最新人教版高二数学上册期中考试试卷(文科 附答案)

合集下载

高二上学期期中考试数学(文)试题 Word版含答案

高二上学期期中考试数学(文)试题 Word版含答案

秘密★启用前云天化中学2020~2021学年秋季学期半期测试题高二文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知集合{|22}A x x =-,{|1}B x x =∈N ,则A B ⋂=( ) A .{2,1}-- B .{2,1,0}-- C .{0,1} D .{1}2.平面向量a 与b 的夹角为60°,(2,0)a =,||1b =,则|2|a b +等于( )A .B .C .12D 3.下列有关命题的说法正确的是( )A .若命题p :0x ∃∈R ,01xe <,则命题p ⌝:x ∀∈R ,1xeB .“sin x =3x π=” C .若||||||a b a b +=-,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,//n β,那么αβ⊥ 4.设{}n a 是等差数列,若23a =,713a =,则数列{}n a 前8项的和为( ) A .128 B .80 C .64 D .565.已知某几何体的三视图如图所示,则该几何体的体积为( )A .12πB .18πC .24πD .36π6.设双曲线22221(0)x y a b a b-=>>的虚轴长为2,焦距为 )A .y =B .2y x =±C .2y x =±D .12y x =±7.已知()f x 是定义在R 上的偶函数,且在区间(,0)-∞上单调递增,若实数a 满足()|1|2(a f f ->,则a 的取值范围是( )A .(,2)-∞B .(0,2)C .(1,2)D .(2,)+∞ 8.已知1sin 35πθ⎛⎫-= ⎪⎝⎭,则sin 26πθ⎛⎫-= ⎪⎝⎭( ) A .225-B .2325-C .225D .23259.已知直线:(21)(1)10()l k x k y k ++++=∈R 与圆22(1)(2)25x y -+-=交于A ,B 两点,则弦长||AB 的取值范围是( )A .[4,10]B .[3,5]C .[8,10]D .[6,10] 10.函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,若其图象向右平移6π个单位后得到函数为奇函数,则函数()f x 的图象( )A .关于点,03π⎛⎫⎪⎝⎭对称 B .在,22ππ⎛⎫- ⎪⎝⎭上单调递增C .关于直线3x π=对称 D .在6x π=处取最大值11.在如图所示的三棱锥V ABC -中,已知AB BC =,90VAB VAC ABC ∠=∠=∠=,P 为线段VC 的中点,则( )A .PB 与AC 不垂直 B .PB 与VA 平行C .点P 到点A ,B ,C ,V 的距离相等D .PB 与平面ABC 所成的角大于VBA ∠ 12.已知函数3log ,03,()|4|,3,x x f x x x <⎧=⎨->⎩若函数()()2h x f x mx =-+有三个不同的零点,则实数m 的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .1,(1,)2⎛⎫-∞⋃+∞ ⎪⎝⎭C .1,[1,)2⎛⎫-∞⋃+∞ ⎪⎝⎭ D .1,12⎛⎤⎥⎝⎦第Ⅱ卷(非选择题,共90分)注意事项:第Ⅱ卷用黑色碳素笔在答题卡上各题的答题区城内作答,在试题卷上作答无效. 二、填空题(本大题共4小题,每小题5分,共20分)13.设x ,y 满足约束条件220,10,240,x y x y x y +-⎧⎪--⎨⎪+-≤⎩则目标函数2z x y =-的最大值是_________.14.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,sin cos 3B b A π⎛⎫=- ⎪⎝⎭,2bc =,则ABC 的面积是_________.15.已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC 是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为________.16.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C的一条渐近线的垂线,垂足为P.若1|PF OP =,则C 的离心率为_________.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分) 求下列椭圆的标准方程: (Ⅰ)焦点在x 轴上,离心率35e =,且经过点A ; (Ⅱ)以坐标轴为对称轴,且长轴长是短轴长的3倍,并且与双曲线22135y x -=有相同的焦点. 18.(本小题满分12分)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(Ⅰ)求角C ;(Ⅱ)若c =ABCS=,求ABC 的周长. 19.(本小题满分12分)如图所示,在梯形ABCD 中,//,,1,AD BC AB BC AB BC PA ⊥==⊥平面ABCD ,CD PC ⊥.(Ⅰ)设M 为PC 的中点,证明:CD AM ⊥; (Ⅱ)若2PA AD ==,求点A 到平面PCD 的距离. 20.(本小题满分12分)在数列{}n a 中,112a =,()1122nn n a a n *+⎛⎫=-∈ ⎪⎝⎭N ,数列{}n b 满足()2n n n b a n *=⋅∈N .(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式; (Ⅱ)设2log n nnc a =,求数列12n n c c +⎧⎫⎨⎬⎩⎭的前n 项和n T . 21.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PAD 为正三角形,平面PAD ⊥平面ABCD ,E ,F 分别是,AD CD 的中点.(Ⅰ)证明:BD ⊥平面PEF ;(Ⅱ)若M 是PB 棱上一点,且3MB PM =,求三棱锥M PAD -与三棱锥P DEF -的体积之比. 22.(本小题满分12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为()2,0. (Ⅰ)当l 与x 轴垂直时,求直线AM 的方程; (Ⅱ)设O 为坐标原点,证明:OMA OMB ∠=∠.云天化中学2020~2021学年秋季学期半期测试题高二文科数学参考答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)解:(Ⅰ)因为焦点在x 轴上,即设椭圆的标准方程为22221(0)x y a b a b+=>>,∵椭圆经过点A ,∴2256415a b +=, ① 由已知35e =,∴35c a =,∴35c a =,∴2222235b a c a a ⎛⎫=-=- ⎪⎝⎭,即221625b a =, ② 把②代入①,得225201a a+=,解得225a =,∴216b =, ∴椭圆的标准方程为2212516x y +=. (5分) (Ⅱ)依题意知椭圆的焦点在y 轴上,设方程为22221(0)y x a b a b+=>>,且2222232,9,81,a b a a b b ⎧=⨯⎧=⎪⇒⎨⎨-==⎪⎩⎩∴椭圆的标准方程为2219y x +=. (10分) 18.(本小题满分12分)解:(Ⅰ)由已知及正弦定理可得2cos (sin cos sin cos )sin C A B B A C +=, ∴2cos sin()sin C A B C +=,∵A B C π++=,∴sin()sin A B C +=,∴2cos sin sin C C C =,又∵(0,)C π∈,∴sin 0C >,∴12cos 1cos 2C C =⇒=,∵(0,)C π∈,∴3C π=. (6分)(Ⅱ)11sin 6222ABCSab C ab ab =⇒=⋅⇒=, 又∵2222cos a b ab C c +-=,∴2213a b +=,∴2()255a b a b +=⇒+=,∴ABC 的周长为5+ (12分) 19.(本小题满分12分)(Ⅰ)证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA CD ⊥.又PC CD ⊥,PA PC P ⋂=,PA ⊂平面PAC ,PC ⊂平面PAC , ∴CD ⊥平面PAC .又M 为PC 的中点,所以AM ⊂平面PAC ,所以CD AM ⊥. (5分) (Ⅱ)解:如图,取AD 的中点K ,连接CK .∵,2,1AD BC AD AB BC ===∥,∴1AK KD ==,AK BC ∥, 故四边形ABCK 为平行四边形, 又AB BC ⊥,∴ABCK 为矩形,则1AC CK AB ===.所以CD =,在Rt PAC 中,∵2PA AD ==,∴PC =设A 到平面PCD 的距离为h ,由P ACD A PCD V V --=, 所以1133ACDPCDPA Sh S ⨯⨯=⨯⨯,所以11112213232h ⨯⨯⨯⨯=⨯⨯h =,所以A 与平面PCD . (12分) 20.(本小题满分12分)(Ⅰ)证明:由1122nn n a a +⎛⎫=- ⎪⎝⎭,即11221n n n n a a ++=-,而2n n n b a =,∴11n n b b +=-,即11n n b b +-=, 又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列. 于是1(1)12nn n b n n a =+-⨯==,∴2n n na =. (6分) (Ⅱ)解:∵22log log 2n n n n c n a ===,∴122112(1)1n n c c n n n n +⎛⎫==- ⎪++⎝⎭.∴111111111212233411n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-=⎪++⎝⎭. (12分) 21.(本小题满分12分)(Ⅰ)证明:如图,连接AC ,∵PA PD =且E 是AD 的中点,∴PE AD ⊥.又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PE ⊂平面PAD , ∴PE ⊥平面ABCD .又BD ⊂平面ABCD ,∴BD PE ⊥.又ABCD 为菱形,且E ,F 分别为棱AD ,CD 的中点,∴//EF AC , ∵BD AC ⊥,∴BD EF ⊥,又BD PE ⊥,PE EF E ⋂=,∴BD ⊥平面PEF . (6分) (Ⅱ)解:如图,连接MA ,MD ,∵3MB PM =,∴14PM PB =,∴1144M PAD B PAD P ABD V V V ---==,又底面ABCD 为菱形,E ,F 分别是AD ,CD 的中点. ∴11112444PDEF F PED C PED C PAD P ADC P ABD V V V V V V ------=====,故1M PAD P DEF V V --=.∴三棱锥M PAD -与三棱锥P DEF -的体积之比为1∶1. (12分)22.(本小题满分12分)(Ⅰ)解:由已知得(1,0)F ,l 的方程为1x =.由己知可得,点A的坐标为⎛ ⎝⎭或1,2⎛- ⎝⎭. 所以AM的方程为2y x =-+2y x =- (4分) (Ⅱ)证明:当l 与x 轴重合时,0OMA OMB ∠=∠=.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,()11,A x y ,()22,B x y ,则12x x <<MA ,MB 的斜率之和为121222MA MB y y k k x x +=+--. 由11y kx k =-,22y kx k =-,得()()()12121223422MA MBkx x k x x k k k x x -+++=--.将(1)y k x =-代入2212x y +=,得()2222214220k x k x k +-+-=. 所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+, 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. (12分)。

高二上学期期中考试文科数学试卷含答案(1)

高二上学期期中考试文科数学试卷含答案(1)

上学期期中考试 高二文科数学试卷、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有 一项是符合题目要求的•* 21 .设集合 U ^ { x | x ::: 5 , N }, M = { x | x —5x 6 = 0},则?U M =(A . {1 , 4}B . {1, 5}C . {2, 3}D . {3, 4}12•函数f (x )=log 2X的一个零点落在下列哪个区间 x4x - y TO _0,7.设实数x, y 满足条件x-2y ,8_0,,若目标函数z=ax ,by(a 0,b 0)的最大值x - 0, y - 0A. (0, 1)3 .已知三条不重合的直线 3)D. (3,m,n,l 和两个不重合的平面 〉,:,有下列命题:B. (1 , 2)C. (2, ① m //n, n 二二,则m II 】; ②若 I _ : •, m _ :且 I _ m 则:• _ 1:' ③若I _ n, m .丨n,则I IIm④若:•—:,〉门:二 m, n :, n _ m,则 n _ 其中正确命题的个数为().A. 4 B . 3 C . 2 D . 14. 一个几何体的三视图如图所示,那么此几何体的侧面积 (单位:cm )为( A . 48 B . 64 俯视图C. 80 D . 1205•如果函数f (x ) JT=C0S (wx )(w 0)的相邻两个零点之 间的距离为 ,则,6的值为( C. 12D. 24 6•阅读如图所示的程序框图,输出的 A . 0 B . 1+ .2 C . 1 +于S 值为( ).D/.2- 155——K ——正视图* ----- 8 ----- *侧视图数的正整数的个数是f (x )在 R 是单调函数;②函数 f (x )的最小值是-2 ;③方程f (x ) = b 恒有两个不等实根;④对任意x <:0,x 2 :0且为=x 2,恒有f (' 立)f (x^)成立.其中正确结论 2 2的个数为( ).A . 1B . 2C. 3D . 4[来源:]二、填空题'(本大题共4小题,每小题5分。

人教A版必修2高二数学期中考试题(文科)及答案

人教A版必修2高二数学期中考试题(文科)及答案

高二级数学中考试题(文科)本试题卷共4页,三大题20小题,全卷满分150分,考试用时120分钟。

注意事项:1. 答题前,考生务必将自己的姓名、座位号填在答题卡上;2. 选择题每小题选出答案后,填写在答题卡上对应题目;3. 填空题和解答题填写在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束后,只将答题卡上交。

参考公式:圆锥的表面积公式)(l r r S +=π,r 是底面半径,l 是母线锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。

一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是( ) A .圆柱 B .圆锥 C .球 D .圆台2、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( )A.300B.450C.600D.9003、直线5x-2y-10=0在x 轴上的截距为a, 在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=-5;C.a=-2,b=5D.a=-2,b=-54、直线2x-y=7与直线3x+2y-7=0的交点是( )A.(3,-1)B.(-1,3)C.(-3,-1)D.(3,1)5、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A.4x+3y-13=0B.4x-3y-19=0C.3x-4y-16=0D.3x+4y-8=06、点M(4,m )关于点N (n,-3)的对称点为P (6,-9),则( )A.m =-3,n =10 B.m =3,n =10 C.m =-3,n =5 D.m =3,n =57、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.8、已知水平放置的ABC ∆的直观图如图所示,其中23,1=''=''=''O A O C O B ,那么原ABC ∆的面积是 ( ) A. 23; B. 43;C.3; D. 22.9、某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做底,且有一个三角形面上写上了“年”字。

高二数学上学期期中文科试题

高二数学上学期期中文科试题

高二数学上学期期中文科试题可能对于很多文科生来说数学是很难的,大家不要放弃哦,今天小编就给大家分享一下高二数学,就给阅读哦高二数学上期中文科试题第I卷共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1. 已知是等比数列, ( )A.4B.16C.32D. 642.若a>b>0,下列不等式成立的是( )A.a23. 在中,,则一定是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形4.在△ABC内角A,B, C的对边分别是a,b,c,已知a= ,c= ,∠A= ,则∠C的大小为( )A. 或B. 或C.D.5.原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( )A.0≤a≤2B.026.在中,已知 ,则角A等于( )A. B. C. D.7.若数列为等差数列且,则sin 的值为( )A. B. C. D.8.在中,分别是角的对边,且 , ,则的面积等于( )A. B. C. D.109.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A. 尺B. 尺C. 尺D. 尺10.若不等式组表示的平面区域是一个三角形,则的取值范围是( )A. 或B.C. 或D.11.等比数列的前n项的和分别为, ,则 ( )A. B. C. D.12.已知单调递增数列{an}满足an=3n﹣λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是( )A.λ≤3B.λ<3C.λ≥3D.λ>3第Ⅱ卷共90分二、填空题:本大题有4小题,每小题5分,共20分,把答案填在答卷的相应位置.13.已知关于x的不等式ax2﹣(a+1)x+b<0的解集是{x|114.设且 ,则的最小值为15.若数列的前n项的和为,且,则的通项公式为_________.16.若数列为等差数列,首项,则使前项和的最大自然数n是_________________.三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤.17、(本题满分10分)(1)设数列满足,写出这个数列的前四项;(2)若数列为等比数列,且求数列的通项公式18.(本题满分12分)已知函数 .(1)当时,解不等式 ;(2)若不等式的解集为,求实数的取值范围.19.(本题满分12分)的内角的对边分别为 ,已知 .(1)求(2)若 , 面积为2,求20.(本题满分12分)在中,角所对的边分别为,设为的面积,满足(I)求角的大小;(II)若边长,求的周长的最大值.21.(本小题满分12分)已知实数满足不等式组 .(1)求目标函数的取值范围;(2)求目标函数的最大值.22.(本小题满分12分)已知等比数列满足 , ,公比(1)求数列的通项公式与前n项和 ;(2)设,求数列的前n项和 ;(3)若对于任意的正整数,都有成立,求实数m的取值范围. 高二数学(文科)参考答案一、选择题:本大题有12小题,每小题5分,共60分1-12:C C C D B C B C C A B B二、填空题:本大题有4小题,每小题5分,共20分13. 14.8 15. 16. 4034三、解答题:17.(本小题满分10分)(1) …………5分,(2)由已知得,联立方程组解得得,即…………10分18.(本小题满分12分).……4分(2)若不等式的解集为,则①当m=0时,-12<0恒成立,适合题意; ……6分②当时,应满足由上可知,……12分19. (1)由题设及得,故上式两边平方,整理得解得……………6分(2)由,故又,由余弦定理及得所以b=2……………12分20.解:(1)由题意可知,……………2分12absinC=34•2abcosC,所以tanC=3. 5分因为0所以,所以,当时,最大值为4,所以△ABC的周长的最大值为6其他方法请分步酌情给分21.(本小题满分12分)解:(1)画出可行域如图所示,直线平移到点B时纵截距最大,此时z取最小值;平移到点C时纵截距最小,此时z取最大值.由得由得∴C(3,4);当x=3,y=4时,z最大值2.………………………8分(2) 表示点到原点距离的平方,当点M在C点时,取得最大值,且………………12分22. 解:(1)由题设知,,又因为, ,解得:,故an=3 = ,前n项和Sn= - .……4分(2)bn= = = ,所以 = ,所以== < ,………8分(3)要使恒成立,只需,即解得或m≥1. ………………12分高二文科数学上学期期中试卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若,则”的逆否命题是 ( )A. 若,则B. 若,则C. 若,则D. 若,则2 .命题“ ”的否定是 ( )A. B. C. D.3.若中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是 ( )A. x23+y24=1B. x24+y23=1C. x24+y22=1D. x24+y23=14. 表示的曲线方程为 ( )[A. B.C. D.5.抛物线的准线方程是 ( )A. B. C. D.6.若k∈R则“k>5”是“方程x2k-5-y2k+2=1表示双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知是椭圆的两焦点,过点的直线交椭圆于点,若 ,则 ( )A.9B.10C.11D.128.已知双曲线的离心率为3,焦点到渐近线的距离为,则此双曲线的焦距等于 ( )A. B. C. D.9.双曲线的一个焦点为,椭圆的焦距为4,则A.8B.6C.4D.210.已知双曲线的两个顶点分别为,,点为双曲线上除,外任意一点,且点与点,连线的斜率分别为、,若,则双曲线的离心率为 ( )A. B. C. D.11.如果是抛物线的点,它们的横坐标依次为,是抛物线的焦点,若 ,则 ( )A. B. C. D.12.已知点,是椭圆上的动点,且,则的取值范围是 ( )A. B. C. D.二、填空题:(本大题共4小题,每小题5分)13.若命题“ ”是假命题,则实数的取值范围是 .14.已知直线和双曲线的左右两支各交于一点,则的取值范围是 .15.已知过抛物线的焦点,且斜率为的直线与抛物线交于两点,则 .16.已知是抛物线上的动点,点是圆上的动点,点是点在轴上的射影,则的最小值是 .三、解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设命题函数在单调递增;命题方程表示焦点在轴上的椭圆.命题“ ”为真命题,“ ”为假命题,求实数的取值范围.18.(本小题满分12分)(Ⅰ)已知某椭圆过点,求该椭圆的标准方程.(Ⅱ)求与双曲线有共同的渐近线,经过点的双曲线的标准方程.19.(本小题满分12分)已知抛物线的顶点在原点,焦点在轴的正半轴且焦点到准线的距离为2.(Ⅰ)求抛物线的标准方程;(Ⅱ)若直线与抛物线相交于两点,求弦长 .20.(本小题满分12分)已知双曲线的离心率为,虚轴长为 .(Ⅰ)求双曲线的标准方程;(Ⅱ)过点,倾斜角为的直线与双曲线相交于、两点,为坐标原点,求的面积.21.(本小题满分12分)已知椭圆,过点,的直线倾斜角为,原点到该直线的距离为 .(Ⅰ)求椭圆的标准方程;(Ⅱ)斜率大于零的直线过与椭圆交于E,F两点,若,求直线EF的方程.22.(本小题满分12分)已知分别为椭圆C:的左、右焦点,点在椭圆上,且轴,的周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)E,F是椭圆C上异于点的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.数学(文科)学科参考答案第Ⅰ 卷 (选择题共60分)一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D D C A A C D C B B A第Ⅱ 卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分. )(13) ; (14) ; (15) ; (16) .三、解答题:(解答应写出必要的文字说明,证明过程或演算步骤.)(17)(本小题满分10分)解:命题p:函数在单调递增命题q:方程表示焦点在轴上的椭圆……4分“ ”为真命题,“ ”为假命题,命题一真一假……6 分① 当真假时:② 当假真时:综上所述:的取值范围为……10分(18)(本小题满分12分)解:(Ⅰ)设椭圆方程为,解得,所以椭圆方程为. ……6分(Ⅱ)设双曲线方程为,代入点,解得即双曲线方程为. ……12分(19)(本小题满分12分)解:(Ⅰ) 抛物线的方程为:……5分(Ⅱ)直线过抛物线的焦点,设,联立,消得,……9分或……12分(20)(本小题满分12分)解:(Ⅰ)依题意可得,解得双曲线的标准方程为. ……4分(Ⅱ)直线的方程为联立,消得,设,,由韦达定理可得 , ,……7分则……9分原点到直线的距离为……10分的面积为……12分(21)(本小题满分12分)解:(Ⅰ)由题意,,,解得,所以椭圆方程是:……4分(Ⅱ)设直线:联立,消得,设,,则 ,……① ……② ……6分,即……③ ……9分由①③得由②得……11分解得或 (舍)直线的方程为:,即……12分(22)(本小题满分12分)解:(Ⅰ)由题意,,,的周长为,,椭圆的标准方程为. ……4分(Ⅱ)由(Ⅰ)知,设直线方程:,联立,消得……5分设,点在椭圆上,……7分又直线的斜率与的斜率互为相反数,在上式中以代,,……9分……10分即直线的斜率为定值,其值为. ……12分高二数学上期中文科联考试题第Ⅰ卷(共100分)一、选择题(本大题共11个小题,每小题5分,共55分)1.已知sin α=25,则cos 2α=A.725B.-725C.1725D.-17252.已知数列1,3,5,7,…,2n-1,…,则35是它的A.第22项B.第23项C.第24项D.第28项3.在△ABC中,角A,B,C的对边分别为a,b,c,若b=c=2a,则cos B=A.18B.14C.12D.14.△ABC中,角A,B,C所对的边分别为a,b,c,若cbA.钝角三角形B.直角三角形C.锐角三角形D.等边三角形5.已知点(a,b) a>0,b>0在函数y=-x+1的图象上,则1a+4b 的最小值是A.6B.7C.8D.96.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则从上往下数第6节的容积为A.3733B.6766C.1011D.23337.设Sn为等比数列{an}的前n项和, 27a4+a7=0,则S4S2=A.10B.9C.-8D.-58.已知数列{an}满足an+1+an=(-1)n•n,则数列{an}的前20项的和为A.-100B.100C.-110D.1109.若x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0,则z=x+2y的最大值为A.3B.4C.5D.610.已知0A.13B.12C.23D.3411.已知等差数列{an}的公差d≠0,前n项和为Sn,若对所有的n(n∈N*),都有Sn≥S10,则A.an≥0B.a9•a10<0C.S2第Ⅰ卷选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 得分答案二、填空题(本大题共3小题,每小题5分,共15分)12.在等比数列{an}中,a4•a6=2 018,则a3•a7= ________ .13.在△ABC中,a=3,b=1,∠A=π3,则cos B=________.14.对于实数a、b、c,有下列命题:①若a>b,则acbc2,则a>b;③若a ab>b2;④若c>a>b>0,则ac-a>bc-b;⑤若a>b,1a>1b,则a>0,b<0.其中正确的是________.(填写序号)三、解答题(本大题共3小题,共30分)15.(本小题满分8分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求角C;(2)若c=7,△ABC的面积为332,求△ABC的周长.16.(本小题满分10分)某厂拟生产甲、乙两种适销产品,每件销售收入分别为3 000元、2 000元. 甲、乙产品都需要在A、B两种设备上加工,在A、B设备上加工一件甲产品所需工时分别为1 h,2 h,加工一件乙产品所需工时分别为2 h,1 h,A、B两种设备每月有效使用台时数分别为400 h 和500 h,分别用x,y表示计划每月生产甲、乙产品的件数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问每月分别生产甲、乙两种产品各多少件,可使月收入最大?并求出最大收入.17.(本小题满分12分)已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=1anan+1,求数列{bn}的前n项和Sn.第Ⅱ卷(共50分)一、选择题18.(本小题满分6分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP→=4FQ→,则|QF|等于( )A.72B.52C.3D.2二、填空题19.(本小题满分6分)如图,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是__________.三、解答题20.(本小题满分12分)在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=2.沿EF将梯形AFED折起,使得∠AFB=60°,如图.(1)若G为FB的中点,求证:AG⊥平面BCEF;(2)求二面角C-AB-F的正切值.21.(本小题满分13分)已知二次函数f(x)=x2-16x+q+3.(1)若函数f(x)在区间[-1,1]上存在零点,求实数q的取值范围;(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).22.(本小题满分13分)已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,3),且它的离心率e=12.(1)求椭圆的标准方程;(2)与圆(x-1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足OM→+ON→=λOC→,求实数λ的取值范围.参考答案第Ⅰ卷(共100分)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11答案 C B B A D A A A B B D1.C 【解析】cos 2α=1-2sin2α=1-2×252=1725.故选C.2.B 【解析】由数列前几项可知an=2n-1,令an=2n-1=35得n=23.故选B.3.B4.A 【解析】由正弦定理可得sin C5.D 【解析】a+b=1,∴1a+4b=1a+4b(a+b)=5+ba+4ab≥9,当且仅当b=2a=23时取等号.故选D.6.A 【解析】根据题意,设该竹子自上而下各节的容积为等差数列{an},设其公差为d,且d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,解可得a1=1322,d=766,则第6节的容积a6=a1+5d=7466=3733.故答案为A.7.A 【解析】由27a4+a7=0,得q=-3,故S4S2=1-q41-q2=1+q2=10.故选A.8.A 【解析】由an+1+an=(-1)n•n,得a2+a1=-1,a3+a4=-3,a5+a6=-5,…,a19+a20=-19.∴an的前20项的和为a1+a2+…+a19+a20=-1-3-…-19=-1+192×10=-100,故选A.9.B 【解析】由x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0.作出可行域如图,由z=x+2y,得y=-12x+z2.要使z最大,则直线y=-12x+z2的截距最大,由图可知,当直线y=-12x+z2过点A时截距最大.联立x=2y,x+y=3解得A(2,1),∴z=x+2y的最大值为2+2×1=4.故答案为B.10.B 【解析】∵0∴x(3-3x)=3x(1-x)≤3•x+1-x22=34,当且仅当x=12时取等号.∴x(3-3x)取最大值34时x的值为12.故选B.11.D 【解析】由?n∈N*,都有Sn≥S10,∴a10≤0,a11≥0,∴a1+a19=2a10≤0,∴S19=19(a1+a19)2≤0,故选D.二、填空题12.2 01813.32 【解析】∵a=3,b=1,∠A=π3,∴由正弦定理可得:sin B=bsin Aa=1×323=12,∵b14.②③④⑤【解析】当c=0时,若a>b,则ac=bc,故①为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,故②为真命题;若a ab且ab>b2,即a2>ab>b2,故③为真命题;若c>a>b>0,则cabc-b,故④为真命题;若a>b,1a>1b,即bab>aab,故a•b<0,则a>0,b<0,故⑤为真命题.故答案为②③④⑤.三、解答题15.【解析】(1)∵在△ABC中,0已知等式利用正弦定理化简得:2cos C(sin AcosB+sin Bcos A)=sin C,整理得:2cos Csin(A+B)=sin C,即2cos Csin(π-(A+B))=sin C,2cos Csin C=sin C,∴cos C=12,∴C=π3.4分(2)由余弦定理得7=a2+b2-2ab•12,∴(a+b)2-3ab=7,∵S=12absin C=34ab=332,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+7.8分16.【解析】(1)设甲、乙两种产品月产量分别为x,y件,约束条件是2x+y≤500,x+2y≤400,x≥0,y≥0,由约束条件画出可行域,如图所示的阴影部分.5分(2)设每月收入为z千元,目标函数是z=3x+2y,由z=3x+2y可得y=-32x+12z,截距最大时z最大.结合图象可知,直线z=3x+2y经过A处取得最大值由2x+y=500,x+2y=400可得A(200,100),此时z=800.故安排生产甲、乙两种产品的月产量分别为200,100件可使月收入最大,最大为80万元.10分17.【解析】(1)设等差数列{an}的公差为d,∵a3+a8=20,且a5是a2与a14的等比中项,∴2a1+9d=20,(a1+4d)2=(a1+d)(a1+13d),解得a1=1,d=2,∴an=1+2(n-1)=2n-1.6分(2)bn=1(2n-1)(2n+1)=1212n-1-12n+1,∴Sn=b1+b2+b3+…+bn=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.12分第Ⅱ卷(共50分)一、选择题18.C 【解析】∵FP→=4FQ→,∴|FP→|=4|FQ→|,∴|PQ||PF|=34.如图,过Q作QQ′⊥l,垂足为Q′,设l与x轴的交点为A,则|AF|=4,∴|QQ′||AF|=|PQ||PF|=34,∴|QQ′|=3,根据抛物线定义可知|QF|=|QQ′|=3,故选C.二、填空题19.62 【解析】|F1F2|=23.设双曲线的方程为x2a2-y2b2=1.∵|AF2|+|AF1|=4,|AF2|-|AF1|=2a,∴|AF2|=2+a,|AF1|=2-a.在Rt△F1AF2中,∠F1AF2=90°,∴|AF1|2+|AF2|2=|F1F2|2,即(2-a)2+(2+a)2=(23)2,∴a=2,∴e=ca=32=62.三、解答题20.【解析】(1)因为AF=BF,∠AFB=60°,△AFB为等边三角形.又G为FB的中点,所以AG⊥FB.2分在等腰梯形ABCD中,因为E、F分别是CD、AB的中点,所以EF⊥AB.于是EF⊥AF,EF⊥BF,则EF⊥平面ABF,所以AG⊥EF.又EF与FB交于一点F,所以AG⊥平面BCEF.5分(2)连接CG,因为在等腰梯形ABCD中,CD=2,AB=4,E、F分别是CD、AB中点,G为FB的中点,所以EC=FG=BG=1,从而CG∥EF.因为EF⊥平面ABF,所以CG⊥平面ABF.过点G作GH⊥AB于H,连结CH,据三垂线定理有CH⊥AB,所以∠CHG为二面角C-AB-F的平面角.8分因为Rt△BHG中,BG=1,∠GBH=60°,所以GH=32.在Rt△CGB中,CG⊥BG,BG=1,BC=2,所以CG=1.在Rt△CGH中,tan∠CHG=233,故二面角C-AB-F的正切值为233.12分21.【解析】(1)∵函数f(x)=x2-16x+q+3的对称轴是x=8,∴f(x)在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有f(1)≤0,f(-1)≥0,即1-16+q+3≤0,1+16+q+3≥0,∴-20≤q≤12.6分(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x=8.①当0≤t≤6时,在区间[t,10]上,f(t)最大,f(8)最小,∴f(t)-f(8)=12-t,即t2-15t+52=0,解得t=15±172,∴t=15-172;9分②当6∴f(10)-f(8)=12-t,解得t=8;11分③当8∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,∴t=9.综上可知,存在常数t=15-172,8,9满足条件.13分22.【解析】(1)设椭圆的标准方程为x2a2+y2b2=1(a>b>0),由已知得:4a2+3b2=1,ca=12,c2=a2-b2,解得a2=8,b2=6,所以椭圆的标准方程为x28+y26=1.4分(2)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以|t+k|1+k2=1?2k=1-t2t(t≠0),6分把y=kx+t代入x28+y26=1并整理得:(3+4k2)x2+8ktx+4t2-24=0,设M(x1,y1),N(x2,y2),则有x1+x2=-8kt3+4k2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=6t3+4k2, 8分因为λOC→=(x1+x2,y1+y2),所以C-8kt(3+4k2)λ,6t(3+4k2)λ,又因为点C在椭圆上,所以,8k2t2(3+4k2)2λ2+6t2(3+4k2)2λ2=1?λ2=2t23+4k2=21t22+ 1t2+1,11分因为t2>0,所以1t22+1t2+1>1,所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).13分。

第一学期期中考试高二数学试题及答案(文科)-精选教育文档

第一学期期中考试高二数学试题及答案(文科)-精选教育文档

第一学期期中考试高二数学试题及答案(文科)高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了第一学期期中考试高二数学,希望大家喜欢。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置上.1.已知命题,则 : .2.已知函数的导函数为,且满足,则 = .3.已知,,,为实数,且 .则是 - - 的条件.( 充分而不必要、必要而不充分、充要、既不充分也不必要)4. 有下列四个命题:(1)若,则的逆命题;(2)全等三角形的面积相等的否命题;(3)若,则有实根的逆命题;(4)若,则的逆否命题。

其中真命题的个数是_______.5.若是纯虚数,则的值是。

6.已知数列{an}的前n项和,则数列{an}成等比数列的充要条件是r= .7.计算8.函数,的单调递增区间是 .9.已知复数满足 =2,则的最大值为 .10.已知函数在处有极大值,则 = 。

11. 右图是函数的导函数的图象,给出下列命题:① 是函数的极值点;② 是函数的极小值点;③ 在处切线的斜率小于零;④ 在区间上单调递增.则正确命题的序号是 .12.观察下列等式: ,,根据上述规律,第五个等式为____________.13.已知扇形的圆心角为 (定值),半径为 (定值),分别按图一、二作扇形的内接矩形,若按图一作出的矩形面积的最大值为,则按图二作出的矩形面积的最大值为 .14.若存在过点的直线与曲线和都相切,则等于 .二、解答题15.(本小题满分14分)已知为复数,和均为实数,其中是虚数单位.(Ⅰ)求复数 ;(Ⅱ)若复数在复平面上对应的点在第一象限,求实数的取值范围.16.(本小题满分14分)已知 p:,q: .⑴ 若p是q充分不必要条件,求实数的取值范围;⑵ 若非p是非q的充分不必要条件,求实数的取值范围.17.(本题满分15分) 已知二次函数在处取得极值,且在点处的切线与直线平行.(1)求的解析式;(2)求函数的单调递增区间.18. (本题满分15分) 已知a、b(0,+),且a+b=1,求证:(1) ab (2) + (3) + . (5分+5分+5分)19.(本小题满分16分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)按下列要求建立函数关系式:(i)设 (rad),将表示成的函数;并写出函数的定义域. (5分)(ii)设 (km),将表示成的函数;并写出函数的定义域. (5分)(2)请你选用(1)中的一个函数关系确定垃圾处理厂的位置,使建在此处的垃圾处理厂对城A和城B的总影响度最小? (6分)20.(本小题满分16分)已知函数的图象过点,且在点处的切线与直线垂直.(1) 求实数的值;(6分)(2) 求在 ( 为自然对数的底数)上的最大值;(10分) 2019~2019学年度第一学期期中考试高二数学试题(文科)参考答案一、填空题:本大题共14小题,每小题5分,共70分。

【精选高中试题】人教版数学(文)高二上学期期中试卷word版

【精选高中试题】人教版数学(文)高二上学期期中试卷word版

俯视图侧视图正视图数学试题卷(文科)数学试题共4页。

满分150 分。

考试时间120 分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知椭圆x ym2251+=的离心率e=105,则m的值为( )A.3B.3或253 C.15D.15或53152. 命题“||,2≥+∈∀xxRx”的否定是()A.||,2<+∈∀xxRx B. 0||,2≤+∈∀xxRxC.||,2<+∈∃xxRxD.||,2≥+∈∃xxRx3.如图1,一个几何体的三视图是由两个矩形和一个圆所组成,则该几何体的表面积是( )A.π7B.π8C.π10 D.12+π(图1)4.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③x、y是平面,z是直线;④x、y、z均为平面。

其中能使“yxzyzx//⇒⊥⊥且”为真命题的是( )A.③④B.①③C.②③D.①②5.直线l不经过坐标原点O, 且与椭圆1222=+yx交于A、B两点,M是线段AB的中点.那么,直线AB与直线OM的斜率之积为( )A.1- B.1 C.21-D.26.已知命题:p直线2+=xy与双曲线122=-yx有且仅有一个交点;命题:q若直线l垂直于直线m,且,//α平面m则α⊥l. 下列命题中为真命题的是( )B CA.()()p q ⌝∨⌝B.()p q ⌝∨C.()()p q ⌝∧⌝D.p q ∧7.下列有关命题的说法错误的是 ( ) A.对于命题p :x R ∃∈,使得210x x ++<. 则⌝p :x R ∀∈, 均有210x x ++≥.B.“1=x ”是“0232=+-x x ”的充分不必要条件.C.命题“若12=x , 则1=x ”的否命题为:“若12≠x ,则1≠x ”.D.命题“若5≠+y x ,则32≠≠y x 或”是假命题.8.(原创)如下图2, 在平行四边形ABCD 中, AD=2AB=2, ∠BAC=90°. 将△ACD 沿AC 折起, 使得BD=5. 在三棱锥D-ABC 的四个面中,下列关于垂直关系的叙述错误的是( )A.面ABD ⊥面BCDB.面ABD ⊥面ACDC.面ABC ⊥面ACDD.面ABC ⊥面BCD(图2) (图3)9.(原创)如上图3, 四棱锥P-ABCD 的底面ABCD 是边长为1的正方形, 面PAB ⊥面ABCD.在面PAB 内的有一个动点M, 记M 到面PAD 的距离为d . 若1||22=-d MC , 则动点M 在面PAB 内的轨迹是( ) A.圆的一部分 B.椭圆的一部分 C.双曲线的一部分 D.抛物线的一部分10.设椭圆22221(0)x y a b a b +=>>的离心率为12e =,右焦点为F (c, 0),方程20ax bx c +-=的两个实根分别为x1和x2,则点P(x1, x2)的位置( ) A.必在圆222x y +=内 B.必在圆222x y +=上C.必在圆222x y +=外D.以上三种情形都有可能二、填空题:本大题共5小题,每小题5分,共25分,把答案写在答题卡相应位置上.11.过点P(3,1)向圆012222=+--+y x y x 作一条切线, 切点为A, 则切线段PA 的长为 .12.椭圆1002x +362y =1上一点P 到它的右准线的距离是10,那么P 点到左焦点的距离是 .俯视图侧视图13.一个几何体的三视图如图4, 则这个几何体的体积为 . 14.半径为5的球内包含有一个圆台, 圆台的上、下两个底面都是 球的截面圆, 半径分别为3和4. 则该圆台体积的最大值为 .15.(原创)设A 为椭圆12222=+b y a x (0>>b a )上一点, 点A 关于原点的对称点为B, F 为椭圆的右焦点, 且AF ⊥BF. 若∠ABF ∈[12π,4π], (图4)则该椭圆离心率的取值范围为 .三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤16.(本小题13分)已知双曲线2222:1(0,0)x y C ab a b -=>>实轴长为2。

高二数学上学期中考试文科试题(共10页)

高二数学上学期中考试文科试题(共10页)

四中高二数学上学(shàng xué)期中考试(文科)一、选择题〔每一小题5分,一共60分〕1、.直线l1:(a+1)x+y-2=0与直线l2:ax+(2a+2)y+1=0互相垂直,那么实数a的值为〔〕A.-1或者2B. 1或者2C. -1或者-2D.1或者-22、点P是直线l:2x-y-4=0与x轴的交点,把直线绕点P按逆时针方向旋转,得到的直线方程是〔〕A、 B、 C、 D、3、假设的两个顶点坐标分别为和,而顶点在直线的重心的轨迹方程是〔〕上挪动,那么ABC,4.圆截轴所得的弦与截轴所得的弦的长度之比为( )A. B. C. D.5.方程所表示的曲线图形是〔〕6.圆与轴交于A 、两点,圆心(yu ánx īn)为,假设,那么实数等于〔 〕A 1B -11C 9D 117、过点(2,-2)且与双曲线有一样渐近线的双曲线的方程是〔 〕A 、B 、C 、D 、8椭圆的焦点在y 轴上,长轴长是短轴长的两倍,那么m 的值是〔 〕 A .B .C .2D .49.直线y =kx +2与双曲线的右支交于不同的两点,那么k 的取值范围是〔 〕 A ., B .,)315 C .315(-,D .315(-,10.发射的“神舟3号〞宇宙飞船的运行轨道是以地球的中心为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,那么飞船运行轨道的短轴长为〔 〕A .B .C .mnD .2mn11.y=x+1与曲线(q ūxi àn)=1的公一共点个数为〔 〕A.1B.212设F 1、F 2为椭圆+y 2=1的两个焦点,P 在椭圆上,当△F 1PF 2面积为1时,·的值是 ( )A. 2B.1C.D.二、填空题〔每一小题4分,一共16分〕2+y 2=16交于A 、B 两点,使△AOB 的面积最大(O 为原点),那么此最大值是 。

14..Rt △ABC 的斜边AB 的长度等于定值C ,顶点A 、B 在x 轴,y 轴上滑动,那么斜边 AB 的中点M 的轨迹方程为 。

高二上学期期中考试数学(文科)试卷及参考答案

高二上学期期中考试数学(文科)试卷及参考答案

上学期期中考试卷 高二数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =+>,{}2,1,0,1B =--,则()A B R 等于( ). A .{}2,1-- B .{}2- C .{}1,0,1- D .{}0,1 2.已知命题:p x ∀∈R ,2210x +>,则p ⌝是( ). A .x ∀∈R ,2210x +≤B .x ∃∈R ,2210x +>C .x ∃∈R ,2210x +<D .x ∃∈R ,2210x +≤3.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)(1,2,,)i i x y i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是( ).A .y 与x 有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg4.设α,β是两个不同的平面,l 是一条直线,下列命题中:①若l α⊥,αβ⊥,则l β∥;②若l α∥,αβ∥,则l β∥;③若l α⊥,αβ∥,则l β⊥;④若l α∥,αβ⊥,则l β⊥.其中正确命题的个数是( ). A .1B .2C .3D .45.已知两条直线2y ax =-和3(2)10x a y -++=互相平行,则a 等于( ). A .1或3-B .1-或3C .1或3D .1-或3-6.已知θ为第一象限角,设(3,sin )a θ=-,(cos ,3)b θ=,且a b ⊥,则θ一定为( ). A .ππ()3k k +∈Z B .π2π()6k k +∈Z C .π2π()3k k +∈Z D .ππ()6k k +∈Z 7.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35B .33C .31D .298.若正三棱锥的正视图与俯视图如右图所示,底面是正三角形,则它的侧视图的面积为( ).A 3B .34C 3D .329.已知a ,b ,c 为集合{}1,2,3,4,5A =中三个不同的数,通过如图所示算法框图给出的一个算法输出一个整数a ,则输出的数5a =的概率是( ).否a=ca=b 是a >b ?开始结束输入a ,b ,c 输出a a >c ?是否A .15B .25 C .35D .4510.已知实数x ,y 满足约束条件10,40,,x y x y y m +-⎧⎪+-⎨⎪⎩≥≤≥,若目标函数2z x y =+的最大值与最小值的差为2,则实数m 的值为( ). A .4B .3C .2D .12-11.函数()sin f x x =在区间(0,10π)上可找到n 个不同数1x ,2x ,,n x ,使得1212()()()n nf x f x f x x x x ===,则n 的最大值等于( ).A .8B .9C .10D .1112.已知奇函数4()f x x t x =++(t 为常数)和函数1()2xg x a ⎛⎫=+ ⎪⎝⎭,若对11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[1,0]x ∃∈-,使得12()()f x g x ≥,则a 实数的取值范围是( ).A .(,4]-∞B .(,3]-∞C .[4,)+∞D .[3,)+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如果角α的终边过点(4sin30,4cos30)︒-︒,则sin α=__________.14.如图是甲、乙两人在5次综合测评中的成绩的茎叶图,其中一个数字被污损;则甲平均成绩超过乙的平均成绩的概率为__________.甲乙3388991207915.设13log 5a =,5log 9b =,0.315c ⎛⎫= ⎪⎝⎭,a ,b ,c 的大小关系(用“<”连接)是__________.16.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+. (1)求角A 的大小.(2)若1b =,ABC △,求c . 18. 已知各项为正数的数列}{n a 的前n 项和为n S ,并且满足:n S ,n a ,2成等差数列. (1)求数列}{n a 的通项公式.(2)若n n c n a =⋅,求数列}{n c 的前n 项和n T .19. 某校高二文科分四个班,各班人数恰好成等差数列,高二数学调研测试后,对四个文科班的学生试卷按每班人数进行分层抽样,对测试成绩进行统计,人数最少的班抽取了22人,抽取的所有学生成绩分为6组:[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),得到如图所示的频率分布直方图,其中第六组分数段的人数为5人.(1)求a 的值,并求出各班抽取的学生数各为多少人?(2)在抽取的学生中,任取一名学生,求分数不小于90分的概率(视频率为概率).(3)估计高二文科四个班数学成绩的平均分20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点,四面体E ACD -的体积为163. ECBAPD(1)求证:PB ∥平面ACE . (2)若四面体E ACD -的体积为23.求AB 的长. 21.已知⊙M 的半径为1,圆心M 的坐标为(,0)m ,其中24m ≤≤.OA ,OB 为该圆的两条切线,O 为坐标原点,A ,B 为切点,A 在第一象限,B 在第四象限. (1)若2m =时,求切线OA ,OB 的斜率. (2)若4m =时,求AMB △外接圆的标准方程.(3)当M 点在x 轴上运动时,将MA MB ⋅表示成m 的函数()m ϕ,并求函数()m ϕ的最小值. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.已知函数22||,2,()(2), 2.x x f x x x -<⎧=⎨-⎩≥. (1)在给定的平面直角坐标系中,画出函数()f x 的草图,并写出函数()f x 的单调区间(不必写作图过程,单调性不必证明).(2)当2x ≥时,不等式()f x kx ≥恒成立,求实数k 的取值范围.上学期期中考试卷 高二数学(文科)答案一、选择题1-5:ADDAA 6-10:BCBCC 11、12:CB 二、填空题13. 14.45 15. a c b << 16.2三、解答题17.(1)在ABC △中,2222cos b c a bc A +-=, 又222b c a bc +=+, ∴1cos 2A =, ∵0πA <<, ∴π3A =. 综上所述:π3A =.(2)由1sin 2S bc A =,得3bc =, ∵1b =, ∴3c =. 综上所述:3c =.18.(1)∵2,n a ,n S 成等差数列, ∴22n n a S =+,∴1n =,1122a a =+,计算得出12a =. 当2n ≥时,1122n n a S --=+, ∴122n n n a a a --=,化为12n n a a -=,∴数列{}n a 成等比数列,首项为2,公比为2, ∴2n n a =.(2)2n n n c n a n =⋅=⋅, ∴数列{}n c 的前n 项和 22222322n n T n =+⨯+⨯++⋅,2312222(1)22n n n T n n +=+⨯++-⋅+⋅,∴231112(21)222222(1)2221n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--,∴1(1)22n n T n +=-⋅+.19.(1)由频率分布条形图知,抽取的学生总数为51000.05=人. ∵各班被抽取的学生人数成等差数列,设其公差为d , 由4226100d ⨯+=,解得2d =.∴各班被抽取的学生人数分别是22人,24人,26人,28人.(2)在抽取的学生中,任取一名学生,则分数大小于90分的概率为0.350.250.10.050.75+++=.(3)750.05850.20950.351050.251150.101250.0598⨯+⨯+⨯+⨯+⨯+⨯=,平均成绩为98分.20.(1)证明:连接BD 交AC 于点O ,连接EO , ∵ABCD 是正方形, ∴点O 是BD 的中点, 又∵点E 是PD 的中点, ∴EO 是DPB △的中位线, ∴PB EO ∥,又∵EO ⊂平面ACE ,PB ⊄平面ACE , ∴PB ∥平面ACE .(2)取AD 的中点H ,连接EH , ∵点E 是PD 的中点, ∴EH PA ∥,又∵PA ⊥平面ABCD , ∴EH ⊥平面ABCD .设AB x =,则PA AD CD x ===,且1122EH PA x ==,所以3111111233262123E ACD ACD V S EH AD CD EH x x x x -=⨯=⨯⨯⨯⨯=⋅⋅⋅==△,解得2x =, 故AB 的长为221.(1)2m =时,圆M 为:22(2)1x y -+=.由题意设过O 点,圆M 的切线方程为y kx =,(k 不存在不成立),1=,解得k =. 所以OA,OB(2)由题意AMB △外接圆,圆心在x 轴上,设(,0)xP t , 由题意QM AM AM OM =,得14QM =,AQ =. 所以:222PQ AQ PM +=, 解得2t =.所以AMB △外接圆圆心为(2,0)P , 半径为2PM =.所以圆22:(2)4P x y -+=.(3)由(2)知2AM QM OM =得1QM m =,AQ =,所以1A m m ⎛-⎝⎭,1,B m m ⎛- ⎝⎭,(,0)M m ,所以222111(1),m MA MB m m m m ⎛⎛-⋅=-⋅-=- ⎝⎝⎭221m =-+. 所以22()1(24)m m m ϕ=-+≤≤, 所以当4m =时,()m ϕ取得最小值为78-.22.(1)()f x 在(,0)-∞和(2,)+∞上单调递增, 在(0,2)上单调递减.(2)由题意2(2)x kx -≥,在2x ≥上恒成立, 即kx 图像在2(2)x -下方(2)x ≥, 由题意得0k ≤.(3)∴22|2|,0(2),0x x f x x x --⎧-⎨<⎩≥,∵函数()()y f x g x =-恰好有四个零点, ∴方程()()0f x g x -=有四个解, 即()(2)0f x f x b +--=有四个解,即函数()(2)y f x f x =+-与y b =的图象有四个交点,222,0()(2)2,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=⎨⎪-+>⎩≤≤,作函数()(2)y f x f x =+-与y b =的图象如下:115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+-=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,结合图象可知,724b <<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版高二数学上册期中考试试卷(文科 附答案)
一、选择题(每小题5分,共60分)
1.若直线l 过点()()1,1,2,1A B --,则l 的斜率为( ) A. 23- B. 32- C. 23 D. 32
2.若直线x +2y +1=0与直线a x +y 鈭?=0互相垂直,那么a 的值等于( )
A. 鈭?
B.
C.
D. 1
3.圆224630x y x y ++--=的圆心和半径分别为( )
A. (4,-6),16
B. (2,-3),4
C. (-2,3),4
D. (2,-3),16
4.已知椭圆G 的中心在坐标原点,焦点在x 轴上,短轴长为2,且椭圆G 上一点到其两个焦点的距离之和为6,则椭圆G 的方程为() A. 2219x y += B. 22194x y += C. 22136x y += D. 22
1364
x y += 5. 实轴长为2
A. C. 221x y -= D. 221x y -=或221y x -=
6.
A. y =
B. y x =
C. 2y x =±
D. y x = 7.若圆C 的半径为1,圆心在第二象限,且与直线430x y +=和y 轴都相切,则圆C 的标准方程是 ( )
A. ()()22131x y ++-=
B. ()()22
131x y -++=
C. ()()22131x y +++=
D. ()()22131x y -+-=
8.直线2x 鈭抷鈭?=0被圆 x 鈭? 2+ y +2 2=9截得的弦长为 ( )
A. 2 5
B. 4
C. 3
D. 2
9.已知焦点在x 轴上的椭圆2213
x y m +=的离心率为12,则m =( )
A. 6
B.
C. 4
D. 2
10.动圆M 与圆()221:11C x y ++=外切,与圆()222:125C x y -+=内切,则动圆
圆心M 的轨迹方程是( ) A. 22189x y += B. 22198x y += C. 2219x y += D. 2
219
y x +=
11.已知两点(),0A a ,(),0B a -(0a >),若曲线22230x y y +--+=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为( )
A. (]0,3
B. []1,3
C. []2,3
D. []1,2
12.已知F 1,F 2是椭圆的左、右焦点,点P 在椭圆上,且,
线段PF 1与y 轴的交点为Q ,O 为坐标原点,若△F 1OQ 与四边形OF 2PQ 的面积之比
为1: 2,则该椭圆的离心率等于 ( )
A. B. C. D.
二、填空题(每小题5分,共20分)
13.在平面直角坐标系xOy 中,双曲线22
143
x y -=的离心率是____. 14.直线210x ay +-=与直线()110a x ay ---=平行,则a 的值是___________ 15. 方程22
195x y m m +=--表示焦点在y 轴的椭圆,则实数m 的取值范围是
16. 直线
(3)y k x =-与圆22(3)(2)4x y -+-=相交于M 、N 两点,若MN ≤k 的取值范围是
三、解答题(共6题,共70分,请在答题卷上相应区域内写清楚过程) 17(本题满分10分)
(1)焦点在x 轴的椭圆,长轴长是短轴长的3倍,且一个顶点为点P (3,0),求椭圆的标准方程.。

相关文档
最新文档