l x y c ++=,∵(1,1)P 到l 5=,解得22c =-或6-,∴直线l 的方程为:320x y +-=或360x y +-=19.已知圆C 经过()2,0A ,()0,4B 两点,且圆C 的圆心在直线60x y +-=上.(1)求圆C 的标准方程;(2)若直线370x y +-=与圆C 相交于M ,N 两点,O 为坐标原点,求OM ON ⋅.【答案】(1)()()223310x y -+-=(2)1【解析】【分析】(1)求出AB 的中垂线方程联立60x y +-=,即可求得圆心坐标,继而求得半径,可求得圆的方程;(2)设()11,M x y ,()22,N x y ,联立直线和圆的方程,可得根与系数的关系式,结合向量的数量积的坐标表示,即可求得答案.【小问1详解】因为()2,0A ,()0,4B ,所以40202AB k -==--,线段AB 的中点坐标为()1,2,则AB 的中垂线方程为12(1)2y x -=-,即230x y -+=,故圆C 的圆心在直线230x y -+=上.联立方程组23060x y x y -+=⎧⎨+-=⎩,解得33x y =⎧⎨=⎩,故圆C 圆心的坐标为()3,3,圆C 的半径r ==,则圆C 的标准方程为22(3)(3)10x y -+-=.【小问2详解】设()11,M x y ,()22,N x y ,联立方程组()()223310370x y x y ⎧-+-=⎪⎨+-=⎪⎩,整理得22630x x -+=,120∆=>,则123x x +=,1232x x =.故()()()12121212121237371021491OM ON x x y y x x x x x x x x ⋅=+=+-+-+=-++= .20.设抛物线C :22(0)y px p =>的焦点为F ,A 是抛物线上横坐标为4的点,5AF =.(1)求抛物线C 的方程;(2)设过点F 且斜率为1的直线l 交抛物线C 于M ,N 两点,O 为坐标原点,求OMN 的面积.【答案】(1)24y x =;(2).【分析】(1)根据给定条件,利用抛物线定义求出p 值作答.(2)求出直线l 的方程,与C 的方程联立,再求出三角形面积作答.【小问1详解】抛物线C :22(0)y px p =>的准线方程为2p x =-,依题意,4(52p --=,解得2p =,所以抛物线C 的方程为24y x =.【小问2详解】由(1)知,(1,0)F ,则直线l 的方程为1y x =-,由214y x y x=-⎧⎨=⎩消去y 得:2440y y --=,解得12y =-,22y =+,所以OMN 的面积1211||||122OMN S OF y y =⋅-=⨯⨯=21.如图,ABC 内接于⊙O ,AB 为⊙O 的直径,10AB =,6BC =,8CD =,E 为AD 的中点,且平面BCE ⊥平面ACD .(1)证明:BC ⊥平面ACD ;(2)若AD =,求二面角A BD C --的正弦值.【答案】(1)证明见解析(2)53434【分析】(1)通过面面垂直的性质,找到CE AD ⊥后证明线面垂直,从而证明线线垂直,通过两组线线垂直即可得证;(2)通过已知条件以}{,,CA CB CD 为正交基底建立空间直角坐标系,通过二面角向量方法计算公式求解即可.【小问1详解】因为AB 是⊙O 的直径,所以ACBC ⊥,因为10AB =,6BC =,所以8AC ==,又因为8CD =,E 为AD 的中点,所以CE AD ⊥,因为平面BCE ⊥平面ACD ,平面BCE 平面ACD CE =,AD ⊂平面ACD ,所以AD ⊥平面BCE ,因为BC ⊂平面BCE ,所以AD BC ⊥,又因为,AC AD ⊂平面ACD ,AD AC A ⋂=,所以BC ⊥平面ACD【小问2详解】因为8AC =,8CD =,AD =,所以222AC CD AD +=,所以CD CA ⊥,因为BC ⊥平面ACD ,CA,CD ⊂平面ACD ,所以,BC CA BC CD ⊥⊥,以}{,,CA CB CD 为正交基底,建立如图所示的空间直角坐标系C -xyz ,则()8,0,0A ,()0,6,0B ,()0,0,8D ,()4,0,4E .显然,()11,0,0n =u r是平面BDC 的一个法向量,设()2,,n x y z =u u r是平面ABD 的一个法向量,则22860880n AB x y n AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令3x =,则()23,4,3n = ,所以121212334cos ,34n n n n n n ⋅=== ,设二面角A BD C --所成角为α,[]0,πα∈,则12sin sin ,34n n α== ,所以二面角A BD C --的正弦值为5343422.如图,经过点()2,3P ,且中心在坐标原点,焦点在x 轴上的椭圆C 的离心率为12.(1)求椭圆C 的方程;(2)若椭圆C 的弦,PA PB 所在直线交x 轴于点,C D ,且PC PD =.求证:直线AB 的斜率为定值.【答案】(1)2211612x y +=(2)证明见解析【解析】【分析】(1)椭圆的标准方程为:22221(0)x y a b a b+=>>,12c e a ==,即2a c =,22223b a c c =-=,将点(2,3)P ,代入即可求得a 和b 的值,求得椭圆C 的方程;(2)联立直线,PA PB 的方程与椭圆方程,可得,A B 坐标,进而根据两点斜率公式即可求解.【小问1详解】由题意可知:焦点在x 轴上,设椭圆的标准方程为:22221(0)x y a b a b+=>>,由椭圆的离心率12c e a ==,即2a c =,22223b a c c =-=,将(2,3)P 代入椭圆方程:2249143c c+=,解得:24c =,216a ∴=,212b =,∴椭圆的标准方程为:2211612x y +=;【小问2详解】由题意可知:直线PA 有斜率,且0k ≠,设直线PA 方程为()32y k x -=-,1(A x ,1)y ,2(B x ,2)y ,∴222311612y kx k x y =-+⎧⎪⎨+=⎪⎩,整理得:()()222(34)823423480k x k k x k +-+--=-,()()()22228234(34)42348016210k k k k k ∆⎡⎤---+-->⇒+>⎡⎤⎣⎣=⎦⎦,故12k ≠-由韦达定理可知:()()211222412382324343k k k k x x k k ---+=⇒=++,由PC PD =得:0PC PD k k +=,故直线PB 方程为()32y k x -=--()22224+12343k k x k -=+,因此()212212244348,4343k k x x x x k k -+-==++所以()()()()222121212121212443443224148243AB k k k k x k x k x x y y k k x x x x x x k ⎛⎫- ⎪-- ⎪+-----+--⎝⎭=====---+因此12ABk ,为定值.。

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1B M相等的向量是().A .1122a b c-++B .1122++a b cC .1122-+ a b cD .1122--+ a b c2.若直线经过(1,0),A B 两点,则直线AB 的倾斜角是()A .135︒B .120︒C .60︒D .45︒3.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A B C .5-D 4.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A .1月29日景区A 累计参观人次中特色景点a 占比超过了13.B .2月4日至2月10日特色景点a 累计参观人次增加了9800人次.C .2月4日至2月6日特色景点a 的累计参观人次的增长率和2月6日至2月8日特色景点a 累计参观人次的增长率相等.D .2月8日至2月10日景区A 累计参观人次的增长率小于2月6日至2月8日的增长率.5.如图,修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处,从A ,B 到直线(水库底面与水坝的交线)的距离AC 和B 分别为3m 和4m ,B 的长为2m ,则水库底面与水坝所成二面角的大小为().A .30︒B .60︒C .120︒D .150︒6.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中AC BC ⊥.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F .下列说法正确的是()A .四棱锥11C AB BA -为“阳马”B .四面体111A CC B 为“鳖臑”C .1EF AC ⊥D .1EF A B⊥7.阅读下面材料:在空间直角坐标系Oxyz 中,过点()000,,P x y z 且一个法向量为(),,m a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,过点()000,,P x y z 且方向向量为()()0n u v w uvw =≠ ,,的直线l 的方程为000.x x y y z z uvw---==根据上述材料,解决下面问题:直线l 是两个平面220x y -+=与210x z -+=的交线,则()是l 的一个方向向量.A .()2,1,4B .()1,3,5C .()1,2,0-D .()2,0,1-8.设直线系:cos sin 1m n M x y θθ+=(其中,,m n θ均为参数,{}02π,,1,2m n θ≤≤∈),则下列命题中是假命题...的是()A .当1m n ==时,存在一个点与直线系M 中所有直线的距离都相等.B .当2m n ==时,直线系M 中所有直线恒过定点,且不过第三象限.C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1.D .当2,1m n ==时,若0a ≤,则点(),0A a 到直线系M 中所有直线的距离不小于1.二、多选题9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组[)[)[)0,0.50.5,13,3.5 ,,,,制作了频率分布直方图,下列命题正确的有().A .设该市有60万居民,则全市居民中月均用水量不低于3吨的人数恰好有3万人.B .如果希望86%的居民每月的用水量不超出标准,则月均用水量a (吨)的最低标准的估计值为2.7.C .该市居民月均用水量的平均数的估计值为1.875吨.D .在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率为0.4.10.以下四个命题为真命题的是()A .过点(10,10)-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .已知直线10kx y --=和以(3,1)M -,(3,2)N 为端点的线段相交,则实数k 的取值范围为213k -≤≤C .直线10x y +-=与直线2210x y ++=D .点P 在直线:10l x y --=上运动,(2,3),(2,0)A B ,则||||PA PB -11.在棱长为2的正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为线段BM 上的动点(含端点),则下列选项正确的有()A .若直线1A M 与直线AN 所成角为α,则cos α的最大值为23.B .若点N 到平面11ABCD 的距离为d ,则d CN +的最小值为5.C .若在该正方体内放入一个半径为12的小球,则小球在正方体内不能达到的空间体积是π22-.D .点T 从B 点出发匀速朝1D 移动,点S 从A 点出发匀速朝1A 移动.现,S T 同时出发,当S 到达1A 时,T 恰好在1BD 的中点处.则在此过程中,,S T .三、填空题12.一条光线经过点(2,3)A 射到直线10x y ++=上,被反射后经过点(1,1)B ,则入射光线所在直线的一般式方程为.13.已知三棱锥P ABC -,如图所示,G 为ABC V 重心,点M ,F 为PG ,PC 中点,点D ,E 分别在PA ,PB 上,PD mPA= ,()0PE nPB mn =≠ ,若M D E F ,,,四点共面,则11m n+=.14.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“i 的胜者”,负者称为“i 的负者”,第6场为决赛,获胜的人是冠军,已知甲每场比赛获胜的概率均为34,而乙、丙、丁相互之间胜负的可能性相同.则乙进入决赛,且乙与其决赛对手是第二次相遇的概率为.四、解答题15.如图,已知平行六面体1111—ABCD A B C D 的底面ABCD 是菱形,1AB =,且11C CB C CD BCD ∠=∠=∠.(1)证明:1C C BD ⊥;(2)若1CA ⊥平面1C BD ,求1CC 的长.16.班级新年晚会设置抽奖环节.不透明纸箱中有大小、质地相同的红球3个,黄球2个.(1)如下两种方案,哪种方案获得奖品的可能性更大?并说明理由.方案一:依次无放回地抽取2个球,若颜色相同,则获得奖品;方案二:依次有放回地抽取2个球,若颜色相同,则获得奖品.(2)还剩最后一个奖品时,甲乙两位同学都想获得.于是他们约定:轮流从纸箱中有放回地抽取一球,谁先抽到黄球,谁获得奖品;如果3轮之后都两人都没有抽到黄球,则后抽的同学获得奖品.如果甲先抽,求甲获得奖品的概率.17.已知,如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且13AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点,四面体P BCG -的体积为83.(1)求异面直线GE 与PC 所成角的余弦;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF GC ⊥,求PFFC的值.18.男子10米气步枪和女子10米气步枪在1984年被列为奥运会比赛项目.根据国际射联的要求,10米气步枪靶纸为总边长80毫米的正方形,直径最大的1环,直径为45.5mm ,而最高10.9环的靶心点,直径仅有0.5mm .为了了解某校射击选手甲的训练水平,甲按照比赛要求进行了15次射击训练,命中的环数如下:射击序号123456789101112131415命中环数9.49.510.29.19.28.910.19.39.49.69.39.310.19.5 5.0(1)如果命中10环及以上的环数,我们称之为“命中靶心”.①用以上数据估计甲每次射击“命中靶心”的概率;②现发现一架小型无人机悬停在训练区域的上空(训练区域禁止无人机飞行),甲准备将其击落.假设甲每次射击能击中该无人机的概率为①中所求其“命中靶心”的概率,每次射击互不影响.则甲至少需要进行几次射击,才能有90%以上的概率能击落该无人机(该无人机被击中一次即被击落)?(2)经计算得甲这次训练命中环数的平均数15119.2015i i x x ===∑,标准差1.18s =,其中i x 为第i 次射击命中的环数,1i =,2,L ,15.第15次射击时,由于甲受到了明显的干扰,导致结果偏差较大.为了数据分析更加客观准确,教练剔除了这次的成绩.求剔除数据后,甲命中环数的平均数和方差(精确到0.01).(参考数据lg20.3010=,lg30.4771=)19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点.(1)求证://NC 平面PAM ;(2)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(3)设P AM D --的大小为θ,若π(0,]2θ∈,求平面PAM 和平面PBC 夹角余弦值的最小值.。

高二数学期中考试试卷

高二数学期中考试试卷

高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。

12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。

13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。

14. 函数y=x^2+2x+1的顶点坐标为______。

15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。

三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。

2024-2025学年酒泉市高二数学上学期期中考试卷附答案解析

2024-2025学年酒泉市高二数学上学期期中考试卷附答案解析

2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.52.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.333.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.284.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π65.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.186.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4- B.1- C.0D.27.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12B. C.6D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+=D.3120y -+=10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB面积的最大值为1+三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则y x 的最大值为______.14.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.18.已知数列{}n a 满足:()*312232222n na a a a n n +++⋅⋅⋅+=∈N ,数列{}nb 满足5012n nb a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和nT 2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.5【答案】A 【解析】【分析】根据数列的规律及通项可得数列的项.【详解】由已知数列1,,3,……,,……,则数列的第n第257=,故选:A.2.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.33【答案】C 【解析】【分析】根据数列的前n 项和,可得数列的项,进而可得值.【详解】由已知数列{}n a 的前n 项和()22n S n =+,则75746a a a S S ++=-()()227242=+-+45=,故选:C.3.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.28【答案】B 【解析】【分析】由等差中项的性质计算即可;【详解】因为在等差数列{}n a 中,67821a a a ++=,所以678773217a a a a a ++==⇒=,所以759214a a a ==+,故选:B.4.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π6【答案】B 【解析】【分析】先由直线方程得到斜率,进而可得其倾斜角.【详解】由题意可得直线的斜率为k =设其倾斜角为α,则tan α=,又[)0,πα∈,所以π3α=,故选:B5.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.18【答案】D 【解析】【分析】易知数列前n 和求出通项公式,再由等比数列的性质化简求得结果.【详解】当1n =时,11121a S a ==-,∴11a =,当2n ≥时,1121n n S a --=-,则1122n n n n n a S S a a --=-=-,∴12n n a a -=,即数列{}n a 是首项11a =,公比2q =的等比数列,即12n n a -=,∴()()27793210121011181a q a a a a q a q ++===++故选:D.6.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4-B.1- C.0D.2【答案】D 【解析】【分析】根据点在圆外及方程表示圆求出m 的范围得解.【详解】因为点()1,2P -在圆C :220x y x y m ++++=的外部,所以22(1)2120m -+-++>,解得6m >-,又方程表示圆,则1140m +->,即12m <,所以162m -<<,结合选项可知,m 的取值一定不是2.故选:D.7.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >【答案】C 【解析】【分析】根据等差数列的通项公式,前n 项和公式,结合条件10a >,逐项进行判断即可求解.【详解】设等差数列{}n a 的公差为d ,由316=S S ,得113316120a d a d +=+,即1131170a d +=,即11090a d a +==,又10a >,所以0d <,所以110a <;故AD 错,()1191910191902a a S a +===,故B 错因为190S =,0d <,所以180S >,200S <,所以0nS <成立的n 的最小值为20.故C 正确.故选:C8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12 B.C.6D.【答案】C 【解析】【分析】先根据题意求出M 的轨迹方程为222x y +=,设()00,M x y 到直线40x y +-=的距离为d ,由此可得004x y +-=,将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值,先求圆心到直线的距离再加半径即可求解.【详解】根据已知有,圆心0,0,半径2r =,因为弦AB =,所以圆心到AB 所在直线的距离d ==又因为M 为AB 的中点,所以有OM =,所以M 的轨迹为圆心为0,0,半径为1r =的圆,M 的轨迹方程为222x y +=;令直线为40x y +-=,则()00,M x y 到直线40x y +-=的距离为d ,则d =,即004x y +-=,所以当d 最大时,004x y +-=也取得最大值,由此可将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值的2倍,设圆心0,0到直线的距离为0d ,则0d ==,所以max 0d d =+=所以004x y +-的最大值为6.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+= D.3120y -+=【答案】AD 【解析】【分析】由题意知直线l 过点()0,4,所以根据直线l 是否存在斜率进行分类讨论,结合等腰三角形等知识,即可求解.【详解】设()0,4为点A ,易知点()0,4A 40y -+=上,直线40y -+=与x轴的交点,03B ⎛⎫- ⎪ ⎪⎝⎭,当直线l 的斜率不存在时,因为直线l 过点()0,4,所以直线l 的方程为0x =,与x 轴的交点为()0,0O ;此时4OA =,3OB =,3AB =,所以AOB V 不是等腰三角形,故直线l 存在斜率;设B 关于y轴的对称点为C ⎫⎪⎭,当直线l 过A ,C 两点时,AB AC =,ABC V 是等腰三角形,同时直线ABπ3,所以ABC V 是等边三角形,所以AC BC =,此时直线l 的方程为144x y +=40y +-=,设直线l 与x 轴相交于点D,如图所示,若AB BD =,则π6ADB ∠=,所以直线AD ,即直线l的斜率为3,此时方程为343y x =+3120y -+=;所以直线l40y +-=3120y -+=故选:AD.10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>【答案】AC 【解析】【分析】利用n S 和n a 的关系即可判断A ,B 选项;利用等差数列的求和公式即可判断C 选项;通过举例即可判断D 选项.【详解】对于A ,若2n S n =,则当1n >时,121n n n a S S n -=-=-,当1n =时,111a S ==,符合21n a n =-,故21n a n =-,则{}n a 是等差数列,故A 正确;对于B ,若2nn S =,则112a S ==,2212a S S =-=,3324a S S =-=,故a a a a ≠2312,{}n a 不是等比数列,故B 错误;对于C ,若{}n a 是等差数列,则()1202520251013202520252a a S a +==,故C 正确;对于D ,若1n a =,符合{}n a 是等比数列,且0n a >,此时()()22121212141n n S S n n n -+⋅-+==-,2224n S n =,不满足221212n n n S S S -+⋅>,故D 错误.故选:AC11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB 面积的最大值为1+【答案】ABC 【解析】【分析】根据圆的一般方程确定圆心、半径,判断1212||,,O O r r 的关系判断A ,两圆方程相减求相交线方程判断B ;应用点斜式写出公共弦AB 的垂直平分线方程判断C ;数形结合判断使△PAB 面积最大时P 点的位置,进而求最大面积判断D.【详解】由题设2121)1:(x O y -+=,则1(1,0)O ,半径11r =,222:(1)(2)5O x y ++-=,则2(1,2)O -,半径2r =,所以12||1,1)O O =,两圆相交,A 对;两圆方程相减,得公共弦AB 所在直线为0x y -=,B 对;公共弦AB 的垂直平分线方程为20(1)(1)11y x x -=⋅-=----,即10x y +-=,C 对;如下图,若O 与B 重合,而1O 到0x y -=的距离d =,且||2AB ==,要使△PAB 面积最大,只需P 到AB 的距离最远为11d r +=,所以最大面积为1121)22+=,D 错.故选:ABC三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.【答案】270x y --=【解析】【分析】根据点斜式求得直线方程,并化为一般式.【详解】直线l 的方向向量为()1,2,所以直线l 的斜率为2,所以直线方程为()32224,270y x x x y +=-=---=.故答案为:270x y --=13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则0y x 的最大值为______.【答案】5【解析】【分析】设0y k x =,则直线00y kx =与圆有公共点,联立方程消元后,利用判别式即可得解.【详解】设y k x =,则00y kx =,联立0022000650y kx x y x =⎧⎨+-+=⎩,消元得()22001650k x x +-+=,由()2Δ362010k=-+≥,解得252555k -≤≤,所以00y x 的最大值为5.故答案为:514.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.【答案】①.1②.9λ<-【解析】【分析】根据等比数列的性质,结合2n n S a =-,有(2)(21)2n n a a --=-,即可求a 值,进而有12n n a -=即(1)l 2n n =-,结合5n T n λ>+对N n +∈恒成立求λ的范围即可.【详解】由等比数列的前n 项和2n n S a =-知,1q ≠,所以1(1)21n n n a q S a q-==--,所以2q =,而112a S a ==-,2q =,∴(2)(21)2n n a a --=-,即1a =,由上知:12nn a -=,则(1)l 2n n =-,∴==2−>5+,即226(3)9,N n n n n λ+<-=--∈,当3n =时,2(3)9,N n n +--∈的最小值为9-,所以9λ<-.故答案为:1;9λ<-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.【答案】(1)12m =;()1,1C .(2)()2211x y -+=【解析】【分析】(1)根据题意,求得两直线的斜率,结合121k k ×=-,求得12m =,得出直线的方程,联立方程组,求得交点坐标.(2)由(1)中的直线方程,求得()0,0A ,()2,0B ,得到ABC V 的外接圆是以AB 为直径的圆,求得圆心坐标和半径,即可求解.【小问1详解】解:显然1m ≠,可得1122k m =--,22k m =-,由12l l ⊥,可得121k k ×=-,即()12122m m ⎛⎫-⋅-=- ⎪-⎝⎭,解得12m =,所以直线1l :0x y -=,直线2l :20x y +-=,联立方程组020x y x y -=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,所以点()1,1C .【小问2详解】解:由直线1l :0x y -=,直线2l :20x y +-=,可得()0,0A ,()2,0B ,所以ABC V 的外接圆是以AB 为直径的圆,可得圆心1,0,半径112r AB ==,所以ABC V 的外接圆方程是()2211x y -+=.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .【答案】(1)21n a n =-,12n n b -=;(2)221nn S n =+-.【解析】【分析】(1)设公差为d ,公比为q ()0q >,根据已知列出方程可求出2=d ,2q =,代入通项公式,即可求出结果;(2)分组求和,分别求出{}n a 和{}n b 的前n 项和,加起来即可求出结果.【小问1详解】设{}n a 公差为d ,{}n b 公比为q ()0q >,因为111a b ==,则由3521a b +=可得,41221d q ++=,即4202q d =-,由5313a b +=可得,21413d q ++=,解得2124q d =-,则3d <.所以有()24202124q d d =-=-,整理可得2847620d d -+=,解得2=d 或3138d =>(舍去).所以2=d ,则212424q =-⨯=,解得2q =±(舍去负值),所以2q =.所以有()12121n a n n =+-=-,11122n n n b --=⨯=.【小问2详解】由(1)知,21n a n =-,12n n b -=,则1212n n n a b n -+=-+.()()()1122n n n S a b a b a b =++++++L 1212n n a a a b b b =+++++++ ()()112112212n n n n ⨯--=⨯++-221n n =+-.17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.【答案】(1)1x =或3430x y --=(2)1212⎡---+⎣【解析】【分析】(1)对直线l 的斜率是否存在讨论,根据直线与圆的位置关系列式运算;(2)要使圆C 上存在到点P 的距离为1的点,则圆心C 到()1,0P 的距离d 满足,11180r d r m -≤≤+⎧⎨+>⎩,运算得解.【小问1详解】因为17m =-,所以圆C 的方程为()()22221x y -+-=①当l 的斜率不存在时,l 的方程为1x =,与圆C 相切,符合题意;②当l 的斜率存在时,设l 的方程为()1y k x =-,即kx y k 0--=,圆心C 到l 的距离1d =,解得34k =,则l 的方程为()314y x =-,即3430x y --=,综上可得,l 的方程为1x =或3430x y --=.【小问2详解】由题意可得圆C :()()222218x y m -+-=+,圆心()2,2C ,半径r =,则圆心C 到()1,0P 的距离d ==要使C 上存在到P 的距离为1的点,则11180r d r m -≤≤+⎧⎨+>⎩,即11180m -≤+>⎪⎩,解得1212m ---+≤≤,所以m 的取值范围为1212⎡---+⎣.18.已知数列{}n a 满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,数列{}n b 满足5012n n b a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.【答案】(1)2nn a =(2)5012(3)51992【解析】【分析】(1)根据题意,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,求得2n n a =,再由1n =,得到12a =,即可求得数列的通项公式.(2)由(1)得50122n n b =+,结合指数幂的运算法则,即可求得100n n b b -+的值;.(3)由(2)知1005012n n b b -+=,结合倒序相加法,即可求解.【小问1详解】由数列满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,可得12n n a=,所以2n n a =,当1n =,可得112a =,所以12a =,适合上式,所以数列的通项公式为2n n a =.【小问2详解】由数列满足505011222n n n b a ==++,则100100505010050502222211122222nn n nn nn b b --+++++++==⋅5050505505005022+212(2+2)(222)21+22n n n n n =+==+.【小问3详解】由(2)知1005012n n b b -+=,可得123995050129509111222222b b b b +++⋅⋅⋅+++++++=,则999899997150580510211122222b b b b +++⋅⋅⋅++++++=+ ,两式相加可得123995099(2)2b b b b +++⋅⋅=⋅+,所以1239951992b b b b +++⋅⋅⋅=+.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和n T .【答案】(1)证明见解析;(2)证明见解析;(3)11634994n n n T -+=-⋅.【解析】【分析】(1)由递推关系得112(1)n n b b +-=-,结合等比数列定义证明;(2)由等差数列前n 项和求基本量,结合(1)结论,写出等差、等比数列通项公式、前n 项和公式,再应用作差法比较大小即可;(3)应用错位相减、等比数列前n 项和求结果.【小问1详解】由题设112112(1)n n n n b b b b ++=-⇒-=-,而112b -=,所以{}1n b -是首项、公比均为2的等比数列,得证.【小问2详解】令数列{}n a 的公差为d ,而414646101S a d d d =+=+=⇒=,所以(1)(1)22n n n n n S n -+=+=,又12nn b -=,则2111(21)()222(1)22222n n n n n n n S b n n b n S ++++++=⨯-⨯⋅⋅-⨯(21)(1)22(1)2n n n n n n =++⨯-+⨯(1)20n n =+⨯>恒成立,所以2112n n n n S b S b ++⋅>⋅,得证.【小问3详解】由上知n a n =,则()4214441nn n n n a n nc b -===-,则21231444n n n T -=++++L ,即2311231444444n n n T n n --=+++++ ,所以2311131111411444444414n n n n n T n n --=+++++-=-- ,即11634994n n n T -+=-⋅。

四川省成都市2023-2024学年高二上学期期中数学试题含解析

四川省成都市2023-2024学年高二上学期期中数学试题含解析

2023-2024学年度上期高2025届半期考试高二数学试卷(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试卷上作答无效.5.考试结束后,只将答题卡收回.第Ⅰ卷(选择题,共60分)一.单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()(),2,2,3,4,2a x b =-=-,若a b ⊥,则x 的值为()A.1B.4- C.4D.1-【答案】C 【解析】【分析】根据向量垂直的坐标运算即可求解.【详解】由()(),2,2,3,4,2a x b =-=- 得3840a b x ⋅=--= ,所以4x =,故选:C2.已知直线1:3410l x y --=与2:3430l x y -+=,则1l 与2l 之间的距离是()A.45B.35C.25 D.15【答案】A 【解析】【分析】直接由两平行线之间的距离公式计算即可.【详解】因为已知直线1:3410l x y --=与2:3430l x y -+=,而()()34430⨯---⨯=,所以12l l //,所以由两平行线之间的距离公式可得1l 与2l 之间的距离是45d ==.故选:A.3.已知圆()()221:219C x y -++=与圆()()222:134C x y ++-=,则圆1C 与圆2C 的位置关系为()A.相交B.外切C.内切D.内含【答案】B 【解析】【分析】根据两圆圆心距与半径的关系即可求解.【详解】()()221:219C x y -++=的圆心为()2,1,3r -=,()()222:134C x y ++-=的圆心为()1,3,2R -=,由于125C C ==,125C C r =+=R ,所以1C 与圆2C 外切,故选:B4.若直线()1:410l x a y +-+=与2:20l bx y +-=垂直,则a b +的值为()A.2 B.45C.23D.4【答案】D 【解析】【分析】根据直线垂直的条件求解.【详解】由题意40b a +-=,∴4a b +=.故选:D .5.已知事件,A B 相互独立,且()()0.3,0.7P A P B ==,则()P AB =()A.1 B.0.79C.0.7D.0.21【答案】D 【解析】【分析】由独立事件的概率乘法公式计算.【详解】由题意()()()0.30.70.21P AB P A P B ==⨯=,故选:D .6.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA 上,且2ON NA =,则MN =()A.121232a b c--+B.211322a b c-++C.211322a b c --D.111222a b c +-【答案】C 【解析】【分析】由图形中线段关系,应用向量加减、数乘的几何意义用,,OA a OB b OC c === 表示出MN.【详解】1221()2332MN MB BO ON CB OB OA OA OB OC OB=++=-+=+-- 211211322322OA OB OC a b c =--=--.故选:C7.已知椭圆方程为()222210x y a b a b +=>>,长轴为12A A ,过椭圆上一点M 向x 轴作垂线,垂足为P ,若212||13MP A P A P =⋅,则该椭圆的离心率为()A.3B.3C.13D.23【答案】B 【解析】【分析】根据题意,设()00,M xy ,表示出12,A P A P ,结合椭圆方程,代入计算,再由离心率公式,即可得到结果.【详解】设()00,M x y ,则2200221x y a b+=,()()()120,0,,0,,0A a A a P x -,则10A P x a =+,20A P x a =-,0MP y =所以222002201200||13a y y MP A P A x x a P x a+⋅=-==⋅-,且22x a <,所以22213y a x =-,即222003a x y -=,代入椭圆方程可得222002231a y y a b-+=,化简可得223a b =,则离心率为63e ===.故选:B8.现有一组数据不知道其具体个数,只知道该组数据平方后的数据的平均值是a ,该组数据扩大m 倍后的数据的平均值是b ,则原数据的方差、平方后的数据的方差、扩大m 倍后的数据的方差三个量中,能用,,a b m 表示的量的个数是()A.0 B.1C.2D.3【答案】C 【解析】【分析】设出原始数据,逐个计算求解即可.【详解】设该组数据为123,,n x x x x ⋅⋅⋅,则12nx x x x n++⋅⋅⋅+=.所以22212n x x x a n++⋅⋅⋅+=,12n mx mx mx mx b n ++⋅⋅⋅+==,所以b x m =.原数据的方差()()()()2222221212221212n n n x x x x x x x x x x x x x s xnn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+2222222b b a x x a x a a m m ⎛⎫=-+=-=-=- ⎪⎝⎭,可以用,,a b m 表示.扩大m 倍后的数据的方差:()()()()()()2222221212222n n mx mx mx mx mx mx x x x x x x s m nn ⎡⎤-+-+⋅⋅⋅+--+-+⋅⋅⋅+-==⎢⎥⎢⎥⎣⎦22222212b m s m a m a b m ⎛⎫==-=- ⎪⎝⎭,可以用,,a b m 表示.平方后的数据的方差:()()()()2222222224441212221232n n n x a x a x aa x x x x x x s a nn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+44444422212122n n x x x x x x a a a n n++⋅⋅⋅+++⋅⋅⋅+=-+=-.不能用,,a b m 表示.故选:C.二.多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全选对得5分,部分选对得2分,有错选得0分.9.我校举行党史知识竞赛,对全校参赛的1000名学生的得分情况进行了统计,把得分数据按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分成5组,绘制了如图所示的频率分布直方图.根据图中信息,下列说法正确的是()A.图中的x 值为0.020B.这组数据的极差为50C.得分在80分及以上的人数为400D.这组数据的众数的估计值为82【答案】AC 【解析】【分析】根据频率值和为1即可判断A ;根据由频率分布直方图无法求出这组数据得极差,即可判断B ;求出得分在80分及以上的频率,再乘以总人数,即可判断C ;根据频率分布直方图中众数即可判断D .【详解】解:()100.0050.0350.0300.0101x ⨯++++=,解得0.020x =,故A 正确;因为由频率分布直方图无法求出这组数据得极差,故B 错误;得分在80分及以上的频率为()100.0300.0100.4⨯+=,所以得分在80分及以上的人数为10000.4400⨯=,故C 正确;这组数据的众数的估计值为75,故D 错误.故选:AC .10.下列说法正确的是()A.对任意向量,a b ,都有a b b a⋅=⋅B.若a b a c ⋅=⋅且0a ≠,则b c=C.对任意向量,,a b c,都有()()a b c a b c⋅⋅=⋅⋅ D.对任意向量,,a b c ,都有()+⋅=⋅+⋅ a b c a c b c【答案】AD 【解析】【分析】可由数量积的定义及运算律可逐一判定选项.【详解】cos ,a b a b a b ⋅=,cos ,b a a b a b ⋅= ,可得a b b a ⋅=⋅,故选项A 正确;由a b a c ⋅=⋅ 可得()0a b c ⋅-=,又0a ≠ ,可得b c = 或()a cb ⊥- ,故选项B 错误;()()cos ,R a b c a b a b c c λλ⋅⋅==∈,()()cos ,R a b c c b c b a a μμ⋅⋅==∈所以()()a b c a b c ⋅⋅=⋅⋅ 不一定成立,故选项C 错误;由向量数量积运算的分配律可知选项D 正确;故选:AD.11.甲、乙两支田径队队员的体重(单位:kg)信息如下:甲队体重的平均数为60,方差为200,乙队体重的平均数为68,方差为300,又已知甲、乙两队的队员人数之比为1:3,则关于甲、乙两队全部队员的体重的平均数和方差的说法正确的是()A.平均数为67B.平均数为66C.方差为296D.方差为287【答案】BD 【解析】【分析】先利用比重计算全部队员体重的平均值,再利用平均值计算方差即可.【详解】依题意,甲的平均数160x =,乙的平均数268x =,而甲、乙两队的队员人数之比为1:3,所以甲队队员在所有队员中所占比重为14,乙队队员在所有队员中所占比重为34故甲、乙两队全部队员的体重的平均数为:1360686644x =⨯+⨯=;甲、乙两队全部队员的体重的方差为:()()22213200606630068665922828744s ⎡⎤⎡⎤=⨯+-+⨯+-=+=⎣⎦⎣⎦.故选:BD.12.已知四面体中三组对棱的中点间的距离都相等,则下列说法正确的是()A.该四面体相对的棱两两垂直B.该四面体四个顶点在对面三角形的射影是对面三角形的外心C.该四面体的四条高线交于同一点(四面体的高线即为过顶点作底面的垂线)D.该四面体三组对棱平方和相等【答案】ACD 【解析】【分析】设,,AB b AC c AD d ===,利用向量法AD 选项,用几何法判断BC 选项.【详解】选项A ,如图,四面体ABCD 中,,,,,,E F G H I J 是所在棱中点,EF GH IJ ==,设,,AB b AC c AD d === ,则111()()222EF AF AE AD AB AC d b c =-=-+=-- ,111()()222GH AH AG AC AD AB c d b =-=+-=+- ,EF GH =,即EF GH = ,所以11()()22d b c c d b --=+-,所以222222222222d b c b d c d b c d b c c d b d b c++-⋅-⋅+⋅=+++⋅-⋅-⋅c d b c ⋅=⋅ ,即()0c b d ⋅-= ,所以()c b d ⊥- ,即AC DB ⊥,所以AC BD ⊥,同理,AB CD AD BC ⊥⊥,A 正确;选项B ,设1AH ⊥平面BCD ,1H 是垂足,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,而1BH ⊂平面1ABH ,所以1CD BH ⊥,同理1BC DH ⊥,所以1H 是平面BCD 垂心,同理可得其它顶点在对面的射影是对面三角形的垂心,B 错;选项C ,如上图,1AH ⊥平面BCD ,2BH ⊥平面ACD ,3DH ⊥平面ABC ,123,,H H H 是垂足,先证明12,AH BH 相交,1AH ⊥平面BCD ,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,同理CD ⊥平面2ABH ,所以平面1ABH 和平面2ABH 重合,即12,AH BH 共面,它们必相交,设12AH BH H ⋂=,下面证明DH ⊥平面ABC ,与证明CD ⊥平面1ABH 同理可证得BC ⊥平面1ADH ,又DH ⊂平面1ADH ,所以BC DH ⊥,同理由2BH ⊥平面ACD 可证得DH AC ⊥,而,AC BC 是平面ABC 内两相交直线,所以DH ⊥平面ABC ,因此DH 与3DH 重合,同理可证CH ⊥平面ABD ,C 正确;选项D ,由选项A 的讨论同理可得b c b d c d ⋅=⋅=⋅,222222222()2AB CD AB CD b d c b c d c d +=+=+-=++-⋅ ,222222222()2AC BD AC BD c d b b c d b d +=+=+-=++-⋅,所以2222AB CD AC BD +=+,同理222222AB CD AC BD AD BC +=+=+,D 正确.故选:ACD .第Ⅱ卷(非选择题,共90分)三.填空题:本大题共4小题,每小题5分,共20分.13.经过()()0,2,1,0A B -两点的直线的方向向量为()1,k ,则k =______.【答案】2【解析】【分析】方向向量与BA平行,由此可得.【详解】由已知(1,2)BA =,()1,k 是直线AB 的方向向量,则2k =,故答案为:2.14.在一次篮球比赛中,某支球队共进行了8场比赛,得分分别为25,29,30,32,37,38,40,42,那么这组数据的第65百分位数为______.【答案】38【解析】【分析】根据百分位数的定义即可求解.【详解】865% 5.2⨯=,故这组数据的第65百分位数为第6个数38,故答案为:3815.写出与圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=都相切的一条直线的方程__________.【答案】0x =##4y =-##430x y -=##34100x y ++=【解析】【分析】判断两个圆是相离的,得到应该有四条公切线,画出图形易得0x =或4y =-为公切线,设切线方程为y kx b =+,根据圆心到直线的距离等于半径列出关于,k b 方程组,求解.【详解】因为圆1C 的圆心为()11,3C --,半径11r =圆2C 的圆心为()23,1C -,半径23r =又因为124C C =所以圆1C 与圆2C 相离,所以有4条公切线.画图为:易得:0a x =或:4n y =-是圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=的公切线设另两条公切线方程为:y kx b =+圆1C 到直线y kxb =+的距离为1=圆2C 到直线y kxb =+3=所以3133k b b k ++=-+所以31339k b b k ++=-+或31339k b b k ++=-+-34k b =+或52b =-当52b =-1==所以34k =-,切线方程为34100x y ++=当34k b =+3==所以()()225249b b +=++所以240b b +=所以0b =或4b =-当0b =时43k =,切线方程为430x y -=当4b =-时0k =,切线方程为4y =-故答案为:0x =或4y =-或430x y -=或34100x y ++=16.已知P 为直线=2y -上一动点,过点P 作圆221x y +=的两条切线,切点分别为,B C ,则点()2,1A 到直线BC 的距离的最大值为______.【答案】52【解析】【分析】首先设点00(,)P x y ,求过点BC 的直线方程,并判断直线BC 过定点,再利用几何关系求最大值.【详解】设00(,)P x y ,过点P 引圆221x y +=的两条切线,切点分别为,B C ,则切点在以OP 为直径的圆上,圆心00,22x y ⎛⎫ ⎪⎝⎭,半径r =,则圆的方程是22220000224x y x y x y +⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,整理为:22000x y x x y y +--=,又点,B C 在圆221x y +=上,两圆方程相减得到001x x y y +=,即直线BC 的方程是001x x y y +=,因为02y =-,代入001x x y y +=得021x x y -=,则直线BC 恒过定点10,2N ⎛⎫- ⎪⎝⎭,所以点()2,1A 到直线BC 的距离52d AN ≤==,所以点()2,1A 到直线BC 的距离的最大值为52.故答案为:52.【点睛】思路点睛:首先本题求以OP 为直径的圆,利用两圆相减,求得过两圆交点的直线方程,关键是发现直线BC 过定点,这样通过几何关系就容易求定点与动直线距离的最大值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的周长为()()14,3,0,3,0B C -.(1)求点A 的轨迹方程;(2)若AB AC ⊥,求ABC 的面积.【答案】(1)()2210167x y y +=≠(2)7【解析】【分析】(1)结合椭圆定义可得A 的轨迹方程.(2)利用AB AC ⊥及椭圆定义可列出方程,求解AC AB ⋅,即可算出ABC 的面积.【小问1详解】ABC 的周长为14且6,86BC AC AB BC =∴+=>=,根据椭圆的定义可知,点A 的轨迹是以()()3,0,3,0B C -为焦点,以8为长轴长的椭圆,即4,3,a c b ===A 的轨迹方程为221167x y+=,又A 为三角形的顶点,故所求的轨迹方程为()2210167x y y +=≠.【小问2详解】222,||||36AB AC AB AC BC ⊥∴+== ①.A 点在椭圆()2210167x y y +=≠上,且()()3,0,3,0B C -为焦点,8AC AB ∴+=,故22||264AC AB AC AB ++⋅=②.由①②可得,14AC AB ⋅=,故172S AC AB =⋅⋅=.ABC ∴ 的面积为7.18.如图,四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点,连接DE .(1)求DE 的长;(2)求点D 到平面ABC 的距离.【答案】18.219.3【解析】【分析】(1)利用基底,,OA OB OC 表示出向量DE,再根据向量数量积求长度的方法即可求出;(2)由该几何体特征可知,点O 在平面ABC 的射影为ABC 的中心,即可求出.【小问1详解】因为四面体OABC 的所有棱长都是1,所以该四面体为正四面体,()1111122222DE DA AB BE OA OB OA OC OB OA OB OC =++=+-+-=-++,而且12OA OB OB OC OA OC ⋅=⋅=⋅= ,所以()()2211131442DE OA OB OC =--=-=,即2DE =,所以DE 的长为2.【小问2详解】因为四面体OABC 为正四面体,所以点O 在平面ABC 的射影O '为ABC 的中心,ABC 的外接圆半径为11sin6023︒⨯=,所以点O 到平面ABC 的距离为3d ==,由于D 点为线段OA 的中点,所以点D 到平面ABC 的距离为3.19.现从学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160,165,⋅⋅⋅,第八组[]190195,.右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率并估计该校的800名男生的身高的中位数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记事件A 表示随机抽取的两名男生不.在同一组....,求()P A .【答案】(1)第七组的频率为0.06,中位数为174.5cm(2)815【解析】【分析】(1)根据频率为和1,可得第七组的频率为0.06,设学校的800名男生的身高中位数为m ,根据中位数的定义可得()0040080217000405...m ..+++-⨯=,求解即可;(2)用列举法写出基本事件的总数和两名男生不在同一组所包含的基本事件,即可得解.【小问1详解】(1)由直方图的性质,易知第七组的频率为415(0.008+0.016+0.04+0.04+0.06++0.008)=0.06505-⨯⨯.由于0.040.080.20.320.5,0.040.080.20.20.520.5++=<+++=>,设学校的800名男生的身高中位数为m ,则170175m <<,由()0040080217000405...m ..+++-⨯=,得1745m .=,所以学校的800名男生的身高的中位数为174.5cm .【小问2详解】解:第六组[)180185,的人数为4,设为a b c d ,,,,第八组[]190195,的人数为0.0085502⨯⨯=,设为,A B ,则从中随机抽取两名男生有,,,,,,,,,,,,,dB,ab ac ad bc bd cd aA aB bA bB cA cB dA AB 共15种情况.事件A 表示随机抽取的两名男生不在同一组,所以事件A 包含的基本事件为,,,aA aB bA bB ,,,,cA cB dA dB 共8种情况.所以()815P A =.20.已知圆C 经过点()0,2A ,()6,4B ,且圆心在直线340x y --=上.(1)求圆C 的方程;(2)若平面上有两个点()6,0P -,()6,0Q ,点M 是圆C 上的点且满足2MP MQ=,求点M 的坐标.【答案】(1)()22420x y -+=(2)10,33⎛⎫ ⎪ ⎪⎝⎭或10,33⎛⎫-⎪ ⎪⎝⎭【解析】【分析】(1)设出圆心,利用点到直线的距离公式即可求得圆的方程.(2)根据已知条件求得M 满足的方程联立即可求得M 的坐标.【小问1详解】∵圆心在直线340x y --=上,设圆心()34,C a a +,已知圆C 经过点()0,2A ,()6,4B ,则由CA CB =,=解得0a =,所以圆心C 为()4,0,半径r CA ===所以圆C 的方程为()22420x y -+=;【小问2详解】设(),M x y ,∵M 在圆C 上,∴()22420x y -+=,又()6,0P -,()6,0Q ,由2MPMQ=可得:()()2222646x y x y ⎡⎤++=-+⎣⎦,化简得()221064x y -+=,联立()()22224201064x y x y ⎧-+=⎪⎨-+=⎪⎩解得10411,33M ⎛⎫ ⎪ ⎪⎝⎭或10411,33⎛⎫- ⎪ ⎪⎝⎭.21.如图,在直三棱柱111ABC A B C -中,1π,2,3,2BAC AB AC AA M ∠====是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点,点Q 在线段1A N 上.(1)若//PQ 平面1A CM ,请确定点Q 的位置;(2)请在下列条件中任选一个,求11A QA N的值;①平面BPQ 与平面ABC的夹角余弦值为53;②直线AC 与平面BPQ所成角的正弦值为106.【答案】(1)Q 为1A N 靠近N 三等分点处(2)①1112A Q A N =;②1112A Q A N =【解析】【分析】(1)分别以1,,AC AB AA 所在直线为,,x y z 轴,建立空间直角坐标系,求出面1A CM 的法向量n,由//PQ 平面1A CM 得PQ n ⊥ ,即0PQ n ⋅= ,求解11A QA N即可;(2)设()1101A Q A Nλλ=<<,求出平面BPQ 的法向量为m,平面ABC 的法向量,若选择①,利用平面与平面的夹角的向量求法求解;若选择②,由直线与平面所成角的向量求法求解.【小问1详解】分别以1,,AC AB AA 所在直线为,,x y z轴,建立空间直角坐标系,()()()()()130,0,3,2,0,0,0,1,0,1,1,3,1,1,,,,32A C M N P Q a a ⎛⎫ ⎪⎝⎭,则()()1132,0,3,0,1,3,1,1,2A C A M PQ a a ⎛⎫=-=-=-- ⎪⎝⎭ .设面1A CM 的法向量(),,n x y z =r ,则110A C n A M n ⎧⋅=⎪⎨⋅=⎪⎩ ,即23030x z y z -=⎧⎨-=⎩.令2z =,得()3,6,2n =.因为//PQ 平面1A CM ,所以PQ n ⊥ ,即0PQ n ⋅=.所以()()316130a a -+-+=,得23a =,122,,033A Q ⎛⎫= ⎪⎝⎭,所以13A Q = .因为11123A Q A N A N ==,所以Q 为1A N 靠近N 三等分点处时,有//PQ 平面1A CM .【小问2详解】设()1101A QA Nλλ=<<,则()11,,0A Q A N λλλ== .所以1111331,1,,1,1,22PQ PA A Q PA A N PB λλλ⎛⎫⎛⎫=+=+=--=--⎪ ⎪⎝⎭⎝⎭.设平面BPQ 的法向量为()111,,m x y z =,则00PQ m PB m ⎧⋅=⎪⎨⋅=⎪⎩,即()()11111131102302x y z x y z λλ⎧-+-+=⎪⎪⎨⎪-+-=⎪⎩.令()141z λ=-,得()()()3,32,41m λλλ=--.注意到平面ABC 的法向量为()0,0,1,直线AC 的方向向量为()1,0,0,若选择①,平面BPQ 与平面ABC的夹角余弦值为53,则()10,0,1cos 53m mθ⋅==.即()2483001λλλ-+=<<,解得12λ=,即1112A Q A N =.若选择②,直线AC 与平面BPQ所成角的正弦值为106,则()21,0,0sin 106m mθ⋅==.即()2181713001λλλ+-=<<,解得12λ=,即1112A Q A N =.22.已知()()()2,3,2,0,2,0,A B C ABC -∠的内角平分线与y 轴相交于点E .(1)求ABC 的外接圆的方程;(2)求点E 的坐标;(3)若P 为ABC 的外接圆劣弧 BC 上一动点,ABC ∠的内角平分线与直线AP 相交于点D ,记直线CD 的斜率为1k ,直线CP 的斜率为2k ,当1275k k =-时,判断点E 与经过,,P D C 三点的圆的位置关系,并说明理由.【答案】(1)2232524x y ⎛⎫+-=⎪⎝⎭(2)20,3⎛⎫ ⎪⎝⎭(3)点E 在经过,,P D C 三点的圆上,理由见解析【解析】【分析】(1)根据直角三角形的性质即可求解圆心和半径,从而得解;(2)根据等面积法或者利用角平分线的性质可得AB AF BCCF=,即可求解长度得斜率,进而可求解直线方程,得解;(3)联立方程可得22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭,6743,3131k k D k k --⎛⎫ ⎪--⎝⎭,根据1275k k =-可得1k =,即可求解点的坐标,由点的坐标求解圆的方程,即可判定.【小问1详解】易知ABC 为C 为直角的直角三角形,故外接圆的圆心为斜边AB 边的中点30,2⎛⎫ ⎪⎝⎭,半径为52,所以外接圆的方程为2232524x y ⎛⎫+-= ⎪⎝⎭.【小问2详解】设ABC ∠的内角平分线交AC 于点F ,根据角平分线性质定理,可知AB AF BCCF=,(利用11sin 22211sin 222ABFBCFABC AB BF AF BC S ABC S BC BF FC BC ∠⋅⋅==∠⋅⋅ 可得AB AF BC CF =)由结合3AF CF +=,5AB ==,4,3BC AC ==所以4133BD CF CF k BC =⇒==所以,ABC ∠的内角平分线方程为()123y x =+,令0x =,即可得点E 坐标20,3⎛⎫⎪⎝⎭.【小问3详解】点E 在经过,,P D C 三点的圆上,理由如下:由题意可知直线AP 的斜率存在,故设直线AP 的直线方程为()32y k x -=-,联立直线与圆的方程()223232524y k x x y ⎧-=-⎪⎨⎛⎫+-=⎪ ⎪⎝⎭⎩,可得()()22221344640kx k k x kk ++-+--=注意到,A P 两点是直线与圆的交点,所以2246421P k k x k --⋅=+222321P k k x k --∴=+,故22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭.联立直线AP 与ABC ∠的内角平分线方程()321233y k x y x ⎧-=-⎪⎨=+⎪⎩,可得6731k x k -=-6743,3131k k D k k --⎛⎫∴ ⎪--⎝⎭.此时221222243433434003443313111,6753423253422313111k k k k k k k k k k k k k k k k k k k k k ----------++======------+----++,12343475,1435534k k k k k k k -+∴==-=-∴=-+.此时,点31,22P ⎛⎫-- ⎪⎝⎭,点11,.22D P ⎛⎫- ⎪⎝⎭点满足在劣弧 BC 上.设经过,,P D C 三点的圆的方程为()2222040x y mx ny t m n t ++++=+->,则4205320120m t m n t m n t ++=⎧⎪--+=⎨⎪-++=⎩,解得5617673m n t ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩.所以,经过,,P D C 三点的圆的方程为2251770663x y x y +-+-=.将点20,3E ⎛⎫ ⎪⎝⎭代入圆的方程成立,所以点E 在经过,,P D C 三点的圆上.。

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。

黑龙江省牡丹江市第二高级中学2024-2025学年高二上学期期中考试(11月)数学试题(含解析)

牡丹江二中2024-2025学年度第一学期高二学年期中考试数学考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必将密封线内项目填写清楚。

考生作答时,请将答案答在答题卡上。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

3.本试卷主要命题范围:选择性必修第一册(第二章第三章)。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.在平面直角坐标系中,原点(0,0)到直线的距离为C.2D.32.抛物线的准线方程为A. B. C. D.3.若直线与圆交于,两点,则A. B.12C. D.4.已知双曲线的左、右焦点分别为,,焦距为.若以线段为直径的圆与直线有交点,则双曲线的离心率取值范围为A.(1,2)B. C. D.5.已知椭圆,,是椭圆的左、右焦点,焦距为,是椭圆上一点,是的外角平分线,过作的垂线,垂足为,则A. B. C. D.6.已知圆与圆相切,则的最小值为A.5B.3C.27.若直线与曲线有两个交点,则实数的取值范围是~20x y +-=28y x =132y =132y =-116y =116y =-34130x y --=()()222336x y -++=A B AB =()2222:10,0x y C a b a b-=>>1F 2F 2c 12F F 20ax by ac -+=C ()2,+∞(]1,2[)2,+∞()2222:10x y C a b a b +=>>1F 2F C 2c M C l 12F MF ∠2F l P OP =abc2a()()221:29O x m y -++=()()222:21O x n y +++=22m n +:20l kx y --=:1C x =-kA. B. C. D.8.法国数学家、化学家和物理学家加斯帕尔-蒙日被称为“画法几何之父”,他创立的画法几何学推动了空间解析几何的发展,被广泛应用于工程制图当中.如过椭圆外的一点作椭圆的两为半径的圆,这个圆叫做椭圆的蒙日圆.若椭圆的蒙日圆为,过圆上的动点作椭圆的两条切线,分别与圆交于,两点,直线与椭圆相交于,两点,则下列结论不正确的是A.椭圆的离心率为B.到椭圆C.若动点在椭圆上,记直线,的斜率分别为,,则D.面积的最大值为二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6,部分选对的得部分分,有选错的得0分.9.点,为椭圆的两个焦点,点为椭圆内部的动点,则周长的取值可以为A.4B. C.D.610.设有一组圆,下列命题正确的是A.不论如何变化,圆心始终在一条直线上B.所有圆均不经过点(3,0)C.经过点(2,2)的圆有且只有一个D.所有圆的面积均为411.在平面直角坐标系中,凸四边形的4个顶点均在抛物线上,则A.四边形不可能为平行四边形B.存在四边形,满足4,43⎛⎫⎪⎝⎭4,23⎛⎤⎥⎝⎦442,,233⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦4,3⎛⎫+∞⎪⎝⎭2222:10x y D a b a b+=>>()()22:1044x y C m m +=<<22:7E x y +=E M C E P Q PQ C A B C 12M C 1+N C AN BN 1k 2k 1234k k =-MPQ △721F 2F 22:143x y C +=P C 12PF F △()()()22:4k C x k y k k -+-=∈R k C k C k C xOy ABCD 2:2E y x =ABCD ABCD A C∠∠=C.若过抛物线的焦点,则直线,斜率之积恒为一2D.若为正三角形,则该三角形的面积为三、填空题:本大题共3小题,每小题5分,共15分.12.过点且与直线平行的直线方程为__________.13.曲线与恰有四条公切线,则实数的取值范围为__________.14.椭圆的一个焦点是,为坐标原点,过的直线交椭圆于,两点.若恒有,则椭圆离心率的取值范围为__________.四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(13分)已知直线,直线.(1)若,求实数的值;(2)若,求实数的值.16.(15分)(1)已知双曲线的顶点在轴上,两顶点间的距离是8,离心率,求双曲线的标准方程;(2)斜率为1的直线经过抛物线的焦点,且与抛物线相交于,两点.求线段的长.17.(15分)已知圆与圆的公共弦所在的直线是,且圆的圆心在轴上.(1)求圆的方程;(2)若直线与圆相切,且在两条坐标轴上的截距相等,求直线的方程.18.(17分)已知抛物线的焦点为,抛物线上一点横坐标为3,且点到焦点的距离为4.(1)求抛物线的方程;(2)过点(2,0)作直线交抛物线于点,,求面积的最小值(其中为坐标原点).19.(17分)已知椭圆的一个顶点为.(1)求椭圆的方程;AB E F OA OB OAC △()3,4P 210x y -+=221:20C x y x ++=222:480C x y x y m +--+=m ()222210x y a b a b+=>>()1,0F O F l A B 222OA OB AB +<()()1:21210l a x a y ---+=()2:1210l a x y +--=12l l ∥a 12l l ⊥a C x 54e =C l 24y x =F A B AB 22:2830M x y x y ++--=C :10l x y --=C x C m C m ()2:20C y px p =>F P P F C A B ABO △O ()2222:10x y C a b a b +=>>()0,1P C(2)直线与椭圆交于、两点,且,求的值.:l y x m =+C A B PA PB ⊥m牡丹江二中2024-2025学年度第一学期高二学年期中考试・数学参考答案、提示及评分细则1.A 原点(0,0)到直线2.B 由化得,故物物线的标准方程为,所以,则,所以抛物线的准线方程为.3.C 由圆的方程为可知圆心为(2,-3),半径,则圆心到直线的距离,根据圆的弦长公式可得.4.D 以线段为直径的圆的方程是,与直线有交点,则圆心到直线的距离,所以双曲线的离心率.5.A 延长交的延长线于点,如图所示.平分,且,为等腰三角形,,且为的中点,又,,为的中点,为的中点,6.C 由题,圆的圆心为,半径为3,圆的圆心为,半径为1.若圆与圆外,即,则,即,当且仅当时等号成立.若圆与圆内切,则,即,则20x y +-==28y x =218x y =218x y =128p =116p =28y x =1232p x =-=-()()222336x y -++=6r =34130x y --=1d AB ==12F F 222x y c +=20ax by ac -+=2d a c ==≤2ce a=≥2F P 1F M N PM 2NMF ∠2MP F N ⊥2MNF ∴△2MF MN =P 2F N 122MF MF a += 112MF MN F N a ∴+==P 2F N O 12F F 11.2OP F N a ∴==1O ()1,2O m -2O ()2,2O n --1O 2O 314=+=()216m n +=222422m n m n ++⎛⎫≥= ⎪⎝⎭228m n +≥m n =1O 2O 312=-=()24m n +=,即,当且仅当时等号成立.综上,的最小值为2.7.B直线恒过定点,曲线即:,,曲线表示以(1,1)为圆心,1为半径的的那部分圆,如图所示,直线与曲线有两个交点,当过点的直线与图中这部分圆相切时有1个交点,此时,解得;当过点的直线也过点时有2个交点,此时,.8.D 椭圆的蒙日圆为,根据蒙日圆的定义,,得,椭圆,,,则,椭圆的离心率,故A 正确;点是圆上的动点,椭圆的右焦点,则的最大值是,故B 正确;根据蒙日圆的定义可知,则为圆的直径,与椭圆交于两点,,点,关于原点对称,设,,,,故C 正确;因为为圆的直径,,当点到直线的距离为时,的面积最大,此时最大值是,故D 错误.9.BC 由椭圆,得:,,当点在椭圆上时,周长最大,为;当点在轴上时,去最小值,为.又因点为椭圆内部的动点,所以周222122m n m n ++⎛⎫≥= ⎪⎝⎭222m n +≥m n =22m n + :20l kx y --=()0,2M -:1C x =-()()22111x y -+-=1x ≥∴C ()1x ≥ l C ∴M 1143k =M ()1,0A ()202210k --==-423k ∴<≤ ()22:1044x y C m m+=<<22:7E x y +=47m +=3m =∴22:143x y C +=24a =23b =21c =∴12c e a ==M 22:7E x y +=()1,0F MF 1MP MQ ⊥PQ E PQ A B A B ()11,A x y ()11,B x y --()00,N x y ()2222010101012222010101013344AN BNx x y y y y y yk k x x x x x x x x ---+-⋅=⋅===--+--D PQ PQ =M PQ r =PQM △172⨯=22:143x y C +=2a =1c =P 12PF F △226a c +=P x 44c =P C 12PF F △长的取值范围为(4,6),故选BC.10.AB 由题意可知:圆的圆心,半径.对于A ,不论如何变化,圆心始终在直线上,故正确;对于,令,整理得,因为,可知方程无解,所以所有圆均不经过点(3,0),故B正确;对于C ,令,整理得,因为,可知方程有两个不同的解,所以经过点(2,2)的圆有且只有两个,故C错误;对于D ,因为半径,所以所有圆的面积均为,故D 错误.故选AB.11.ABD 对于A ,构成平行四边形的条件是对边平行且相等,而水平直线与至多只有一个交点,因此,四边形不可能为平行四边形,故A 正确;对于B ,如图1所示,在抛物线上任取,两点(,分居轴两侧)连接,作的垂直平分线交抛物线于,两点,连接,,,,则,故B 正确;对于C ,设,,,,解得,所以,故C 错误;对于D ,设若为正三角形,如图2所示,由抛物线的对称性可知,线,则,解得,,,D 正确.故选ABD.12. 设与直线平行的直线方程为,把点的坐标代入直线方程,求得,所以所求直线方程为.13.(4,20) 圆,即,其圆心,半径,圆,即,其圆心,半径,则必有,即,两圆圆心的距离,若两圆有4条公切线,则两圆外()()()22:4k C x k y k k -+-=∈R (),C k k 2r =k (),C k k y x =A B ()()22304k k -+-=22650k k -+=()2642540=--⨯⨯=-<△k C ()()22224k k -+-=2420k k -+=()2441280=--⨯⨯=>△k C 2r =224ππ⨯=22y x =ABCD A C A C x AC AC B D AB AD CB CD A C ∠∠=211,2y A y ⎛⎫ ⎪⎝⎭222,2y B y ⎛⎫ ⎪⎝⎭12221212422OA OB y y k k y y y y ⋅=⋅=12112222121121022112222AB AF y y y y k k y y y y y y --=⇒=⇒=+---121y y =-4OA OB k k ⋅=-OAC △30AOx ∠=OA k =OA y x =:2,2,y x y x ⎧=⎪⎨⎪=⎩6A x =A y =OA ===1sin602OAC S OA OC =⋅= △220x y --=210x y -+=20x y m -+=()3,4P 2342m =-⨯+=-220x y --=221:20C x y x ++=()2211x y ++=()11,0C -11r =222:480C x y x y m +--+=()()222420x y m -+-=-()22,4C 2r =200m ->20m <125C C ==离,必有,解得,则的取值范围为(4,20).14. 设过点的直线的直线方程为与椭圆交于,两点,设点,,,联立方程得,整理为,,,,,是钝角,,,,,整理为恒成立,,即,,解得或,,离心率.15.解:(1),, (2)分整理得,解得或,……5分当时,与重合,舍去,故. (7)分(2)解:,,……9分,或.……13分16.解:(1)①由题意,解得,,则,……4分所以双曲线的标准方程为.……6分(2)由题意,抛物线的焦点,,则直线的方程为,……8分51>+4m >m ⎛ ⎝F l 1x my =+A B ()11,A x y (2B x )2y ()2222221b my a y a b ++=()2222222220b m a y mb y b a b +++-=212222mb y y b m a ∴+=-+22212222b a b y y b m a -=+222OA OB AB +< 222cos 02OA OB ABAOB OA OB∠+-∴=<⨯AOB ∠∴12120x x y y ∴+<()()1212110my my y y ∴+++<()()21212110m y y m y y ∴++++<()2222222222222110b a b m b m b m a b m a -∴+⋅-+<++222221a b m a b ++>22221a b a b+∴<()222211a a a a +-<-42310a a ∴-+>2a >2a <a ∴>∴1c e a a ⎛==∈ ⎝12l l ∥()()()()21221a a a ∴-⋅-=-⋅+250a a -=0a =5a =0a =1l 2l 5a =12l l ⊥ ()()()()211220a a a ∴-⋅++-⋅-=22350a a ∴+-=1a ∴=52a =-28,5,4a c e a =⎧⎪⎨==⎪⎩4a =5c =2229b c a =-=221169x y -=24y x =()1,0F 2p =l 1y x =-设,,联立得,所以,……12分所以.……15分17.解:(1)由已知可设圆的方程为:,①圆②①一②可得:,即为的方程,……3分所以有,,所以圆的方程为.……6分(2)由(1)知圆心的坐标为(3,0),半径为2,由已知当直线不过原点时可设的方程为,……7分因为直线与圆所以直线的方程为.……10分又因为过原点的直线若与圆相切,截距相等且为0,所以又可设直线的方程为所以直线的方程为.……14分综上直线的方程为或.……15分18.解:(1)由题意知,,所以.……5分(2)由(1)知,抛物线,直线过(2,0),可设直线的方程为,联立.……9分设,,不妨设,,……12分()11,A x y ()22,B x y 21,4,y x y x =-⎧⎨=⎩2610x x -+=126x x +=12628AB x x p =++=+=C 220x y Dx F +++=22:2830,M x y x y ++--=()2830D x y F -+++=l 2836111D F D -+==⇒=---5F ⇒=C 22650x y x +-+=C m m 0x y a ++=m C 23a ⇒=-±m 30x y +-±=m y kx =2k =⇒=m y x =m 30x y +-±=y x =1342p +=2p ∴=24y x =2:4C y x =AB AB 2x ty =+224,4802y x y ty x ty ⎧=⇒--=⎨=+⎩()11,A x y ()22,B x y 10y >128y y ∴=-当且仅当,即时取等号,的最小值为.……17分19.解:(1)设椭圆的半焦距为.由题意得……1分解得,所以椭圆的方程为.……3分(2)由得.……4分由,解得.……5分设,,则,,所以,……8分,,.……11分因为,所以,则,则,则,解得或.……15分当时,直线过点,则不满足,所以.……17分12111118822AOB S y y y y y y -∴=⨯⨯-=-=+≥=△118y y =1y =AOB S ∴△c 2221,,b ca abc =⎧⎪⎪=⎨⎪=+⎪⎩2a =C 2214x y +=22,1,4y x m x y =+⎧⎪⎨+=⎪⎩()2258410x mx m ++-=()()22845410m m =-⨯⨯->△m <<()11,A x y ()22,B x y 1285mx x +=-()212415m x x -⋅=1212822255m y y x x m m m +=++=-+=()()()()2222121212124184555m m m y y x m x m x x m x x m m m--⎛⎫⋅=+⋅+=+++=+-+=⎪⎝⎭()111PA x y =- ,()22,1PB x y =-PA PB ⊥0PA PB ⋅=()()1212110x x y y +--=()12121210x x y y y y +-++=()22414210555m mm --+-+=35m =-1m =1m =:1l y x =+P PA PB ⊥35m =-。

四川省成都市第十二中学(四川大学附属中学)_2024-2025学年高二上学期期中考试数学试题

四川省成都市第十二中学(四川大学附属中学) 2024-2025学年高二上学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
四、解答题
15.某校高二年级举行了“学宪法、讲宪法”知识竞赛,为了了解本次竞赛的学生答题情况,从中抽取了200名学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,
按照[)
50,60,[)
70,80,[)
60,70,[)
90,100的分组作出频率分布直方图如图所示.
80,90,[]
(1)求频率分布直方图中x的值,并估计该200名学生成绩的中位数和平均数;
(2)若在[)
70,80的样本成绩对应的学生中按分层抽样的方法抽取7人进行访谈,60,70和[)
再从这七人中随机抽取两人进行学习跟踪,求抽取的两人都来自[)
70,80组的概率.
16.如图,四边形
A ABB是圆柱的轴截面,C是下底面圆周上一点,点D是线段BC中点
11
则圆C有且仅有3个点,,
M N P
故选:BCD.
11.ABD
【分析】将二十四等边体补形为正方体,且二十四等边体根据题意易知正方体棱长为2,
uuu r uuu
根据向量的坐标,可得2
CE=。

重庆市学校2024-2025学年高二上学期期中考试数学试题含答案

2024-2025学年度上期期中考试高二数学试题(答案在最后)(满分:150分;考试时间:120分钟)注意事项:1.答题前,考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2.答选择题时,必须使用2B 铅笔填涂;答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷自行保管,以备评讲).一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z 对应的点的坐标是(,则z 的共轭复数z =()A.1+B.1-C.1-D.1-【答案】B 【解析】【分析】根据复数的几何意义得到1z =+,再利用共轭复数的定义,即可求解.【详解】因为复数z 对应的点的坐标是(,得到1z =+,所以1z =,故选:B.2.已知直线1:10l ax y ++=与()2:130l a x ay ++-=,则“2a =-”是“12l l ⊥”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】A 【解析】【分析】利用两直线垂直的充要条件得到220a a +=,从而得到2a =-或0a =,再利用充分条件与必要条件的判断方法,即可求解.【详解】当直线1:10l ax y ++=与()2:130l a x ay ++-=垂直时,(1)0a a a ++=,即220a a +=,解得2a =-或0a =,所以2a =-可以推出12l l ⊥,但12l l ⊥推不出2a =-,即“2a =-”是“12l l ⊥”的充分不必要条件,故选:A.3.下列函数中,在区间(0,)+∞上单调递增的是()A.()ln f x x =- B.1()2xf x =C.1()f x x=- D.|1|()3x f x -=【答案】C 【解析】【分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可.【详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减,所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减,所以()12x f x =在()0,∞+上单调递减,故B 错误;对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减,所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.4.国家射击运动员甲在某次训练中的5次射击成绩(单位:环)为9,6,,4,8m ,其中m 为整数,若这5次射击成绩的第40百分位数为6,则m =()A.4B.6C.8D.9【答案】B 【解析】【分析】根据条件,利用百分位数的求法,即可求解.【详解】将5次射击成绩除m 外,从小排到大为4,6,8,9,因为50.42i np ==⨯=,所以第40百分位数是:从小排到大后的第二个数与第三个数的平均数,又这5次射击成绩的第40百分位数为6,所以6m =,故答案为:B.5.已知直线1y kx =+与圆224x y +=交于点M ,N ,当k 变化时,则MN 的最小值为()A.1B.2C.D.【答案】D 【解析】【分析】根据条件得直线过定点,且定点在圆内,先求得圆心到直线距离d ,即可表示出弦长,从而知d 最大时,弦长最短,再利用几何关系,即可求解.【详解】易知直线1y kx =+过定点(0,1)P ,又1014+=<,所以点(0,1)在224x y +=内,又易知圆心为(0,0)O ,半径为2r =,设圆心(0,0)O 到直线的距离为d ,则MN ==,当d 最大时,M 最小,此时直线1y kx =+与直线OP 垂直,即1d OP ==,所以M 的最小值为MN ==故选:D.6.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,PC PD ==该棱锥的高为().A.1B.2C.D.【答案】D 【解析】【分析】取点作辅助线,根据题意分析可知平面PEF ⊥平面ABCD ,可知⊥PO 平面ABCD ,利用等体积法求点到面的距离.【详解】如图,底面ABCD 为正方形,当相邻的棱长相等时,不妨设4,PA PB AB PC PD =====,分别取,AB CD 的中点,E F ,连接,,PE PF EF ,则,PE AB EF AB ⊥⊥,且PE EF E ⋂=,,PE EF ⊂平面PEF ,可知AB ⊥平面PEF ,且AB ⊂平面ABCD ,所以平面PEF ⊥平面ABCD ,过P 作EF 的垂线,垂足为O ,即PO EF ⊥,由平面PEF 平面ABCD EF =,PO ⊂平面PEF ,所以⊥PO 平面ABCD ,由题意可得:2,4PE PF EF ===,则222PE PF EF +=,即PE PF ⊥,则1122PE PF PO EF ⋅=⋅,可得PE PF PO EF⋅==,当相对的棱长相等时,不妨设4PA PC ==,PB PD ==,因为BD PB PD ==+,此时不能形成三角形PBD ,与题意不符,这样情况不存在.故选:D.7.直线()()21250x y λλλ+--=∈R 的倾斜角范围为()A.3,44ππ⎡⎤⎢⎣⎦ B.,42ππ⎡⎤⎢⎥⎣⎦C. D.30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭【答案】A 【解析】【分析】先对λ进行讨论,当0λ=时得到直线倾斜角为2π,当0λ≠时,由直线方程得到斜率,再由斜率可得倾斜角的范围.【详解】当0λ=时,直线为:5x =,故直线的倾斜角为:2π;当0λ≠时,直线为:21522y x λλλ+=-,设直线的倾斜角为θ,即211tan 222λλθλλ+==+,当0λ>时,1tan 122λθλ=+≥=,当且仅当“122λλ=”,即1λ=时取等号;即,42ππθ⎡⎫∈⎪⎢⎣⎭,当0λ<时,11tan 12222λλθλλ⎡⎤⎛⎫⎛⎫=+=--+-≤=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当且仅当“122λλ-=-”,即1λ=-时取等号;即3,24ππθ⎛⎤∈ ⎥⎝⎦,综上所述:3,44ππθ⎡⎤∈⎢⎥⎣⎦.故选:A8.根据气象学上的标准,连续5天的日平均气温低于10℃即为入冬,将连续5天的日平均温度的记录数据(记录数据都是自然数)作为一组样本,现有4组样本①、②、③、④,依次计算得到结果如下:①平均数4x <;②平均数4x <且极差小于或等于3;③平均数4x <且标准差4s ≤;④众数等于5且极差小于或等于4.则4组样本中一定符合入冬指标的共有()A.1组B.2组C.3组D.4组【答案】B 【解析】【分析】举反例否定①;反证法证明②符合要求;举反例否定③;直接法证明④符合要求.【详解】①举反例:0,0,0,4,11,其平均数34x =<.但不符合入冬指标;②假设有数据大于或等于10,由极差小于或等于3可知,则此组数据中的最小值为1037-=,此时数据的平均数必然大于7,与4x <矛盾,故假设错误.则此组数据全部小于10.符合入冬指标;③举反例:1,1,1,1,11,平均数34x =<,且标准差4s =.但不符合入冬指标;④在众数等于5且极差小于等于4时,则最大数不超过9.符合入冬指标.故选:B .二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9.连续抛掷一枚质地均匀的骰子两次.记事件A 为两次数字之和为7,事件B 为第一次数字小于等于3,事件C 为两次数字之积为奇数,则()A.()14P C =B.A 与B 相互独立C.A 与C 为对立事件D.B 与C 相互独立【答案】AB 【解析】【分析】先求出总的样本空间数,再用列举法求出事件,,A B C ,选项A ,利用古典概率公式,即可求解;选项B 和D ,利用相互独立的判断方法,即可求解;选项C ,利用互斥事件和对立事件的定义,即可求解.【详解】用(,)x y 中的,x y 分别表示第一次、第二次掷一枚质地均匀的骰子的点数,易知,总的样本空间数为6636⨯=,事件A 包含的基本事件为:(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),共6个,事件B 包含的基本事件为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),共18个,事件C 包含的基本事件为:(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个对于选项A ,由古典概率公式得()91364P C ==,故选项A 正确,对于选项B ,由古典概率公式得61()366P A ==,181()362P B ==,31()3612P AB ==,因为()()()P AB P A P B =,所以A 与B 相互独立,故选项B 正确,对于选项C ,易知A 与C 互斥但不对立,所以选项C 错误,对于选项D ,由古典概率公式得61()366P BC ==,又111()()428P B P C =⨯=,所以()()()P BC P B P C ≠,即B 与C 不相互独立,故选项D 错误,故选:AB.10.已知点(),P x y 是圆:M ()()22424x y -+-=上任意一点,直线l :2y x =-+分别与x 轴、y 轴相交于点,A B ,则()A.直线l 与圆M 相离B.PBA △面积的最小值为4+C.y x 的最大值为43D.PBA ∠的最小值为15︒【答案】ACD 【解析】【分析】对于A ,由圆心到直线距离与半径大小即可判断,对于B ,确定圆心到直线的距离,即可求解,对于C ,设yk x=,通过直线与圆恒有交点即可,对于D ,由BP 与圆相切即可求解.【详解】对于A ,由()()22424x y -+-=,得圆心()4,2,2r =,圆心到2y x =-+2=>,直线与圆相离,A 正确;对于B ,易知()()2,0,0,2A B,AB =,由A知,圆心到直线距离为,故圆上点到直线距离的最小值为2-,所以PBA △面积最小值为)242-=-B 错误;对于C ,令yk x=,得y kx =,因为(),x y 为圆上的点,所以y kx =与圆()()22424x y -+-=有交点,2≤,解得403k ≤≤,C 正确;对于D ,结合图象可知当BP 与圆这种相切时,PBA ∠最小,设BP 斜率为()0k k <,直线方程为:2y kx =+2421k k=+,解得33k =-,即BP 的倾斜角为150︒,所以60PBO ︒∠=,易知45ABO ︒∠=,所以15PBA ︒∠=,D 正确.故选:ACD11.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱11,BB CC 的中点,G 是棱11B C 上的一个动点,则下列说法正确的是()A.平面AEF 截正方体1111ABCD A B C D -所得截面为六边形B.点G 到平面AEF 的距离为定值C.若11111=++AG xA A y A E z A D uuu r uuu r uuu r uuuu r ,且1x y z ++=,则G 为棱11B C 的中点D.直线AG 与平面AEF 所成角的正弦值的取值范围为1510,1510⎣⎦【答案】BCD 【解析】【分析】利用平行线的传递性与平行线共面判断A ,利用线面平行的判定定理判断B ,利用空间向量推得1,,,A E D G 四点共面,结合面面平行的性质定理判断C ,建立空间直角坐标系,利用空间向量法求得线面角的取值范围判断D ,从而得解.【详解】对于A ,连接DF ,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,BB CC 的中点,所以//,EF BC EF BC =,//,AD BC AD BC =,所以//,EF AD EF AD =,则平面AEF 与平面AEFD 为同一平面,所以平面AEF 截正方体1111ABCD A B C D -所得截面为平面AEFD ,为四边形,故A 错误;对于B ,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,BB CC 的中点,所以11//B C EF ,又EF ⊂平面AEF ,11B C ⊄平面AEF ,所以11//B C 平面AEF ,又点G 是棱11B C 上的一个动点,所以点G 到平面AEF 的距离为定值,故B 正确;对于C ,连接111,,,AD D G GE BC ,因为11111=++AG xA A y A E z A D uuu r uuu r uuu r uuuu r ,且1x y z ++=,所以1,,,A E D G 四点共面,因为在正方体1111ABCD A B C D -中,平面11//ADD A 平面11BCC B ,又平面11ADD A ⋂平面11AEGD AD =,平面11BCC B 平面1AEGD GE =,所以1//AD GE ,在正方体1111ABCD A B C D -中,1111//,AB C D AB C D =,所以四边形11ABC D 是平行四边形,则11//AD BC ,则1//GE BC ,因为E 为棱1BB 的中点,所以G 为棱11B C 的中点,故C 正确;对于D ,以D 为原点,建立空间直角坐标系,如图,设()102C G x x =≤≤,则()()()()2,0,0,2,2,1,0,2,1,,2,2A E F G x ,所以()()()0,2,1,2,0,0,2,2,2AE EF AG x ==-=-,设平面AEF 的法向量为 =s s ,则2020AE n b c EF n a ⎧⋅=+=⎪⎨⋅=-=⎪⎩,令1b =,则0,2a c ==-,故()0,1,2n =-,设直线AG 与平面AEF 所成角为π02θθ⎛⎫≤≤⎪⎝⎭,则sin cos ,AG n AG n AG nθ⋅=〈〉==,因为02x ≤≤,所以()2024x ≤-≤,则≤≤所以1510=≤≤=,所以直线AG与平面AEF 所成角的正弦值的取值范围为,1510⎣⎦,故D 正确.故选:BCD.三、填空题:本大题共3小题,每小题5分,共15分.12.已知圆221:1C x y +=与圆()()()222:1160C x a y a -+-=>有3条公切线,则实数a 的取值是_____.【答案】【解析】【分析】根据条件得到圆1C 与圆2C 外切,再利用圆与圆的位置关系,即可求解.【详解】因为圆221:1C x y +=与圆()()()222:1160C x a y a -+-=>有3条公切线,所以圆1C 与圆2C 外切,又圆221:1C x y +=的圆心为1(0,0)C ,半径为11r =,()()()222:1160C x a y a -+-=>的圆心为2(,1)C a ,半径为24r =,145=+=,得到224a =,又0a >,所以a =,故答案为:13.已知点()(),0110,N i i A x i i ≤≤∈与点()(),10110,N i i B y i i ≤≤∈关于点()2,5对称.若1x ,2x ,⋯,10x 的平均数为5,方差为3.则1y ,2y ,⋯,10y 这组数的平均数为_____,方差为_____.【答案】①.1-②.3【解析】【分析】根据条件得到()1,N 410i i y i i x ≤=-≤∈,再结合平均数、方差计算公式,即可求解.【详解】因为点()(),0110,N i i A x i i ≤≤∈与点()(),10110,N i i B y i i ≤≤∈关于点()2,5对称,则()N 4110,i i x i y i ≤+=≤∈,得到()1,N 410i i y i i x ≤=-≤∈,因为1x ,2x ,⋯,10x 的平均数为5,方差为3,则1y ,2y ,⋯,10y 这组数的平均数为451-=-,方差为2(1)33-⨯=,故答案为:1-;3.14.已知圆221x y +=上任意一点(),P x y ,23239x y a x y -++--的取值与P 的位置无关,则a 的取值范围是_____.【答案】a ≥【解析】【分析】由题意可知直线1:2390l x y --=,直线2:230l x y a -+=位于圆的两侧,且与圆均不相交,从而可列出不等式得出a 的范围.【详解】设直线1:2390l x y --=,直线2:230l x y a -+=,则s 到直线1l 的距离为1d =,s 到直线2l 的距离为2d =因为23239x y a x y -++--的取值与P 的位置无关,所以12d d +为常数,所以圆221x y +=在平行线12,l l 之间,又直线1l 在圆下方,所以直线2l 在圆上方,1≥,得到a ≥a ≤,故答案为:13a ≥四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某高校承办了成都世乒赛志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组[45,55),第二组[55,65),第三组[65,75),第四组[75,85),第五组[85,95],绘制成如图所示的频率分布直方图.已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.(1)求,a b 的值;(2)估计这100名候选者面试成绩的众数、平均数和60%分位数(分位数精确到0.1);(3)在第四、第五两组志愿者中,采用分层抽样的方法从中抽取5人,然后再从这5人中选出2人,以确定组长人选,求选出的两人来自不同组的概率.【答案】(1)0.005a =,0.025b =(2)众数为70,平均数为69.5,60%分位数为71.7(3)25【解析】【分析】(1)由第三、四、五组的频率之和为0.7,所有组频率之和为1,列方程求,a b 的值;(2)由频率分布直方图中众数、平均数和百分位数的定义公式计算;(3)根据分层抽样确定的人数,解决古典概型概率问题.【小问1详解】因为第三、四、五组的频率之和为0.7,所以()0.0450.020100.7a ++⨯=,解得0.005a =,所以前两组的频率之和为10.70.3-=,即()100.3a b +⨯=,所以0.025b =.【小问2详解】众数为70,平均数为500.05600.25700.45800.2900.0569.5⨯+⨯+⨯+⨯+⨯=,前两个分组频率之和为0.3,前三个分组频率之和为0.75,所以60%分位数在第三组,且为0.60.3651071.70.45-+⨯≈.【小问3详解】第四、第五两组志愿者分别有20人,5人,采用分层抽样的方法从中抽取5人,则第四组抽4人,记为a b c d ,,,,第五组抽1人,记为A ,则从这5人中选出2人,有()()()()()()()()()(),,,,,,,,,,,,,,,,,,,a b a c a d a A b c b d b A c d c A d A 共10种结果,两人来自不同组有()()()(),,,,,,,a A b A c A d A 共4种结果,所以两人来自不同组的概率为42105P ==.16.已知ABC V 的三个顶点分别是()5,1A ,()7,3B -,()9,5C -.(1)求AB 边上的高所在的直线方程;(2)求AB 边上的中线所在的直线方程;(3)求ABC ∠角平分线所在的直线方程.【答案】(1)2190x y -+=(2)2570x y +-=(3)40x y +-=【解析】【分析】(1)利用斜率坐标公式及垂直关系求出高所在直线的斜率,再利用直线的点斜式方程求解即得;(2)求出中点坐标及中线所在直线的斜率,再利用直线的点斜式方程求解即得;(3)先求出直线,BA BC 的单位向量,结合角平分线求出ABC ∠角平分线所在的直线的方向向量,结合方向向量和直线斜率的关系即可求出斜率,再根据点斜式即可求解.【小问1详解】直线AB 的斜率1(3)257AB k --==--,则AB 边上的高所在的直线斜率为12,直线又过()9,5C -,所以A 边上的高所在的直线方程为[]15(9)2y x -=⨯--,即2190x y -+=.【小问2详解】依题意,AB 边的中点(6,1)-,因此AB 边上的中线所在直线的斜率()512965k --==---,直线又过(6,1)-,所以AB 边上的中线所在直线的方程为()21(6)5y x --=-⨯-,即2570x y +-=.【小问3详解】由题意知:()()2,4,16,8BA BC =-=-,故与BA 同方向的单位向量为:()2,455a ⎛⎫=-=- ⎪ ⎪⎝⎭ ,与BC同方向的单位向量为:()25516,855b ⎛⎫=-=- ⎪ ⎪⎝⎭,故ABC ∠角平分线所在的直线的方向向量为:(),1,1555a b ⎛⎫+=-=-- ⎪ ⎪⎝⎭ ,设ABC ∠角平分线所在的直线的斜率为k ,又 直线的方向向量可以表示为()1,k ,1k ∴=-,直线又过()7,3B -,故ABC ∠角平分线所在的直线方程为:()()37y x --=--,即40x y +-=.17.在ABC V 中,a ,b ,c 为A ∠,B ∠,C ∠sin cos 2C c B c +=.(1)求B ∠;(2)若BD 为ABC V 的角平分线,交AC 于点D ,7BD =,AC =,求ABC V 的面积.【答案】(1)π3B =(2)【解析】【分析】(1cos 2B B +=,再利用辅助角公式和特殊角的三角函数值,即可求角;(2)根据条件,利用等面积法,得到12()7ac a c =+,再利用余弦定理得213()3a c ac =+-,联立求出ac ,即可求解.【小问1详解】sin cos 2C c B c +=sin sin cos 2sin B C C B C +=,又sin 0C ≠cos 2B B +=,即π2sin()26B +=,得到πsin(16B +=,又ππ7π666B <+<,所以ππ62B +=,解得π3B =.【小问2详解】因为ABC ABD CBD S S S =+ ,π3B =,所以1π1π1πsin sin sin 232626ac a BD c BD =+,又1237BD =,得到12()7ac a c =+,在ABC V 中,由余弦定理得到22222cos ()3b a c ac B a c ac =+-=+-,又AC =236()()137a c a c +-+=,解得7a c +=(舍负),所以12ac =,故ABC V 的面积为11sin 12222S ac B ==⨯=.18.如图,三棱柱111ABC A B C -的底面是等腰直角三角形,90ACB ∠= ,侧面11ACC A 是菱形,160A AC ∠= ,4AC =,平面ABC ⊥平面11ACC A .(1)证明:11A C AB ⊥;(2)求点1C 到平面11ABB A 的距离;(3)线段11A B 是否存在一点D ,使得平面1AC D ⊥平面11ABB A ,如果存在找出D 点的位置,不存在请说明理由.【答案】(1)证明见解析(2)217(3)存在,答案见解析【解析】【分析】(1)利用线面垂直的判定可得1A C ⊥平面11AB C ,然后利用线面垂直性质定理结合平行即可得证.(2)根据给定条件,结合余弦定理,利用等体积法求出点1C 到平面11ABB A 的距离.(3)由面面垂直的性质得到点1C 到平面11ABB A 的距离为4217即是1C D 的长度,再由勾股定理确定D 点的位置即可.【小问1详解】连接1AC ,由四边形11A ACC 为菱形,得11AC A C ⊥,由90ACB ︒∠=,得BC AC ⊥,又平面ABC ⊥平面11ACC A ,平面ABC 平面11ACC A AC =,⊂BC 面ABC ,则⊥BC 平面11ACC A ,又1A C ⊂平面11ACC A ,于是1BC A C ⊥,而11//BC B C ,则111B C A C ⊥,又111AC BC C ⋂=,111,AC B C ⊂平面11AB C ,因此1A C ⊥平面11AB C ,又1AB ⊂平面11AB C ,所以11A C AB ⊥【小问2详解】点1C 到平面11ABB A 的距离,即三棱锥111C AA B -的底面11AA B 上的高,由(1)知11B C ⊥平面11ACC A ,则三棱锥111B AA C -的底面11AA C 上的高为11B C ,设点1C 到平面11ABB A 的距离为d ,由111111B AA C C AA B V V --=,得1111111133AA C AA B S B C S d ⋅⋅= ,而14BC AA AC ===,160A AC ︒∠=,则11AA C 的面积113AA C S = ,由1114AA A C ==,11120AAC ︒∠=,得143AC =,又114B C =,111B C AC ⊥,则18AB =,又14AA =,1142A B =,由余弦定理得(222114823cos 2484A AB +-∠==⨯⨯,则117sin 4A AB ∠=,11AA B的面积1117484724AA B S =创� 则347d =,即4217d =,所以点1C 到平面11ABB A 的距离为4217.【小问3详解】设存在,如图,由平面1AC D ⊥平面11ABB A 可得1C D ⊥平面11ABB A ,由(2)可得点1C 到平面11ABB A 的距离为217即是1C D 的长度,在11Rt A DC 中,11121,47A C C D ==,所以221111121071677A D AC C D =-=-=.19.已知二次曲线220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件为0A C =≠,0B =且224D E AF +>.关于二次曲线,有以下结论:若11:0l f =,22:0l f =,33:0l f =,为平面内三条直线,且12l l A ⋂=,23l l B ⋂=,31l l C ⋂=,则过A ,B ,C 三点的二次曲线系方程为1223310f f f f f f λμ++=(λ,μ为参数).若11:0l f =,22:0l f =,33:0l f =,44:0l f =为平面内四条直线,且12l l A ⋂=,23l l B ⋂=,34l l C = ,41l l D = ,则过,,,A B C D 四点的二次曲线系方程为13240f f f f λ+=(λ为参数).(1)若三角形三边所在直线方程分别为:320x y -+=,220x y ++=,340x y +-=.求该三角形的外接圆方程.(2)记(1)中所求的外接圆为ω,直线()110y k x k =>与ω交于A ,B 两点(A 在第一象限),直线()220y k x k =<与ω交于C ,D 两点(C 在第二象限),直线BC 交x 轴于点M ,直线AD 交x 轴于点N ,直线BC 与直线AD 交于点P .(i )求证:=OM ON ;(ii )求OP 的最小值.【答案】(1)22240x y y ++-=(2)(i )证明见解析;(ii )4【解析】【分析】(1)由题意,根据三条直线方程设出二次曲线系方程,通过方程表示圆的充要条件待定系数可得;(2)由四条直线方程设出二次曲线系方程,再由已知圆的一般方程,对比两方程寻找系数的等量关系,由关系120t t +=可证得OM ON =,由关系式212tm m =-(t 即1t )可得交点P 在定直线上4y =上,进而求解最值.【小问1详解】则由题意,可设所求三角形的外接圆方程为:(32)(22)(22)(34)x y x y x y x y λ-+++++++-(34)(32)0x y x y μ++--+=(λ,μ为参数),即()()()()22133178623422x xy y xλμλμλμλμ+++-+-+-+-+++()26144880y λμλμ+--++--=,(*)若方程表示圆,则133********λμλμλμ++=-+-≠⎧⎨-+-=⎩,解得11λμ=-⎧⎨=-⎩.将11λμ=-⎧⎨=-⎩代入(*)式化简得22240x y y ++-=,验证:由22024(4)200+-⨯-=>,可知该方程表示圆.故该三角形的外接圆方程为22240x y y ++-=.【小问2详解】如图,在平面直角坐标系中,设直线BC 与x 轴的交点1(,0)M t ,直线AD 与x 轴的交点2(,0)N t ,由题意知直线,BC AD 均不与y 轴垂直,则直线BC 方程可设为11x m y t =+,直线AD 方程可设为22x m y t =+,由题意可知12m m ≠,且120,0t t ≠≠.不妨记直线,,,BA AD DC CB 分别为1234,,,l l l l ,且12233441,,,l l A l l D l l C l l B ==== ,其中11:0l k x y -=,222:0l x m y t --=,32:0l k x y -=,411:0l x m y t --=.故由题意,过,,,A D C B 四点的二次曲线系方程可设为()()()()1222110k x y k x y x m y t x m y t λ--+----=(λ为参数),即()()()22121212121k k x k k m m xy m m yλλλ⎡⎤+-+++++⎣⎦()12122112()0t t x m t m t y t t λλλ-++++=①,若0λ=时,方程()()120k x y k x y --=表示两条直线13,l l ,不表示圆,故0λ≠.由,,,A D C B 四点不共线,且都在圆22240x y y ++-=②上,所以方程①②表示同一圆,则有()120t t λ-+=③,且122112211212()2142m t m t m t m t t t t t λλ++===--④.(i )由③式及0λ≠,可得120t t +=,即OM ON =;故(i )得证;(ii )由③式可得12t t =-,令1t t =,则2t t =-,代入④式可得212tm m =-,联立,BC AD 直线方程12x m y tx m y t=+⎧⎨=-⎩,解得2124t y m m ==-,即交点P 在定直线4y =上,故4OP ≥.如图2,由对称性可知,当12k k =-时,交点P 在y 轴上,即(0,4)P ,此时min 4OP .故OP 的最小值为4.【点睛】关键点点睛:解决本题的关键有两点,一是理解二次曲线系方程的设法,能够根据题目提供的条件由直线方程设出二次曲线方程;二是二次曲线系方程的应用,本题主要是三角形外接圆与四边形外接圆的应用,第(1)问通过方程表示圆的充要条件待定系数,第(2)问通过同一圆的两种不同方程表达形式寻求等量关系从而解决问题.。

福建省福州市山海联盟校教学协作体2024-2025学年高二上学期期中考试数学试卷

福建省福州市山海联盟校教学协作体2024-2025学年高二上学期期中考试数学试卷一、单选题110++=的倾斜角为()A .30︒B .60︒C .120︒D .150︒2.(2,1,3),(1,4,2),(3,2,)a b c λ=-=-=- ,若,,a b c三向量共面,则实数λ等于()A .5B .4C .3D .23.椭圆的面积等于圆周率与椭圆的长半轴长与短半轴长的乘积.已知椭圆2222:1x y C a b+=()0a b >>的面积为6π,两个焦点分别为12,F F ,直线y kx =与椭圆C 交于,A B 两点,若四边形12AF BF 的周长为12,则椭圆C 的短半轴长为()A .2B .3C .4D .64.如图,在三棱锥O ABC -中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且4PQ DQ = ,若记,,OA a OB b OC c === ,则OD =()A .133888a b c++ B .313888a b c++C .331888a b c++ D .113888a b c++ 5.已知圆2221:220C x y ax y a +-++=与圆222:46230C x y x y ++--=的公切线有且只有一条,则实数a 的值为()A .1B .1-C .1或5-D .1-或56.已知二面角l αβ--棱上有两点,,,,A B AC AC l BD αβ⊂⊥⊂,BD l ⊥,若3,AC BD AB CD ===的长为7,异面直线AC 与BD 所成的角大小为()A .π6B .π4C .π3D .5π127.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”,诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在的位置为(2,0)B -,若将军从山脚下的点(1,0)A 处出发,河岸线所在直线的方程为2x y +=,则“将军饮马”的最短总路程为()AB .5CD 8.已知椭圆2222:1(0)x y M a b a b+=>>的左、右焦点分别为12,F F ,点P 在M 上,Q 为2PF 的中点,且121,FQ PF FQ b ⊥=,则M 的离心率为()A B .13C .12D .2二、多选题9.已知圆22(1)(2)4x y -+-=与直线20x my m +--=,下列选项正确的是()A .直线过定点()2,1-B .圆的圆心坐标为()1,2C .直线与圆必相交D .直线与圆相交所截最短弦长为10.正四棱锥P ABCD -中,各棱长均为12121,,,,2325PM PA PN PB PQ PC PS PD ====,则()A .A ,N ,D ,Q 四点共面B .点S 到平面PMQ 的距离为25C .平面MNQ 与平面ABCDD .点N 到PA 的距离为311.月光石不能频繁遇水,因为其主要成分是钾钠硅酸盐.一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点(30)F ,,椭圆的短轴与半圆的直径重合.若直线()0y t t =>与半圆交于点A ,与半椭圆交于点B ,则下列结论正确的是()A B .OAB △的周长存在最大值C .线段AB 长度的取值范围是(0,3+D .ABF △面积的最大值是)914三、填空题12.已知空间向量()()2,3,2,1,2,2a b ==- ,则向量a在向量b 上投影向量的坐标是.13.已知ABC V 的周长为24,且顶点(0,4),(0,4)B C -,则顶点A 的轨迹方程是.14.已知圆2216x y +=,直线:l y x b =+,圆上至少有三个点到直线l 的距离都等于2,则b 的范围是.四、解答题15.ABC V 中,顶点(3,4),(5,2),B C AC 边所在直线方程为2120,x y AB +-=边上的高所在直线方程为23160x y +-=.(1)求AB 边所在直线的方程;(2)求AC 边的中线所在直线的方程.16.如图,在直三棱柱111ABC A B C -中,ACB ∠为直角,侧面11ACC A 为正方形,2,,AC BC D E ==分别为1,AB AC 的中点.(1)求证://DE 平面11BB C C ;(2)求证:AC DE ⊥;(3)求直线AC 与平面1B DE 所成角的正弦值.17.已知12,F F 分别为椭圆2222:1(0)x y C a b a b +=>>B 为椭圆上的一动点,且12BF F △(1)求椭圆C 的方程;(2)过椭圆的左焦点1F 且斜率为2的直线l 交椭圆于A ,B 两点,求2ABF △的面积.18.已知半径为2的圆C 的圆心在x 轴的正半轴上,且直线:3440l x y -+=与圆C 相切.(1)求圆C 的标准方程;(2)若Q 的坐标为(2, 4)-,过点Q 作圆C 的两条切线,切点分别为, M N ,求直线MN 的方程;(3)过点()1,0A 任作一条不与y 轴垂直的直线与圆C 相交于, E F 两点,在x 非正半轴上是否存在点B ,使得ABE ABF ∠=∠?若存在,求点B 的坐标;若不存在,请说明理由.19.在空间直角坐标系Oxyz 中,过点()000,,P x y z 且以(),,u a b c =为方向向量的直线方程可表示为()0000x x y y z z abc a b c---==≠,过点()000,,P x y z 且以(),,u a b c = 为法向量的平面方程可表示为000ax by cz ax by cz ++=++.(1)若直线()11:12x l y z -==--与()21:142y z l x ---==都在平面α内,求平面α的方程;(2)在三棱柱111ABC A B C -中,点C 与坐标原点O 重合,点A 在平面Oxz 内,平面ABC 以()1,1,3m =--为法向量,平面11ABB A 的方程为38x y z +-=,求点A 的坐标;(3)若集合(){},,2M x y z x y z =++=中所有的点构成了多面体Ω的各个面,求Ω的体积和相邻两个面所在平面的夹角的余弦值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学春季学期期中考试
高二数学试题
命题人:何碧珊 时间:4月14日
一、选择题:每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.从A 地到B 地有3种走法,从B 地到C 地有2种走法,从A 地不经过B 地到C 地有4
种走法,则从A 地到C 地的不同走法有( ) A .9种 B .10种 C .14种 D .24种
2.一条直线与一个平面所成的角等于3π,另一直线与这个平面所成的角是6
π
. 则这两条直
线的位置关系( )
A .必定相交
B .平行
C .必定异面
D .不可能平行
3.4名学生参加跳高、跳远和100m 跑这三项决赛,争夺这三项冠军,则冠军结果有( ) A .36种
B .48种
C .4
3种
D .3
4种
4.已知正方形ABCD ,沿对角线AC 将△ABC 折起,设AD 与平面ABC 所成角为α,当
α取最大值时,二面角D AC B --等于 ( )
A .︒90
B .︒60
C .︒45
D .2arctan 5. 二面角α—EF —β是直二面角,C ∈EF ,AC ⊂α,BC ⊂β,∠ACF=30°,∠ACB=60°,
则cos ∠BCF 等于( )
A .3
32
B .
3
6 C .2
2
D .3
3
6.集合{1,2,3},{4,5,6,7}M N =-=--,从两个集合中各取一个数字作为点的坐标,则在直角坐标系中,可以表示第一、第二象限不同点的个数是( )
A .10
B .14
C . 16
D .18
7.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离( ) A.4
3a
B.
4
3a C.
2
3a D.
4
6a
8.在三棱锥ABC P -的三条侧棱两两互相垂直,3,2,1===PC PB PA ,则顶点P 到平面
ABC 的距离为 ( )
A .2
B .23
C .65
D .7
6
9.三棱柱111C B A ABC -中,M 、N 分别是1BB 、AC 的中点,设a AB =,b AC =,AA =1,则NM 等于( )
A. )(2
1c b a ++ B. )(21-+ C. )(2
1+ D. )(2
1
-+
10. 已知二面角A —BC —D 、A —CD —B 、A —BD —C 都相等,则A 点在平面BCD 上的射
影是△BCD 的 ( ) A .内心 B .外心 C .垂心 D .重心
二、填空题:本大题共5小题,每小题5分,满分25分.把答案填在题中横线上.
11.某学校招生的12名体育特长生中有3名篮球特长生,要将这12名学生平均分配3个班去,每班都分到1名篮球特长生的分配方法共有 种。

(用数字作答) 12.如图,ABCD 是边长为2的正方形,MA 和PB 都与平面ABCD 垂直,且MA PB 2=2=,设平面PMD 与平面ABCD 所成二面角为α,则=αsin 13.在一个︒45的二面角的一个面内有一条直线与二面角棱成︒45角,则此直线与二面角的另一个面所成的角为 14. 在北纬45︒圈上有甲、乙两地,甲位于东经120︒经线上,乙位于西经150︒经线上,则甲乙两地的地球面距离是_________(设地球半径为R )。

15.已知l ,m 是直线,βα、是平面,给出下列命题:
①若l 垂直α内两相交直线, 则l ⊥α; ②若l 平行于α,则l 平行于α内所有直线;
③若,,βα⊂⊂l m 且,m l ⊥ 则;βα⊥ ④若,α⊂l 且,β⊥l 则;βα⊥ ⑤若,,βα⊂⊂l m 且,//βα则
.//l m
其中正确命题的序号是
、请将选择填空题答案写在答题卷相应位置
A B
C
D
M
P
高二数学试题答题卷
命题人:何碧珊 时间:4月14日
一、选择题: 本大题共10小题,每小题5分,共50分.
二、填空题:本大题共5小题,每小题5分,满分25分.把答案填在题中横线上.
11、 12. 13. 14. 15.
三 、解答题:本大题共6小题,满分75分.
16.(12分)要将3封不同的信投到4个信箱中;(1)一共有多少种不同的投法?(2)每个
信箱最多投一封信,则有多少种不同的投法?

17. 如图,正方体1111D C B A ABCD -中,E 是1CC 的中点,求BE 与平面1B BD 所成角的余
弦值。

18.(12分)如图,已知ABCD 为正方形,
,1,PD
ABCD
PD AB E F PB PD AE CF ⊥==平面、分别是、
的中点,求异面直线与的距离和夹角。

19.( 12分)如图,空间四边形PABC 中,90APC ο∠=,60APB ο
∠=,PB=BC=4,PC=3,
求二面角B-PA-C 的大小。

P C
D
E
F
13分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,AC =1,
∠ACB =90°,AB ⊥PC ,直线AM 与PC 所成的角为60°. (1)求证:平面PAC ⊥平面ABC ; (2)求三棱锥P -MAC 的体积。

21、(14分)如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,
,AF=1,M 是线段EF 的中点。

(1)求证:AM//平面BDE ;
(2)试在线段AC 上确定一点P ,使得PF 与CD 所成的角是60。

A
B
C
P
M
20题图
高二数学期中考试答案
一、选择题: 本大题共10小题,每小题5分,共50分.
二、填空题:
本大题共5小题,每小题5分,满分25分.把答案填在题中横线上.
11、 12、12.33 13.30ο 14.2
R
π 15.
①④
三、 解答题:本大题共4小题,满分46分.
16. (1
)64种 (2)24种
17. 解:以D 为原点,DA 、DC 、DD 1
分别为x 轴、
y 轴、z 轴建立直角坐标系。

可求得平面D BB 1的法向量为n
=(0),设θ是BE 与平面D BB 1所成的角, 则<=n cos sin
θ510。

5
15
cos =∴θ
18.θ= 、 d = 19.解:作AP BD ⊥,垂足为D 。

⊥CP AP。

PC DP BD BC ++= ,BD=PB ο60sin ⋅=23,DP=PB ο60cos ⋅=2。

()
2
2
222
PC
++=++=∴+2⋅
()θπ-⨯⨯⨯+++=∴cos 332232)32(4222
2 4
3c o s =∴θ
4
3
arccos
的大小为二面角C PA B --∴ 1)证明略 (221.证明:(1)连结AC 、BD 交于O.连结EO EM //AO 且EM=AO
EO AM //∴BDE AM 面//∴
(2)⊥ABCD 面 面ACEF,又EC AC ⊥ ABCD EC 面⊥∴
CA t
CP =
系。

设如图所示建立直角坐标(01〈〈t )
(
)0,2,2t t CA t CP == ()0,2,2t t P ∴(
)
1,22,22t t PF --=
∴,
()
0,0,2=
CD 21c ±=∴ 舍)
或(2321==∴t t CA CP 2
1
=∴ 的中点为线段AC P ∴。

相关文档
最新文档