电磁场与电磁波复习题
电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与电磁波试题

电磁场与电磁波试题一、选择题1.物体自带的静电荷可以产生()电场。
A. 近距离的 B. 远距离的 C. 高速的 D. 恒定的2.下列哪个物理量是电场强度的定义? A. 电荷的大小 B. 电势差的变化C. 电场线的形状D. 电场力的大小3.两个相同电量的电荷之间的力为F,若电荷1的电量变为原来的4倍,电荷2的电量变为原来的2倍,则两个电荷之间的力变为原来的()倍。
A. 1/8B. 1/4C. 1/2D. 24.以下哪个物理量在电路中是守恒的? A. 电流 B. 电荷 C. 电压 D. 电功5.电流方向由正极流动到负极。
这是因为电流是由()极到()极流动的。
A. 正极,负极 B. 负极,正极 C. 高电势,低电势 D. 低电势,高电势二、填空题1.电场强度的单位是()。
2.在均匀介质中,电位与电势之间的关系是:()。
3.电容的单位是()。
4.电容和电容器的关系是:()。
三、解答题1.简述电场的概念及其性质。
答:电场是由电荷周围的空间所产生的物理现象。
当电荷存在时,它会在其周围产生一个电场。
电场有以下性质:–电场是矢量量,具有大小和方向。
–电场的强度随着距离的增加而减弱,遵循反比例关系。
–电场由正电荷指向负电荷,或由高电势指向低电势。
–电场相互叠加,遵循矢量相加原则。
–电场线表示了电场的方向和强度,线的密度表示电场强度的大小。
2.简述电流的概念及其特性。
答:电流是指单位时间内通过导体截面的电荷量,用符号I表示,单位是安培(A)。
电流具有以下特性:–电流的方向由正极流向负极,与电子的运动方向相反。
–电流是守恒量,即在封闭电路中,电流的大小不会改变。
–电流的大小与导体电阻、电势差和电阻之间的关系符合欧姆定律:I = U/R,其中I为电流,U为电势差,R为电阻。
3.电容器与电场之间有怎样的关系?答:电容器是一种用于储存电荷和电能的元件。
当电容器充电时,电荷会从一极板移动到另一极板,形成了电场。
电容器的电容决定了电容器储存电荷和电能的能力。
电磁场与电磁波复习题

第二章(选择)1、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将( A )A升高B降低C不会发生变化D无法确定2、下列关于高斯定理的说法正确的是(A)A如果高斯面上E处处为零,则面内未必无电荷。
B如果高斯面上E处处不为零,则面内必有静电荷。
C如果高斯面内无电荷,则高斯面上E处处为零。
D如果高斯面内有净电荷,则高斯面上E处处不为零3、以下说法哪一种是正确的(B)A电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B电场中某点电场强度的方向可由E=F/q确定,其中q0为试验电荷的电荷量,q0可正可负,F为试验电荷所受的电场力C在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D以上说法都不正确4、当一个带电导体达到静电平衡时(D)A表面曲率较大处电势较高B表面上电荷密度较大处电势较高C导体内部的电势比导体表面的电势高D导体内任一点与其表面上任一点电势差等于零5、下列说法正确的是(D)A场强相等的区域,电势也处处相等B场强为零处,电势也一定为零C电势为零处,场强也一定为零D场强大处,电势不一定高6、就有极分子电介质和无极分子电介质的极化现象而论(D)A、两类电介质极化的微观过程不同,宏观结果也不同B、两类电介质极化的微观过程相同,宏观结果也相同C、两类电介质极化的微观过程相同,宏观结果不同D、两类电介质极化的微观过程不同,宏观结果相同7、下列说法正确的是( D )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷B闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零C闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。
D闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零8、根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( D )A若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷B若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零C若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷D介质中的电位移矢量与自由电荷和极化电荷的分布有关9、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将(A)A升高B降低C不会发生变化10、一平行板电容器充电后与电源断开,再将两极板拉开,则电容器上的(D)A、电荷增加B、电荷减少C、电容增加D、电压增加(判断)1、两个点电荷所带电荷之和为Q,当他们各带电量为Q/2时,相互间的作用力最小(×)2、已知静电场中某点的电势为-100V,试验电荷q0=3.0x10-8C,则把试验电荷从该点移动到无穷远处电场力作功为-3.0x10-6J (√)3、电偶极子的电位与距离平方成正比,电场强度的大小与距离的二次方成反比。
电磁场与电磁波总复习

一、 单项选择题1.两个矢量的矢量积(叉乘)满足以下运算规律( B )A. 交换律 A B B A ⨯=-⨯B. 分配率 ()A B C A B A C ⨯+=⨯+⨯C. 结合率D. 以上均不满足 2. 下面不是矢量的是( C )A. 标量的梯度B. 矢量的旋度C. 矢量的散度D. 两个矢量的叉乘 3. 下面表述正确的为( B )A. 矢量场的散度结果为一矢量场B. 标量场的梯度结果为一矢量(具有方向性,最值方向)C. 矢量场的旋度结果为一标量场D. 标量场的梯度结果为一标量 4. 矢量场的散度在直角坐标下的表示形式为( D )A .A A A x y z ∂∂∂++∂∂∂B .y x z x y z A A Ae e e x y z ∂∂∂++∂∂∂C .x y z A A A e e e x y z ∂∂∂++∂∂∂ D . y x zA A A xy z ∂∂∂++∂∂∂ 5. 散度定理的表达式为( A )体积分化为面积分 A. sVA ds AdV ⋅=∇⋅⎰⎰⎰⎰⎰Ò B.sVA ds A dV⨯=∇⋅⋅⎰⎰⎰⎰⎰ÒC.sVA ds A dV ⨯=∇⨯⋅⎰⎰⎰⎰⎰Ò D.sVA ds A dV ⋅=∇⨯⋅⎰⎰⎰⎰⎰Ò 6. 斯托克斯定理的表达式为(B )面积分化为线积分A. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ B.()LsA dl A ds⋅=∇⨯⋅⎰⎰⎰ÑC.()LsA dl A ds ⨯=∇⨯⋅⎰⎰⎰Ñ D. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ 7. 下列表达式成立的是( C ) 两个恒等式()0A ∇∇⨯=g ,()0u ∇⨯∇=A.()sVAds A dV =∇⨯⋅⎰⎰⎰⎰⎰Ò; B. ()0u ∇∇=g ;C. ()0A ∇∇⨯=g ;D. ()0u ∇⨯∇=g8. 下面关于亥姆霍兹定理的描述,正确的是( A )(注:只知道散度或旋度,是不能全面反映场的性质的)A. 研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。
静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。
不随时间变化的电场称为静电场。
2、请解释磁场与恒定磁场的概念。
运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。
不随时间变化的磁场称为恒定磁场。
3、请解释时变电磁场与电磁波的概念。
如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。
时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。
4、请解释自由空间的概念。
电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。
在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。
因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。
5、举例说明电磁场与波的应用。
静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。
电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。
当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。
6、请解释常矢与变矢的概念。
若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。
而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。
7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。
8、请解释静态场和动态场的概念。
如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。
换句话说,在某一空间区域中,物理量的无穷集合表示一种场。
电磁场与电磁波期末复习题

电磁场与电磁波模拟题一、选择题1. 已知:e e e e e e z y x z y x B A 432;543++=++=;计算:A⃗×B ⃗⃗= ( A ) A. e x ⃗⃗⃗⃗+2e y ⃗⃗⃗⃗⃗(10−12)+e z ⃗⃗⃗⃗ B. 4e x ⃗⃗⃗⃗⃗⃗⃗+2e y ⃗⃗⃗⃗⃗⃗⃗+e z ⃗⃗⃗⃗ C. 6e x ⃗⃗⃗⃗−12e y ⃗⃗⃗⃗⃗+20e z ⃗⃗⃗⃗D. 6e x ⃗⃗⃗⃗+12e y ⃗⃗⃗⃗⃗(A y B z −A z B y )+20e z ⃗⃗⃗⃗2. E ⃗⃗=e x ⃗⃗⃗⃗(x 2+bxz )+e y ⃗⃗⃗⃗⃗(xy 2+ay )+e z ⃗⃗⃗⃗(z −z 2+czx −2xyz )为无源场,求a ,b ,c 的值分别为:( B )A. a=3,b=3,c=1B. a=-1,b=2,c=-2C. a= -2 b=2 ,c=1D. a=1 ,b=2 ,c=-2 3. 自由空间中毕澳-萨伐卡定律表述正确的是:( A ) A. B ⃗⃗=μ04π∫J ⃗×R ⃗⃗R 3dV V B. B ⃗⃗=μ04π∮Idl ⃗×R ⃗⃗R 3 S C. B ⃗⃗=μ02π∮Idl ⃗×R ⃗⃗R 2 CD. B ⃗⃗=μ02π∫J S ⃗⃗⃗⃗⃗×R ⃗⃗R 3dS S4.对于线性及各向同性的媒质,电磁场的电场强度、电位移矢量、磁场强度、磁感应强度本构关系不正确的是( D )A. D⃗⃗=εE ⃗⃗ B. B ⃗⃗=μH ⃗⃗ C. J ⃗=σE ⃗⃗ D. H ⃗⃗=μB ⃗⃗ 5.静电场中电场能量存在于整个电场空间中,和电场强度及电位移矢量相关,下面正确的是:(A )A. W e =12∮φD ⃗⃗∙dS ⃗S +12∫E ⃗⃗∙D ⃗⃗dV V B. W e =12∮φD ⃗⃗∙dl ⃗C +12∫E ⃗⃗∙D ⃗⃗dV VC. W e =12∮φD ⃗⃗∙dS ⃗ S +12∮E ⃗⃗∙D ⃗⃗dlCD. W e =12∮φD ⃗⃗∙dl ⃗C +12∮E ⃗⃗∙D ⃗⃗dl C6. 恒定磁场中磁场能量存在于整个磁场空间中,下面正确的是:(A )A. W m =12∫J ⃗∙A ⃗dVV =12∫H ⃗⃗∙B ⃗⃗dV VB. W e =12∫H ⃗⃗∙B ⃗⃗dVVC. W e =12∫J ⃗∙A ⃗dVV =12∫H ⃗⃗∙B ⃗⃗dV V D. W m =12∫J ⃗∙A ⃗dV V +12∫H ⃗⃗∙B ⃗⃗dV V7. 设点电荷2q 在球坐标系中(d ,0,0)处,接地导体球半径为a,的球心在z=0处,两者组成系统中,在r>a处的电位函数为:()A. φ=q4πε[√22d√r2+(a2d)2−2r a2dcosθ]B. φ=q2πε[d√r2+(2d)2−2r2dcosθ]C. φ=q4πε[d√r2+(d)2−2rdcosθ]D. φ=q2πε[√d√r2+(2d)2−2r2dcosθ]8.无界空间中,媒质为线性及各向同性材料,电磁波传播满足的波动方程为:()A. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt+∇∙ρε;∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×J⃗B. ∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt+∇∙ρε;∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×J⃗C. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt−∇∙ρε;∇2H⃗⃗−μεð2H⃗⃗ðt2=∇∙J⃗D. ∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt−∇∙ρε;∇2H⃗⃗+μεð2H⃗⃗ðt2=∇∙J⃗9.空间区域中电磁能守恒的坡印廷定理为:()A. −ddt ∫wdVV=∫J⃗∙VE⃗⃗dV+∮S⃗∙dS S⃗⃗⃗⃗S SB. ddt ∫wdVV=∫J⃗∙VE⃗⃗dV−∮S⃗∙dS S⃗⃗⃗⃗S SC. ddt ∫wdVV=∫J⃗∙VE⃗⃗dV+∮S⃗∙dS S⃗⃗⃗⃗S SD. −ddt ∫wdVV=∫J⃗∙VE⃗⃗dV−∮S⃗∙dS S⃗⃗⃗⃗S S10.均匀平面波在两种媒质都为理想介质中传播时,其反射系数和透射系数为:()A. Γ=E rmE im =η2−η1η2+η1;τ=E tmE im=1+Γ=2η2η2+η1B. Γ=E rmE im =η2+η1η2−η1;τ=E tmE im=1+Γ=2η2η2+η1C. Γ=E rmE im =η2−η1η2+η1;τ=E tmE im=1+Γ=2η2η2−η1D. Γ=E rmE im =η2+η1η2−η1;τ=E tmE im=1+Γ=2η2η2−η111.计算:e n⃗⃗⃗⃗⃗(A⃗⃗∙B⃗⃗)+ A⃗×B⃗⃗=( )A. e n⃗⃗⃗⃗⃗A⃗B⃗⃗(cosθ−sinθ)B. e n⃗⃗⃗⃗⃗A⃗B⃗⃗(cosθ+sinθ)C. e n⃗⃗⃗⃗⃗AB(cosθ+sinθ)D. e n⃗⃗⃗⃗⃗AB(cos θ−sin θ) 12. 计算:∫∇∙F ⃗dV V +∫∇×F ⃗∙dS ⃗S = (A ) A .∮F ⃗∙dS ⃗+∮F ⃗∙dl ⃗C S B .∮F ⃗×dS ⃗+∮F ⃗×dl ⃗C S C .∮∇×F ⃗∙dS ⃗S D .∮∇×F ⃗∙dl ⃗c13.真空中库伦定律的公式,正确的是:( B )A.E r ⃗⃗⃗⃗⃗=12πε0∫ρS R ⃗⃗⃗R 3dS S B.E r ⃗⃗⃗⃗⃗=14πε0∫ρl R⃗⃗⃗R 3dl l C.E r ⃗⃗⃗⃗⃗=14πε0∫ρR ⃗⃗⃗R 2dV V D. E r ⃗⃗⃗⃗⃗=12πε0∫ρR⃗⃗⃗R 3dV V 14.从宏观效应来分析,在电磁场的作用下,媒质会发生极化、磁化和传导三种现象,对应媒质的三种特性的参数分别是: ( A ) A.介电系数ε、磁导率μ、电导率σ B.介电系数σ、磁导率ε、电导率μ C.介电系数μ、磁导率σ、电导率ε D.介电系数μ、磁导率ε、电导率σ15.静电场中,对于点电荷、线电荷、面电荷、体电荷,电位函数与求解公式正确的是:( A )A. φ=14πε∑qiR in i=1+cB. φ=14πε∫ρl dl R 2l +cC. φ=14πε∫ρS dS R 2S+cD. φ=14πε∫ρ dV R 2V+c16.由电流元Idl ⃗产生的恒定磁场,其矢量磁位的公式正确的是:( B ) A. A ⃗=μ4π∫Idl ⃗R 2l +C ⃗ B. A ⃗=μ4π∫Idl ⃗Rl +C ⃗; C.A⃗=μ2π∫Idl⃗R 2 l +C ⃗D. A⃗=μ2π∫Idl⃗Rl +C⃗; 17. 设点电荷2q 在直角坐标系中(0,0,h )处,在z=0处有无限大接地导体,两者组成系统中,在z >0处的电位函数为:( ) A.φ=q2πε[√x 2+y 2+(z−h)2−√x 2+y 2+(z+h)2] B.φ=q 4πε[222−222] C.φ=q2πε[222−222] D.φ=q4πε[222−222]18.无界空间里为线性及各向同性材料,电磁波传播满足的波动方程为:( )A. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt+1ε∇ρ∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×j⃗B.∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt+1ε∇ρ∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×j⃗C.∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt−1ε∇ρ∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×j⃗D.∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt−1ε∇ρ∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×j⃗19.无界空间里媒质为线性及各向同性材料,电磁波传播满足的达朗贝尔方程为:( A)A. ∇2A⃗−μεð2A⃗ðt2=−μJ⃗ ; ∇2φ−μεð2φðt2=−ρεB.∇2A⃗−μεð2A⃗ðt2=μJ⃗ ; ∇2φ−μεð2φðt2=ρεC.∇2A⃗+μεð2A⃗ðt2=−μJ⃗ ; ∇2φ+μεð2φðt2=−ρεD. ∇2A⃗+μεð2A⃗ðt2=μJ⃗ ; ∇2φ+μεð2φðt2=ρε20. E⃗⃗⃗=e x⃗⃗⃗⃗⃗E xm cos(ωt−kz+ϕx)+e y⃗⃗⃗⃗⃗E ym sin(ωt−kz+ϕy)复矢量:(A)A. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz+ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz+ϕy−π2)B. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz+ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz+ϕy+π2)C. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz−ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz−ϕy)D. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz−ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz−ϕy)二、填空题1.矢量函数A⃗⃗通量的密度称为散变 ,即div A⃗⃗= ;2.自由电荷在其周边空间中形成的电场称为电磁场,为无旋场;恒定电流在其周边空间形成的磁场称为恒定磁场,为无散场。
电磁场与电磁波复习题

一、选择题1、关于均匀平面电磁场,下面的叙述正确的是A.在任意时刻,各点处的电场相等B.在任意时刻,各点处的磁场相等C.在任意时刻,任意等相位面上电场相等、磁场相等D.同时选择A和B2、空气中某一球形空腔,腔内分布着不均匀的电荷,其电荷体密度与半径成反比,则空腔外表面上的电场强度A.大于腔内各点的电场强度B.小于腔内各点的电场强度C.等于腔内各点的电场强度D.不能确定3、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是A.镜像电荷是否对称B.电位所满足的方程是否未改变C.边界条件是否保持不变D.同时选择B和C∇⨯=,其中的J4、微分形式的安培环路定律表达式为H JA.是传导电流密度B.是磁化电流密度C.是传导电流和磁化电流密度D.若在真空中则是传导电流密度;在介质中则为磁化电流密度5、电源以外恒定电流场基本方程微分形式说明它是有散无旋场无散无旋场无散有旋场 D. 有散有旋场6、两个载流线圈之间存在互感,对互感没有影响的是A.线圈的尺寸B.两个线圈的相对位置C.线圈上的电流D.线圈所在空间的介质7、一导体回路位于与磁场力线垂直的平面内,欲使回路中产生感应电动势,应使A.磁场随时间变化B.回路运动C.磁场分布不均匀D.同时选择A和B8、一沿+z 传播的均匀平面波,电场的复数形式为()m x y E E e je =-r r r ,则其极化方式是A .直线极化B .椭圆极化C .右旋圆极化D .左旋圆极化9、.对于载有时变电流的长直螺线管中的坡印廷矢量,下列陈述中,正确的是:A. 无论电流增大或减小, 都向内B. 无论电流增大或减小, 都向外C. 当电流增大,向内;当电流减小时,向外10、在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布A .一定相同B .一定不相同C .不能断定相同或不相同11、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁场与电磁波》复习题一、选择题1、关于均匀平面电磁场,下面的叙述正确的是( C )A .在任意时刻,各点处的电场相等B .在任意时刻,各点处的磁场相等C .在任意时刻,任意等相位面上电场相等、磁场相等D .同时选择A 和B2、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( D )。
A .镜像电荷是否对称 B .电位所满足的方程是否未改变 C .边界条件是否保持不变 D .同时选择B 和C3、微分形式的安培环路定律表达式为H J ∇⨯=r r ,其中的J r( A )。
A .是自由电流密度 B .是束缚电流密度C .是自由电流和束缚电流密度D .若在真空中则是自由电流密度;在介质中则为束缚电流密度 4、两个载流线圈之间存在互感,对互感没有影响的是( C )。
A .线圈的尺寸 B .两个线圈的相对位置 C .线圈上的电流 D .线圈所在空间的介质5、一导体回路位于与磁场力线垂直的平面内,欲使回路中产生感应电动势,应使( A )。
A .磁场随时间变化 B .回路运动 C .磁场分布不均匀 D .同时选择A 和B6、一沿+z 传播的均匀平面波,电场的复数形式为()m x y E E e je =-r r r,则其极化方式是( C )。
A .直线极化B .椭圆极化C .右旋圆极化D .左旋圆极化7、在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布( C )。
A .一定相同 B .一定不相同 C .不能断定相同或不相同 8、两相交并接地导体平板夹角为α,则两板之间区域的静电场( C )。
A .总可用镜象法求出。
B .不能用镜象法求出。
C .当/n απ= 且n 为正整数时,可以用镜象法求出。
D .当2/n απ= 且n 为正整数时,可以用镜象法求出。
9、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。
若空气中的静电场为128x z E e e =+r r r,则电介质中的静电场为( B )。
222.6.24.28.x zx z x zA E e eB E e eC E e eD =+=+=+r r r r r r r r r 不能确定10、介电常数为ε的各向同性介质区域V 中,自由电荷的体密度为ρ,已知这些电荷产生的电场为E =E (x ,y ,z ),下面表达式中始终成立的是( C )。
.0./..,A D B E C D D B C ρερ∇⋅=∇⋅=∇⋅=r rr 同时选择11、以下关于时变电磁场的叙述中,不正确的是( D )。
A .电场是有旋场 B .电场和磁场相互激发 C .电荷可以激发电场 D .磁场是有散场 12、恒定电场中的导电媒质必满足边界条件( D )。
A .12n n D D =B .12n n J J =C .12t t E E =D .同时选择B 和C 13、介质和边界的形状完全相同的两个均匀区域内,若静电场分布相同,则必有 ( C ) 。
A .区域内自由电荷分布相同 B .区域内和区域外自由电荷分布均相同C .区域内自由电荷分布相同并且边界条件相同D .区域内自由电荷分布相同并且束缚电荷分布相同14、已知磁感应强度3(32)()x y z B xe y z e y mz e =+--+r r r r,则m 的值应为( C )。
A .m=2B .m=3C .m=6D .不能确定15、边界条件n ·(B 1-B 2)=0仅在下列边界上成立( B )。
A .在两种非导电媒质的分界面上B .在任何两种介质的分界面上C .在理想介质与理想导电媒质的分界面上D .在真空中的导体表面上16、恒定电场中两导电媒质1122εγεγ、和、的分界面上自由电荷面密度为(D )。
A .0B .12n n J J -C .12t t E E -D .11122()n E γεεγ-17、两同频、同传播方向、极化方向相互垂直的直线极化波,合成后仍然是一个直线极化波,则必有( C )。
A .两者的相位差为±π/2 B .两者振幅相同 C .两者的相位差为0或±π D .同时选择B 和C 18、静电场中的导体和恒定电场中的非理想导体( B )。
A .均为等位体B .前者为等位体而后者不是等位体C .前者不是等位体而后者是等位体D .均不是等位体19、用镜像法求解静电场边值问题时,判断镜像电荷选取是否正确的根据是( D )。
A .镜像电荷是否对称B .电位所满足的方程是否未改变C .边界条件是否保持不变D .同时选择B 和C20、在无源的真空均匀平面波的场矢量为0jkz E E e -=r r ,0jkz H H e -=r r ,其中的00,E H r r 为常矢量,则一定有( D )。
A .00z e E ⨯=rrB .00z e H ⨯=r rC .000E H ⨯=r rD .00000zE H e E H ⋅==⨯r rr rr和 21. 判断下列矢量哪一个可能是静电场( A )。
A .369x y z E xe ye ze =++r r r rB .369x y z E ye ze ze =++r r r rC .369x y z E ze xe ye =++r r r rD .369x y zE xye yze zxe =++r r r r22. 磁感应强度为(32)x y z B axe y z e ze =+-+r r r r, 试确定常数a 的值。
( B ) A .0 B .-4 C .-2 D .-523. 均匀平面波电场复振幅分量为(/2)2-2jkz-2j kz x yE 10eE 510e p --+=??、,则极化方式是( C )。
A .右旋圆极化B .左旋圆极化C .右旋椭圆极化D .左旋椭圆极化24. 一无限长空心铜圆柱体载有电流I ,内外半径分别为R 1和R 2,另一无限长实心铜圆柱体载有电流I ,半径为R 2,则在离轴线相同的距离r (r>R2)处( A )。
A .两种载流导体产生的磁场强度大小相同B .空心载流导体产生的磁场强度值较大C .实心载流导体产生的磁场强度值较大25. 在导电媒质中,正弦均匀平面电磁波的电场分量与磁场分量的相位( B )。
A .相等 B .不相等 C .相位差必为4π D .相位差必为2π 26. 两个给定的导体回路间的互感 ( C )A .与导体上所载的电流有关B .与空间磁场分布有关C .与两导体的相对位置有关D .同时选A ,B ,C27. 当磁感应强度相同时,铁磁物质与非铁磁物质中的磁场能量密度相比( A )。
A .非铁磁物质中的磁场能量密度较大B .铁磁物质中的磁场能量密度较大C .两者相等D .无法判断 28. 一般导电媒质的波阻抗(亦称本征阻抗)c η的值是一个。
( C )A .实数B .纯虚数C .复数D .可能为实数也可能为纯虚数29. 静电场在边界形状完全相同的两个区域上满足相同的边界条件,则两个区域中的场分布( C )。
A .一定相同 B .一定不相同 C .不能断定相同或不相同 30. 静电场的唯一性定理是说:( C )。
A .满足给定拉普拉斯方程的电位是唯一的。
B .满足给定泊松方程的电位是唯一的。
C .既满足给定的泊松方程,又满足给定边界条件的电位是唯一的。
一. 填空题(每空2分,共40分)1.一般来说,电场和磁场共存于同一空间,在 静止 和 恒定 的情况下,电场和磁场可以独立进行分析。
2如果穿过闭合面S 的通量不为0,则说明闭合曲面包围的体积内有 净流量流出或流入 。
如果通量大于0,则表示每秒有 净流量流出 ,体积内有 源 ,反之,若通量小于0,则表示每秒有 净流量流入 ,说明体积内有 沟或负源 。
3. 分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程求解。
4.静电场的边值问题是在给定边界条件下求 泊松方程 或 拉普拉斯方程 。
这种求解方法称为偏微分方程法。
5.传输线的工作状态分为 3 种,分别为 行波 , 驻波 , 行驻波 。
6.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=。
7.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 。
另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 。
8.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个等电位体,电荷分布在导体的 表面 。
9.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。
10.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件。
第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。
第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。
在每种边界条件下,方程的解是 唯一的 。
11.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=。
12.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。
13. Faraday 电磁感应现象的物理本质是: 变化的磁场将产生涡旋电场 。
14. 在时变场中的理想导体表面,磁场与表面 平行 。
15. 库仑规范0A ∇⋅=r 限制了矢量磁位A r的 多值性 。
16. 理想介质条件是: 均匀且各向同性的无耗媒质 。
17. 一半径为 a 的圆柱形导体在均匀外磁场中磁化后,导体内的磁化强度为0z M M e =rr, 则导体表面的磁化电流密度为0ms J M e φ=r r。
18.时变电磁场中D 的边界条件可以简述为:在分界面上存在 自由电荷时 ,D 的法向分量不连续,不连续量等于 分界面上自由电荷密度 ,若分界面上 无自由电荷 ,则D 的法向分量连续。
21.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。