AGAMOUS-Like 15
大豆GmAGL8基因的克隆及生物信息学分析

大豆GmAGL8基因的克隆及生物信息学分析作者:李冉阳等来源:《安徽农业科学》2015年第18期摘要通过同源扩增从大豆中克隆得到与拟南芥AGL8基因相似的基因GmAGL8,并对该序列进行了测定。
同时对GmAGL8进行了生物信息学分析,通过比对GmAGL8与桃PpMADS6和拟南芥FUL的核酸序列,相似度分别为80%和77%,三者的氨基酸序列同源性为74%。
通过亲疏水性分析预测GmAGL8基因编码的蛋白为亲水性蛋白。
在GmAGL8中发现与MADS基因家族相似的MEF2并找到可能对多聚体的形成有关的K-box基因。
关键词大豆;GmAGL8;炸荚;克隆;生物信息学中图分类号 S188 文献标识码 A 文章编号 0517-6611(2015)18-045-04炸荚是大豆的一种自然属性,也是大豆生产中的一种不良现象,严重影响大豆收获产量。
印度学者报道,在热带或亚热带地区,大豆易炸荚品种和中度炸荚品种的产量损失分别达57~175和0~186 kg/hm2[1],国内学者研究表明,中度炸荚品种的产量损失约为112.5kg/hm2[2];相关研究者也指出野生型及小粒大豆的炸荚现象尤为普遍[3-5]。
世界范围内由于作物种皮开裂造成的农业产量损失很严重,因此控制种皮开裂对于提高农产品产量具有重要意义。
荚果(pod)是由子房发育而来的果实,由通过背缝线和腹缝线相互连接的2个单心皮组成。
大豆豆荚是荚果的一种。
成熟的大豆荚沿着荚背缝线和腹缝线裂开,随后散出种子的现象称为炸荚(pod-shattering)[6]。
当荚果的水分含量相对较低时,荚内生厚壁组织层细胞的张力不同,荚皮围绕着与内生后壁组织层的纤维方向平行的轴呈螺旋的扭转而卷曲,将连接背、腹缝线的薄壁组织拉裂,荚皮开裂[6-7]。
AGL8也被称作AGAMOUS-like 8,FRUITFULL,FUL等。
前人分别对拟南芥和桃中的相关基因进行了研究。
结果表明,AGL8 基因既调控分裂组织的分化,又在随后的心皮发育中起调控作用[8-9]。
木瓜为什么会变圆的原理

木瓜为什么会变圆的原理木瓜为什么会变圆的原理是一个复杂的生物学问题,涉及到植物的生长和发育过程以及相关的分子调控机制。
在回答这个问题之前,首先需要了解木瓜的生长过程和形态发育。
木瓜是木瓜树的果实,它在树上生长的过程中经历了一系列的形态变化。
首先,木瓜花受精后,胚珠受精成为胚胎。
然后,胚胎通过细胞分裂和生长发育为幼胚,它是木瓜果实发育的起点。
随着时间的推移,幼胚继续通过细胞分裂和扩张,发育为胚乳。
胚乳是木瓜果肉发育的主要组织,为果实提供了养分和能量。
最后,木瓜果实通过细胞分裂、扩张和形态建成来形成成熟的果实。
在这个过程中,有几个因素决定了木瓜果实的形状,其中包括基因表达调控、激素信号传导和细胞扩张。
基因表达调控是指基因在发育过程中的表达模式和水平。
研究发现,在木瓜果实发育过程中,一些关键基因的表达发生了变化,这些基因与果实形态相关。
例如,AGAMOUS-like 6(AGL6)基因的表达在木瓜果实发育的早期阶段起到了重要作用,它通过调控营养物质的合成和运输来影响果实的形态。
另外,类似果皮蛋白(PAP)基因家族也参与了果实形态的调控。
这些基因的表达模式和调控机制决定了木瓜果实的生长和形态建成。
激素信号传导是另一个影响木瓜果实形状的重要因素。
植物激素包括生长素、激动素、赤霉素、乙烯等,它们在植物生长和发育过程中起到了调控的作用。
研究发现,乙烯、赤霉素和激动素等激素在木瓜果实的形状发育中起到了重要的调控作用。
这些激素的信号传导通路参与了细胞分裂和扩张、细胞壁代谢等生物化学过程,从而影响了木瓜果实的形态变化。
细胞扩张是木瓜果实形状决定的重要过程。
在果实发育过程中,细胞通过伸长和变形来建立果实的形态。
这一过程受到细胞壁松弛和细胞内流体压力的调控。
研究发现,细胞壁松弛素、离子、细胞内蛋白酶等物质在木瓜果实细胞扩张过程中发挥了重要作用。
这些物质调控了细胞骨架和细胞壁的变化,从而影响了果实的形状。
综上所述,木瓜果实形状的变化涉及到基因表达调控、激素信号传导和细胞扩张等生物学过程。
豆科AGAMOUS同源基因结构及功能分析

收稿日期:2016-09-17基金项目:国家自然科学基金(31471171)作者简介:李庆忠,硕士研究生,从事植物功能基因研究。
E-mail:********************注:陈江华为通信作者。
E-mail:**************.cn 豆科AGAMOUS 同源基因结构及功能分析李庆忠1,2,陈江华1(1.中国科学院西双版纳热带植物园,云南昆明650223;2.中国科学院大学,北京100049)摘要:AGAMOUS (AG )基因是控制高等植物花发育的重要基因,已在20多种植物基因组中发现同源基因。
作为MADS-box 家族的一员,AG 基因结构具有高度的保守性。
AG 及其同源基因在植物生长发育中的功能已经十分清晰。
本文研究AG 同源基因在豆科几个代表物种中的分布,对其基因结构和蛋白序列进行分析比对。
结果表明,AG 同源基因在不同的豆科物种中具有高度的序列同源性及结构保守性。
进一步通过蒺藜苜蓿Medicago truncatula 的AG 同源基因表达模式分析发现,其表达是与功能相互验证的。
关键词:AGAMOUS ;豆科;蒺藜苜蓿Doi:10.3969/j.issn.1009-7791.2016.04.003中图分类号:Q943.2文献标识码:A 文章编号:1009-7791(2016)04-0315-06Structure and Function Analysis of AGAMOUS Homologous Genes in FabaceaeLI Qing-zhong 1,2,CHEN Jiang-hua 1(1.Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences,Kunming 650223,Yunnan China;2.University of Chinese Academy of Sciences,Beijing 100049,China)Abstract:AGAMOUS (AG )is an important gene which controls the flower development in higher plants.Since it was found in 1990s,dozens of homologous genes were identified in more than 20kinds of plants.As a member of MADS-box family,it has a highly conservative structure and function.Now its functions in the growth and development of plants are very clear.In this study,structures and functions of AG and its homologous genes in some model plants in Fabaceae were analysed.The results proved that structures and functions of AG and its homologous genes were higher conserved.Deeply research about gene expression in Medicago truncatula showed that expression of AG related with its functions.This study can not only use for deeply research of AG ,but also provide an important experimental data for flower strains breeding.Key words:AGAMOUS ;Fabaceae;Medicago truncatula自20世纪90年代以来,基于模式植物拟南芥Arabidopsis thaliana 及金鱼草Antirrhinum majus 的众多花发育的同源异型突变体被发现。
植物特异性转录因子的功能及调控机制

植物特异性转录因子的功能及调控机制植物特异性转录因子(Plant-specific transcription factors,PSTFs)是植物中一类重要的调控因子,能够调控植物的生长发育和对外界环境的响应。
PSTFs是以不同方式反应于离子、光、水、温度和生物逆境等方面,调节植物的基因表达。
本篇文章将就植物特异性转录因子的功能及调控机制展开探讨。
一、PSTFs的功能PSTFs的功能多样,包括调节植物的生长和发育、响应逆境和调控植物的代谢等。
下面将逐一介绍。
1. 调节植物的生长和发育PSTFs参与了不同阶段的植物生长和发育过程。
例如,在植物的花器官发生中,转录因子AGAMOUS-LIKE6(AGL6)会促进花序和芽的形成;在花的器官分化阶段,APETALA2(AP2)调控花瓣和雄蕊的发育。
此外,PSTFs还参与了叶片生长和根发育的调节。
例如,GRF(Growth Regulating Factor)家族的成员在促进芽和叶的增长方面发挥了重要作用;ARF(Auxin Response Factor)家族的成员则调控了根系统的生长和分化。
2. 响应逆境植物在逆境环境下如何应对是植物学研究的一大热点。
PSTFs在这个过程中发挥了重要作用。
例如,DREB1(Dehydration-responsive element binding protein 1)调节了植物对于干旱、高盐和低温等逆境的响应。
此外,PSTFs在与植物抗病、旱灾、滞水和盐胁迫等逆境方面都具有一定的调控作用。
3. 调控植物代谢PSTFs还能调控植物的代谢,影响植物在不同环境下的适应性。
例如,在水稻中,SNAC1(Stress-responsive NAC1)家族的转录因子促进了水稻对于恶劣环境的适应性,同时也提高了水稻穗粒的产量。
二、调控机制PSTFs的表达受到多个调控机制的影响,包括转录水平和翻译后水平。
下面将对它们的调控机制分别进行介绍。
2021综述番茄开花诱导、分生组织的分子生物学研究范文1

2021综述番茄开花诱导、分生组织的分子生物学研究范文 引言 开花植物(被子植物)作为陆生植物中最大的族群,现已超过了250000种。
开花对于所有开花植物来说是生活史上的一个质变过程,是植物个体发育过程的中心环节;而对于人本身来说,色彩斑斓、气味芬芳的花不仅愉悦了人的身心,种类繁多的种子与果实也为人类提供了丰富的食物。
故研究开花植物的开花过程,阐明其分子生物学上的调控机理无论在理论上还是在应用上都具有重要意义。
Yanofsky 等(1990)在拟南芥(Arabidopsis thaliana)中首次克隆了花同源异型基因agamous(AG),标志着高等植物花发育研究进入分子遗传学阶段。
从发育生物学角度来看,高等植物经过一段时期的营养生长后,在合适的外界条件(其中重要的有日照长度、光质及温度)下,才能进行由营养生长(vegetativedevelopment)向生殖生长(reproductivedevelopment)的转变,才能开始花的发育。
总的来说,花的发育过程在时间上大致分为4个阶段:(1)开花过渡(flowering transition),植株响应外界环境以及自身信号,由营养生长转向生殖生长,这个过程受一系列与开花时间相关基因的调控;(2)分生组织特征基因激活,植株响应从不同开花时间调控途径而来的信号,激活分生组织特征基因,决定分生组织属性;(3)花器官特征基因的激活,分生组织特征基因激活位于不同区域的花器官特征基因;(4)花器官形态建成,花器官特征基因激活下游的器官形态建成基因,决定组成各器官的特异细胞类型和组织(Jack, 2004)。
番茄(Solanumlycopersicum L.)是很重要的经济作物,同时也是用于双子叶植物花发育机理研究的一个重要模式植物。
通过多年来不断的分子生物学上的深入研究,已有10个与番茄开花诱导及分生组织特征相关的基因被鉴定,将番茄与拟南芥相关基因比较发现两物种在花发育分子生物学上兼具保守性和多样性(表1)。
被子植物花器官发育的分子模型

------尹雪
段泽宇 李佳丽 梁铭 生物科学2012-02
简介
花是被子植物进化途径中最为变化多端的结构。
深入开展花部性状发育及其多样性的分子调控机 制的研究, 对于揭示被子植物花部式样的演化、 进而探讨被子植物的系统发育具有重要意义 。 所 以,近年来有关被子植物花器官发育的分子模型
导致花瓣状器官的分化, 使外轮器官与内层花瓣在形态上
具有一致性(如单子叶植物百合、郁金香; 轮花器官的分子模型又称为修饰的ABC 植物类群。 基部核心双子 模型(modified 叶植物毛茛、耧斗菜等), 这种B 功能基因功能延伸到外 ABC model) , 但此种分子模型并不适用于所有的单子叶
6.BC模型
何通过相互作用来调控花器官的发育,Theissen
等结合MADS蛋白多聚体的研究,提出了“四因子”模 型(quartet model),认为花器官是由4 种同源异型蛋白复合体通过结合在目标基因启动子区域来 调节基因开闭,进而调控花器官的发育。
4.边缘衰退模型
边缘衰减模型认为花器官的渐变现象是由于花组织形成时期花器官特 征属性基因的表达水平的梯度导致的, 花器官特征属性基因在边界处 表现为弱表达, 但会发生活性区域的重叠, 这种重叠表达模式导致所 形成的器官在形态上具有相邻两类花器官的特征, 这种形态上的渐进 与核心真子叶植物径向分明的花器官是不同的 , 睡莲B 功能基因的表 达模式是支持这一模型的有力证据。基部被子植物的器官决定是由表 达范围较广的相互重叠的花器官决定基因共同调控的 , 在活性重叠的
裸子植物中未发现A 和E 功能基因的存在, 但B 和C 功能 基因的表达模式与被子植物类似(图)。裸子植物C功能基 因在两性生殖器官内均有表达, B功能基因主要在雄性生
第9章.植物的成花生理
SDP SDP LDP LDP
北种南引 南种北引 北种南引 南种北引
提早成熟 延迟开花 延迟开花 提早成熟
选择晚熟品种 选择早熟品种 选择早熟品种 选择晚熟品种
3.控制开花
菊花一般在秋季开放,而通过人工调控 光周期,可以使菊花在任何季节开放。
4.调节营养生长和生殖生长
南麻北种,可推迟开花,使麻秆生长 较长,提高纤维的产量和品质。
经春化的小麦,可提早成熟,避开干热风。 许多一年生植物,对低温的要求是质的(或绝对的); 低温→LD→开花(图)
4. 解除春化作用(去春化作用)
在春化过程结束之前,把植物放到较高温度下 , 低温的效果被消除。这种作用即解除春化作用。 解除春化作用的温度: 25-40℃; 缺O2 也可解除春化作用. 再春化作用:解除春化后,再进行的春化作用 称为再春化作用。
二 、春化作用的特性
1. 需要春化的植物
有冬性一年生植物,冬小麦、冬黑麦等;
北方小麦品种要求春化的温度比南方低, 小麦分为冬小麦、半冬性小麦、春性小麦* 大多数二年生植物:甜菜、芹菜等; *
有些多年生植物:牧草、菊花只需春化一次, 几年可以连续开花。
春化作用是温带植物发育过程表现出来的特征。
A.成花诱导
C.花发育
B.成花启动
各种植物表现不同。★
第二节 春化作用(vernalization)
一 、发现及定义
1918 年 , Gassner 将小麦和黑麦分为:秋播“冬性”、春播“春 性”。 “冬性小麦”改在春季播种,只生长不开花结实,只有1-20℃ 处理的冬黑麦可以在春播时,开花结实。 1928年,李森科采用春播前将吸涨萌动的种子用低温处理的 方法,在苏联寒冬地区,播种冬小麦成功(当年抽穗开花) 并把这一措施叫做“春化”。 我国古代春化处理方法如: 闷麦法:把萌动的冬小麦闷在罐中,放在0-5℃低温处40-50天. 七九小麦:即从冬至那天起将种子浸在进水中,次晨取出阴干, 春化作用:植物需要经过低温阶段才能成花的现象称为春化现象。 每九天处理一次,共七次。 这种低温对植物成花的促进作用称为春化作用。
花器官发育的“ABC”模型
主讲人:贺小换
花器官发育的“ABC”模型
有关花发育中调控各类花器官形成的器官特征 基因的克隆及功能分析,是近年植物发育分子生物 学研究的重大突破之一,并且形成了较为成熟的实 验模型ABC模型指导有关的工作。ABC模型是 E.Myerowitz及Coen提出的。
ABC模型是对对模式植物拟南芥和金鱼草中影响 花器官发育的同源异型基因进行遗传和分子分析的 基础上先后提出的,此模型描绘了花器官不同部位发 生受不同基因决定的现象。
花瓣(petal),B与C基因共同决定
花蕊(stamen),C基因决定
心皮(carpel)。此外,A基因与
C基因相互颉抗。
ABC基因作为MADS—BOX家族成员
(AP2除外)均是以转录调控因子起作用。
A功能的基因有AP1和AP2,B功能的有
AP3和PI,C功能的有AG。
花器官发育的“ABC”模型
“ABC”模型的提出是近几年植物发育生物学研 究中的一个重要突破,可以解释多个基因在器 官发育中的作用。在A/B/C三类基因同时突变的 四重突变体ap1,ap2,ap3/pi,ag中,四轮花器 官都变成了类似叶片的结构,验证了Goethhe提 出的花器官是变态叶的假说。
花器官发育的“ABC”模型
2004年,通过对拟南芥的sepallata1,2,3三重突变体的描述,
研究者提出了ABCE模型。这一模型确定了E类基因对花部器官
发育的重要性,协助A/B/C三类基因将叶片转变成花瓣。
在研究MADS-BOX家族基因对花器官发育的影响时发现,被
称作AGAMOUS-LIKE(AGL)2、AGL4、AGL9基因的表达时间早于B
类基因。
花器官发育的“ABC”模型
黑麦MIKC_型MADS-box家族基因的鉴定和表达分析
麦类作物学报 2024,44(1):46-55J o u r n a l o fT r i t i c e a eC r o ps d o i :10.7606/j.i s s n .1009-1041.2024.01.06网络出版时间:2023-12-08网络出版地址:h t t ps ://l i n k .c n k i .n e t /u r l i d /61.1359.S .20231206.1722.002黑麦M I K C 型M A D S -b o x 家族基因的鉴定和表达分析收稿日期:2023-06-19 修回日期:2023-09-28基金项目:中央引导地方科技发展资金项目(236Z 6303G );河北省科技厅重点研发项目(21326340D );河北省高校基本科研业务费项目(2022J K 04)第一作者E -m a i l :180********@163.c o m (汪凯旋)通讯作者E -m a i l :t x a m e u px @163.c o m (魏莱)汪凯旋,车永和,杨赟杰,杨静,杨燕萍,魏莱(河北科技师范学院农学与生物科技学院/河北省作物逆境生物学重点实验室,河北秦皇岛066000)摘 要:M I K C 是MA D S -b o x 蛋白家族中一类保守的转录因子家族,参与调控植物的开花时间和花器官发育㊂通过对黑麦M I K C 基因家族的分析,为研究黑麦各时期组织器官的功能奠定基础㊂利用P F a m 和B L A S T P 两种方法确定黑麦M I KC 家族共47个蛋白序列,将以上蛋白序列利用T B t o o l s 软件进行理化性质㊁进化关系㊁保守基序和基因结构㊁共线性及聚类分析等生物信息学分析㊂将黑麦47个M I K C 基因分为12个亚家族,共线性分析发现黑麦与小麦的共线性基因多于黑麦与水稻间的共线性基因,说明黑麦与小麦的亲缘关系更近㊂聚类结果结合黑麦物种内共线性分析发现,S c M I K C 31基因仅在穗子表达,于其他植物组织器官及发育时期均无表达,选用课题组材料进行R N A -s e q 验证,结果与生物信息学结果一致,推测S c M I K C 31基因为黑麦中与开花有关的基因㊂以上结果说明M I K C 家族基因在黑麦中存在功能分化,为进一步研究该家族基因的功能提供信息参考㊂关键词:生长因子;黑麦;进化分析;表达分析;M I K C 基因中图分类号:S 512.5;S 330 文献标识码:A 文章编号:1009-1041(2024)01-0046-10I d e n t i f i c a t i o n a n dE x p r e s s i o nA n a l y s i s o fM I K C M A D S -B o xG e n e F a m i l y i nR ye W A N G K a i x u a n ,C H EY o n g h e ,Y A N GY u n j i e ,Y A N GJ i n g ,Y A N GY a n p i n g,W E IL a i (C o l l e g e o fA g r o n o m y a n dB i o t e c h n o l o g y ,H e b e iN o r m a lU n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y /H e b e iK e y L a b o r a t o r yo fC r o p S t r e s sB i o l o g y ,Q i n h u a n gd a o ,He b e i 066000,C h i n a )A b s t r a c t :M I K C i s a c o n s e r v e d t r a n s c r i p t i o nf a c t o r f a m i l y i n t h eMA D S -b o x p r o t e i n f a m i l y,i n v o l v e d i n t h e r e g u l a t i o no f f l o w e r i n g t i m ea n df l o r a l o r g a nd e v e l o p m e n t i n p l a n t s .T h ea n a l ys i so f t h e M I K C g e n e f a m i l y i n r y e l a y s t h e f o u n d a t i o n f o r t h e s t u d y o f t h e f u n c t i o n o f t h e r y e t i s s u e s a n d o r g a n s a t v a -r i o u s s t a g e s .P F a m a n dB L A S T P m e t h o d sw e r eu s e dt o i d e n t i f y 47p r o t e i ns e q u e n c e so f r ye M I K Cf a m i l y ,a n dT B t o o l s s o f t w a r ew a s u s e d t o c o n d u c t p h y s i c o -c h e m i c a l p r o p e r t y,e v o l u t i o n ,c o n s e r v a t i v e m o t i f a n d g e n e s t r u c t u r e ,c o l l i n e a r i t y ,c l u s t e r a n a l y s i s o f t h e a b o v e p r o t e i n s e qu e n c e s a n d o t h e r b i o i n -f o r m a t i c s a n a l y s i s .T h e 47M I K C g e n e s i n r y ew e r e d i v i d e d i n t o 12s u b f a m i l i e s .T h e c o l l i n e a r i t y a n a l -y s i s s h o w e d t h a t t h e c o l l i n e a r i t yg e n e sb e t w e e nr y e a n dw h e a tw e r em o r e t h a nt h e c o l l i n e a r i t yge n e s b e t w e e n r y e a n d r i c e ,i n d i c a t i n g t h a t t h e r e l a t i o n s h i p b e t w e e n r ye a n dw h e a tw a s c l o s e r .T h e c l u s t e -r i n g r e s u l t s c o m b i n e dw i t h t h e c o l l i n e a r i t y a n a l y s i sw i t h i n r y e s pe c i e sf o u n d t h a t S c M I K C 31g e n ew a s o n l y e x p r e s s e d a t th e s pi k e ,a n d i tw a s n o t e x p r e s s e d i no t h e r p l a n t t i s s u e s a n do r g a n s a n d a t t h e d e -v e l o p m e n t a l s t a g e .M a t e r i a l s f r o mt h e r e s e a r c h g r o u p w e r e s e l e c t e d f o rR N A -s e q a n a l ys i s ,a n d t h e r e -s u l t sw e r ec o n s i s t e n tw i t ht h eb i o i n f o r m a t i c sr e s u l t s .T h e r e f o r e ,i tw a ss p e c u l a t e dt h a t S c M I K C 31g e n e i s a f l o w e r i n g r e l a t e d g e n e i n r y e .T h e r e s u l t s s h o w e d t h a t t h eM I K C f a m i l y ge n e s h a v ef u n c t i o n -a l d i f f e r e n t i a t i o n i n r ye ,w h i c h p r o v i d e i nf o r m a t i o na n d r e f e r e n c e f o r f u r t h e r r e s e a r c ho n t h e f u n c t i o no f t h i s f a m i l yg e n e.K e y w o r d s:G r o w t h f a c t o r s;R y e;R e v o l u t i o n a r y a n a l y s i s;E x p r e s s i o na n a l y s i s;M I K C g e n eM I K C是MA D S-b o x蛋白家族中一类具有MA D S和K-b o x结构域的植物特异转录因子㊂研究发现,MA D S-b o x转录因子在调控植株的生长发育,尤其是在花器官形成中发挥重要作用㊂MA D S-b o x分为M I K C型和M I K C C型两类[1-2]㊂目前有关M I K C家族的研究已在茄子[3]㊁甘蓝型油菜[4]㊁玉米[5]㊁小麦[6]㊁花生[7]㊁番茄[8]㊁鹅掌楸[9]等植物上开展和报道㊂按照系统进化分类,M I K C类MA D S-b o x转录因子家族可分为s u p p r e s s o r o f o v e r e x p r e s s i o n o f c o n s t a n s(S O C)㊁s e p a l l a t a/a g a m o u s-l i k e g e n e 2(S E P/A G L2)㊁a g a m o u s-l i k e g e n e17(A G L17)㊁s h o r t v e g e t a t i v e p h a s e(S V P)㊁p i s t i l l a t a(P I)㊁a p-e t a l a3(A P3)㊁g n e t u m g n e m o n m a d s13 (G GM13)㊁a g a m o u s-l i k e g e n e6(A G L6)㊁a g a-m o u s-l i k e g e n e12(A G L12)㊁a g a m o u s(A G)和s q u a m o s a/a p e t a l a1(S Q U A/A P1)亚家族[10]㊂编码M I K C蛋白的基因在不同的物种中具有不同的名称,在拟南芥和温带植物(小麦㊁大麦)中,含有名称相同但所示基因不同的春化基因,如V R N1和V R N2,参与了春化的遗传网络[11],春化介导开花的遗传路径在不同植物中存在明显的差异㊂例如,F L C为拟南芥的开花抑制基因,当其在春化过程中受到抑制时,则会启动春季花的转变㊂在拟南芥中,控制开花转变的基因不仅有F L C亚家族的基因,S V P和S O C亚家族的基因也和其开花转变有关㊂相反,温度升高时诱导开花促进基因V R N1保持较高的转录水平,从而为小麦和大麦春季开花提供保障㊂在小麦中, V R N1编码一个类似A P1的MA D S-b o x转录因子,在春化过程中被诱导,促进营养发育到生殖发育的转变㊂V R N2编码一种锌指蛋白,是一种开花阻遏因子,可以延迟开花直到植物春化㊂V R N3编码一种聚乙醇结合蛋白,它的表达受光周期和春化的介导,并加速开花㊂水稻MA D S-b o x基因家族也具有调控开花的作用[12]㊂黑麦(S e c a l e L.,2n=2x=14)是一种二倍体生物,隶属于小麦族(小麦科)小麦亚族(T r i t i c i-n a e),是小麦的近缘物种之一,其M I K C基因家族先前未被研究㊂本研究中,采用多种生物信息学方法对黑麦基因组的M I K C基因家族进行了分析,为进一步探索编码M I K C蛋白的基因功能奠定了基础㊂首先,从基因组筛选得到黑麦中编码M I K C蛋白的基因㊂其次,对这些基因的理化性质有关数据进行了处理,然后对其进行系统发育分析㊂最后,分析了它们在正常生长条件下不同发育阶段根㊁叶和穗子等不同组织的表达谱㊂本研究结果不仅对黑麦M I K C家族的功能研究提供基础,还可以为通过基因改善黑麦的春冬性研究提供参考㊂1材料及方法1.1黑麦M I K C家族基因鉴定本研究采用两种方法鉴定威宁黑麦(W e i n i n g r y e)M I K C家族成员㊂第一步,通过P F a m下载M I K C 蛋白的M A D S(P F00319)和K-b o x(P F01486)结构域的H MM模型,利用H MM E RV3.0程序搜索黑麦蛋白㊂第二步,从P l a n t T F D B下载拟南芥M I K C 蛋白序列,以拟南芥M I K C蛋白为参考序列,于N C B I中对黑麦全基因组蛋白质进行本地B l a s t p,得到候选蛋白序列㊂两个结构域都包含的蛋白为黑麦M I K C蛋白,结合上述两种方法,对所有鉴定出来的蛋白序列在N C B I中C D D[13]在线网站确定保守结构域,最终得到确切的黑麦M I K C蛋白,在E x P A S y网站对蛋白的等电点等理化性质进行分析㊂1.2黑麦M I K C蛋白系统进化分析利用从P l a n t T F D B(h t t p://p l a n t t f d b.c b i.p k u.e d u.c n/)下载的76个拟南芥和51个小麦的M I K C蛋白序列,以及鉴定出来的黑麦M I K C蛋白序列,基于M E G A[14]的邻近法构建物种间系统进化树,1000次B o o t s t r a p抽样,分析其系统发育关系㊂1.3基因结构、保守基序和黑麦的共线性分析利用G E N ES t r u c t u r eD i s p l a y S e r v e分析外显子-内含子结构[15]㊂用M E M E进行保守基序分析,默认参数,参数设置为基序长度(最长100个氨基酸),最大基序数量设置为10,利用T B t o o l s中的G e n eS t r u c t u r eV i w e r进行可视化[16-17]㊂用M C-S c a n X获取M I K C家族种间共线性关系,并利用T B t o o l s软件D u a l S y n t e n y P l o t程序对物种间的结果可视化㊂㊃74㊃第1期汪凯旋等:黑麦M I K C型MA D S-b o x家族基因的鉴定和表达分析1.4黑麦M I K C基因表达分析及验证在小麦多组学网站W h e a t O m i c s[18]数据库(h t t p://w h e a t o m i c s.s d a u.e d u.c n/)下载威宁黑麦(W e i n i n g r y e)不同组织的转录表达谱数据,通过T B t o o l s软件绘制黑麦M I K C基因的表达热图㊂为验证以上生物信息学所分析的黑麦M I K C 基因表达量的变化,大田种植3个春秋播农艺性状差异较大的冬性㊁半冬性黑麦品系89R66㊁90R32㊁90R2用于试验验证,试验材料由河北科技师范学院收集保存,所选材料均设春化组和非春化组2个处理㊂春化组材料于河北科技师范学院昌黎校区实验室内催芽处理后,移到4ħ冰箱进行为期40d的春化处理,非春化组材料于春化组结束春化前3d进行催芽处理,(23ʃ1)ħ室温放置,当两组材料处于相同生长时期时,于2023年3月移栽到河北科技师范学院施各庄农场进行大田种植㊂待植株生长到孕穗期时,植株长势出现明显差异,成熟期的结实率也出现较大差异(表1),3个材料的2个处理组均选6次重复于幼穗处取样,取下的样品做好标记并迅速放到液氮中急速冷冻,用于R N A-s e q测序㊂表1黑麦结实率统计表T a b l e1S t a t i s t i c s o f r y e s e t t i n g r a t e材料名称M a t e r i a l n a m e结实率S e t t i n g r a t e/%春化处理V e r n a l i z a t i o n非春化处理N o n-v e r n a l i z i n g89R6672.0353.5590R3265.6742.3190R270.3835.302结果与分析2.1黑麦M I K C型M A D S-b o x蛋白氨基酸分析黑麦7条染色体上均有M I K C基因分布(表2)㊂黑麦M I K C型MA D S-b o x蛋白的等电点范围5.04(S c M I K C36)~9.5(S c M I K C32),其中有11个蛋白等电点小于7,所有蛋白中既有酸性蛋白,又有碱性蛋白,均为亲水蛋白;平均分子量范围22303.6k D(S c M I K C17)~34117.38k D(S c-M I K C20);氨基酸数量范围196(S c M I K C17)~ 298(S c M I K C20)a a;脂溶指数66.05~93.28,其中有25个蛋白的脂溶指数超过80,属于嗜热型蛋白㊂脂溶指数较高使得蛋白可以较好地适应各种环境㊂2.2黑麦M I K C型M A D S-b o x基因家族系统进化分析为确定黑麦M I K C基因家族和其他物种M I K C基因家族之间的关系,利用M E G A软件对黑麦㊁小麦和拟南芥3个物种共174个M I K C蛋白质序列采用N e i g h b o r-j o i n(N J)法构建家族系统发育进化树(图1),再根据小麦中编码M I K C 蛋白的基因对黑麦中编码M I K C蛋白的M I K C 基因进行分类㊂分析结果显示,黑麦M I K C基因家族共分成12个亚家族㊂其中,属于C GM13㊁A P3㊁S V P㊁A G L17㊁A G L12㊁A G L6㊁S E P/A G L2㊁F L C㊁S O C㊁S Q U A/A P I㊁A G㊁P I亚家族在黑麦中编码M I K C蛋白的基因分别有8㊁2㊁3㊁5㊁2㊁1㊁10㊁0㊁5㊁4㊁4和3个,黑麦S E P/A G L2亚家族中编码M I K C蛋白的基因最多,A G L6亚家族中编码M I K C蛋白的基因最少,无F L C亚家族㊂2.3黑麦M I K C型M A D S-b o x蛋白质保守基序、基因结构和共线性分析为进一步了解M I K C蛋白质保守基序,使用M E M E在线工具对黑麦M I K C家族成员进行分析㊂用M E M E软件预测得到黑麦M I K C蛋白的10个m o t i f(图2),分析结果发现,M I K C蛋白包含m o t i f1㊁m o t i f2㊁m o t i f4和m o t i f6,经验证以上4个m o t i f中含有MA D S-b o x㊁I(i n t e r v e n i n g)区㊁K(k e r a t i n)区和C末端(C-t e r m i n a l)保守结构域㊂不同亚家族K区结构域包含的基序略有不同㊂MA D S位于MA D S-b o x的N末端,为大约60个氨基酸组成的高度保守结构,可以与特异D N A 结合[19];紧接其后为I区,由序列保守性较低的区域构成,大约含有30个氨基酸,对MA D S-b o x 转录因子与D N A的特异结合起到决定性作用;K 区是一个中度保守区域,由大约70个氨基酸构成具有3个α螺旋组成的c o i l e d-c o i l结构,主要参与蛋白质间的相互作用;C末端主要由疏水氨基酸组成,是最不保守的区域,在转录激活中起作用[20]㊂为了解M I K C基因结构,根据其系统发育关系,比较了M I K C基因的内含子和外显子,利用软件T B t o o l s对黑麦M I K C基因进行结构分析(图3)㊂基因结构分析表明,M I K C型编码MA D S-b o x蛋白的基因结构比较保守,黑麦M I K C家族基因大部分包含外显子和内含子㊂植物中大部分M I K C型编码MA D S-b o x蛋白的基因由7个外显子组成,也有少数基因由8个外显子组成㊂图3结果显示,其中10个基因符合植物中编码M A D S-b o x蛋白的基因的典型结构,即7个外显子㊂每个基因的长度不同,可能与黑麦在进化过程中的染色㊃84㊃麦类作物学报第44卷表2 黑麦M I K C 基因及其蛋白质理化特征T a b l e 2 R y eM I K C g e n e s a n d t h e i r p r o t e i n p h ys i c o -c h e m i c a l c h a r a c t e r i s t i c s 基因名称N a m e基因I DG e n e等电点p I 平均分子量MW /k D 氨基酸数N o .o f a m i n o a c i d 脂溶指数A l i ph a t i c i n d e x 亲水性总平均值G R A V YS c M I K C 01S c WN 1R 01G 047800.36.9130814.6426883.69-0.745S c M I K C 02S c WN 6R 01G 221300.18.9027224.9524184.61-0.679S c M I K C 03S c WN 4R 01G 486200.19.0724139.5121482.99-0.633S c M I K C 04S c WN 7R 01G 163800.18.2727263.7423874.16-0.829S c M I K C 05S c WN 5R 01G 632300.17.6323997.6321391.55-0.406S c M I K C 06S c WN 2R 01G 176500.18.8430080.7026778.16-0.884S c M I K C 07S c WN 4R 01G 225600.18.7428518.4024675.28-0.825S c M I K C 08S c WN 1R 01G 361700.19.3827151.0723372.83-0.862S c M I K C 09S c WN 7R 01G 377700.18.7425984.4322972.88-0.648S c M I K C 10S c WN 5R 01G 619100.18.9923882.3321381.08-0.615S c M I K C 11S c WN 7R 01G 497600.15.4225338.4422584.13-0.570S c M I K C 12S c WN 4R 01G 449900.18.8325994.6722993.28-0.607S c M I K C 13S c WN 1R 01G 219700.19.3827151.0723372.83-0.862S c M I K C 14S c WN 2R 01G 360300.19.0027480.2324090.17-0.672S c M I K C 15S c WN 2R 01G 493000.17.7928071.2624179.67-0.615S c M I K C 16S c WN 4R 01G 610800.18.2528316.1625980.46-0.554S c M I K C 17S c WN 3R 01G 376600.18.8822303.6019684.13-0.531S c M I K C 18S c WN 3R 01G 125800.35.2524317.4721784.56-0.531S c M I K C 19S c WN 7R 01G 305000.16.5325210.1222493.21-0.283S c M I K C 20S c WN 3R 01G 210900.39.0634117.3829870.70-0.737S c M I K C 21S c WN 7R 01G 163700.18.2428502.1124878.27-0.782S c M I K C 22S c WN 7R 01G 129600.16.4028263.9524780.97-0.725S c M I K C 23S c WN 5R 01G 122300.19.0328421.4425488.86-0.443S c M I K C 24S c WN 1R 01G 171500.19.3030399.2626767.64-0.810S c M I K C 25S c WN 4R 01G 197800.17.7926304.2222777.71-0.580S c M I K C 26S c WN 5R 01G 450800.18.9227789.6324479.18-0.765S c M I K C 27S c WN 5R 01G 314800.18.9929056.0425276.67-0.809S c M I K C 28S c WN 6R 01G 087300.16.4528474.2325380.63-0.514S c M I K C 29S c WN 5R 01G 466000.18.7227730.7624078.42-0.671S c M I K C 30S c WN 5R 01G 315200.18.9929056.0425276.67-0.809S c M I K C 31S c WN 3R 01G 493600.17.1324070.5520984.45-0.716S c M I K C 32S c WN 1R 01G 359300.19.5027697.3725183.78-0.469S c M I K C 33S c WN 5R 01G 450700.18.9227789.6324479.18-0.765S c M I K C 34S c WN 4R 01G 392300.18.5032681.7428569.12-0.929S c M I K C 35S c WN 6R 01G 060000.19.0425516.0422366.05-0.759S c M I K C 36S c WN 7R 01G 509800.15.0424757.8122179.95-0.461S c M I K C 37S c WN 2R 01G 279900.29.1431520.6927570.00-0.906S c M I K C 38S c WN 5R 01G 450900.18.9428220.2624776.23-0.688S c M I K C 39S c WN 6R 01G 055600.17.7928071.2624179.67-0.615S c M I K C 40S c WN 6R 01G 211900.18.9029583.4526072.88-0.755S c M I K C 41S c WN 6R 01G 259400.18.9027224.9524184.61-0.679S c M I K C 42S c WN 1R 01G 257800.29.3925844.6223086.13-0.692S c M I K C 43S c WN 4R 01G 329500.15.7325233.4422682.04-0.549S c M I K C 44S c WN 4R 01G 392800.18.5326251.7122778.63-0.785S c M I K C 45S c WN 7R 01G 276300.16.4528288.0125280.95-0.513S c M I K C 46S c WN 6R 01G 261400.15.6425412.5722887.28-0.605S c M I K C 47S c WN 7R 01G 097500.16.7825668.1222886.49-0.589㊃94㊃第1期汪凯旋等:黑麦M I K C 型MA D S -b o x 家族基因的鉴定和表达分析图1 黑麦(S c )与拟南芥(A t )和小麦(T a )M I K C 蛋白的系统进化分析F i g .1 P h y l o g e n e t i c a n a l y s i s o fM I K C p r o t e i n s i n r ye (S c ),A r a b i d o p s i s (A t ),a n dw h e a t (T a)图2 黑麦M I K C 蛋白的保守基序F i g .2 C o n s e r v a t i v em o t i f s o f r yeM I K C p r o t e i n s 体片段交换有关㊂MA D S -b o x 家族基因是在进化过程中通过基因重复事件产生的[20]㊂由黑麦分别与小麦和水稻间的共线性结果(图4)可知,黑麦与水稻间共有35对共线性基因,其中4R L 和5R L 与水稻的共线性基因最多㊂黑麦与小麦间共有90对共线性基因,其中4R L 与小麦7A ㊁7B ㊁7D L 的共线性基因最多,7R L 与小麦4A ㊁4B ㊁4D L 的共线性基因最多,㊃05㊃麦 类 作 物 学 报 第44卷说明黑麦4R L与小麦7A㊁7B㊁7D L的亲缘关系更近,黑麦7R L与小麦4A㊁4B㊁4D L的亲缘关系更近㊂有研究表明,黑麦4R L与7R L两条染色体出现非同源染色体间的易位现象,推测这是导致黑麦的4R L和7R L与小麦染色体间出现反向对应关系的主要原因[22]㊂根据3个物种的共线性基因数量可知黑麦与小麦的亲缘关系较水稻更近㊂利用T B t o o l s软件对黑麦进行物种内的潜在共线性分析发现(图5),黑麦M I K C家族基因在每条染色体上均有分布,且分布不均㊂其中5R L 和7R L上含有的编码M I K C蛋白的基因最多,各有9个㊂共有3个同源基因对,即S c M I K C37和S c M I K C33,S c M I K C31和S c M I K C08,S c M I K C42和S c M I K C10㊂根据小麦的亚家族分析可知,以上3对基因分别属于同一个亚家族,即S Q U A/A P I㊁P I和S O C㊂这些同源基因的序列相似性表明它们可能具有相似的功能㊂2.4黑麦M I K C基因的组织表达分析为了研究M I K C基因的表达特征,在W h e a t-O m i c s网站下载来源于威宁黑麦(W e i n i n g r y e)的图3黑麦M I K C的基因结构F i g.3M I K C g e n e s t r u c t u r e s o f r ye图中蓝色线条表示物种间的基因存在共线性关系㊂T h e b l u e l i n e s i n t h e f i g u r e i n d i c a t e t h a t t h e r e i s a c o l l i n e a r r e l a t i o n s h i p b e t w e e n g e n e s.图4黑麦M I K C基因与水稻和小麦基因组的共线性关系F i g.4C o l l i n e a r i t y r e l a t i o n s h i p b e t w e e n r y eM I K C g e n e s a n d r i c e a n dw h e a t g e n o m e s㊃15㊃第1期汪凯旋等:黑麦M I K C型MA D S-b o x家族基因的鉴定和表达分析R N A -s e q 数据,利用T B t o o l s 软件H e a t M a p 程序分析了M I K C 基因在抽穗期采集的根㊁茎㊁叶㊁穗样,以及开花后10㊁20㊁30和40d 采集的籽粒样品㊂根据组织器官和发育时期表达的特征(图6),M I K C 家族基因可分为11个亚族㊂编码S E P /A G L 2㊁A G L 6㊁A G ㊁C GM 13蛋白的基因(除S c M I K C 11)以及S c M I K C 17基因,上述基因在穗子处均有较高表达量,在开花后10和20d 采集的籽粒中也有表达,但表达量低于穗子,总的来说,4个亚族基因整体在穗部的表达量较高,但在其他部位无表达;S c M I K C 09㊁S c M I K C 35和S c -M I K C 31㊁S c M I K C 13等4个基因在穗子处的表达量高,其他部位和生长时期均无表达㊂利用R N A -s e q 数据分析不同基因在黑麦中的表达模式,黑麦表达结果如图7所示㊂经筛选,共选出18个具有差异表达的基因,其中17个M I K C 基因均出现了不同程度的上调表达,1个基因下调表达,其余基因未出现明显的表达差异㊂ 图中红色线条表示黑麦物种内染色体间的共线性基因对㊂T h e r e d l i n e s i n t h e f i g u r e r e p r e s e n t c o l l i n e a r g e n e p a i r sb e -t w e e nc h r o m o s o m e sw i t h i n r y e s pe c i e s .图5 黑麦47个M I K C 基因的染色体分布和染色体间关系F i g.5 C h r o m o s o m a l d i s t r i b u t i o na n d i n t e r c h r o m o s o m a l r e l a t i o n s h i p of 47S c M I K Cg e n es 10D A F ㊁20D A F ㊁30D A F ㊁40D A F :花后10㊁20㊁30及40d 采集的籽粒㊂10D A F ,20D A F ,30D A F ,a n d40D A F i n d i c a t e s e e d c o l l e c t e d 10,20,30,a n d 40d a y s a f t e r f l o w e r i n g ,r e s p e c t i v e l y.图6 M I K C 基因在黑麦不同组织器官中的表达F i g .6 E x p r e s s i o no fM I K C g e n e s i nd i f f e r e n t t i s s u e s a n do r g a n s o f r ye ㊃25㊃麦 类 作 物 学 报 第44卷1~6代表6个生物学重复,T代表实验组,C K代表对照组㊂1-6i n d i c a t e6b i o-r e p l i c a t e s,T m e a n s t r e a t m e n t,C K m e a n s c o n t r o l.图7M I K C基因在黑麦幼穗中的表达F i g.7E x p r e s s i o no fM I K C g e n e s i n y o u n g e a r s o fR y e3讨论黑麦是小麦的三级基因源,是小麦育种中重要的遗传资源[23],黑麦属植物基因可以增加小麦的遗传变异来源,为创制优良的新品种提供可能㊂花器官发育影响黑麦产量和质量㊂M I K C型编码MA D S-b o x蛋白的基因在植物发育过程中起核心作用㊂豆科[24]㊁大麻[25]㊁甘蓝型油菜[26]㊁杉木[27]㊁玫瑰[28]㊁西瓜[29]㊁辣椒[30]㊁菊花[31]等生物的M I K C型MA D S-b o x基因家族鉴定和表达分析已完成㊂本研究利用生物信息学方法在黑麦基因组中鉴定出M I K C型编码MA D S-b o x蛋白的基因共47个,基因数目多于小麦和水稻,比拟南芥此类型基因少29个㊂通过生物信息学相关软件对黑麦47个M I K C转录因子的编码序列进行分析,获得黑麦各个转录因子的蛋白理化性质㊁系统进化树㊁基因结构㊁保守基序㊁共线性和聚类分析等信息㊂这是国内外首次开展黑麦M I K C基因家族生物信息学分析的报道,为黑麦M I K C基因家族的序列克隆和功能验证等研究提供理论基础,也为进一步探索M I K C基因家族在黑麦生长发育以及春化过程中所扮演的角色提供思路㊂编码F L C蛋白的基因通过参与春化途径控制拟南芥的春化和开花转变,其同源基因也在小麦春化过程中起重要作用㊂黑麦M I K C型编码MA D S-b o x蛋白的基因可进一步分为11个亚家族,但本次分析未发现F L C亚家族成员㊂其原因可能是所选用的威宁黑麦(W e i n i n g r y e)参考基因组测序不完整㊂另外,黑麦中相关的基因与小麦和拟南芥同源性较差㊂小麦与拟南芥编码F L C蛋白同源的春化相关基因,如T a A G L24和T a A G L33[32],与黑麦编码M I K C蛋白的基因同源率分别为50%和51%,推测由于同源性较低,黑麦F L C亚家族未归类到基因㊂同源性较低这种现象可能是黑麦的异花授粉与小麦的自花授粉方式不同,在长期进化中表现的差异㊂在拟南芥中,控制开花转变的基因不仅有F L C亚家族, S V P和S O C亚家族基因也和其开花转变有关㊂F L C亚家族的缺失不仅限于黑麦,在高粱㊁水稻㊁黄瓜等植物的MA D S-b o x基因家族中同样没有F L C亚家族成员㊂M I K C型编码MA D S-b o x蛋㊃35㊃第1期汪凯旋等:黑麦M I K C型MA D S-b o x家族基因的鉴定和表达分析白的基因也对植物生长发育起调控作用㊂不同亚家族中编码MA D S-b o x蛋白的基因表达模式不同[33]㊂陆地棉中M I K C型编码MA D S-b o x蛋白的基因调控胚胎发育和控制开花时间㊂高粱中的M I K C型编码MA D S-b o x蛋白的基因同样在花发育和胚胎发育过程中表达[34]㊂基因结构分析发现,该类家族基因非常保守㊂MA D S-b o x不同亚类间基因结构较为保守,所含m o t i f相似,揭示亚类功能的保守性㊂保守基序分析发现m o t i f1㊁m o t i f2㊁m o t i f4和m o t i f6在所有M I K C蛋白中都有㊂全基因组复制事件是许多植物基因进化和扩展的关键驱动因素㊂物种间的共线性分析发现,黑麦与小麦间的共线性基因数多于黑麦与水稻的共线性基因数,证明黑麦与小麦的亲缘关系较黑麦与水稻的亲缘关系更近;根据发表的R基因组序列,1R与小麦共线性最好,但由于黑麦的4R L与7R L之间发生了非同源染色体间的易位,导致不同物种间中黑麦与小麦的共线性出现反向对应㊂黑麦的4R L与小麦和水稻的共线性基因均最多,说明4R L与其他2个物种的基因组重叠最多㊂聚类分析发现,黑麦中编码M I K C蛋白的基因整体在穗子表达量最高,其次是开花后10d采集的籽粒,其他植物组织器官及发育时期也有表达,但表达量较低㊂编码S E P/A G L2㊁A G L6㊁A G㊁C GM13蛋白的基因(除S c M I K C11)以及S c-M I K C17基因在穗子中均有较高表达,在开花后10和20d采集的籽粒中也有表达,但表达量低于穗子,总的来说,4个亚族基因整体在穗部的表达量较高,但在其他部位无表达;编码A G L17蛋白的基因和S O C中的S c M I K C05基因在根部表达量高,其他部位和生长时期均无表达;而A P3亚家族中的S c M I K C09㊁S c M I K C35基因和P I亚家族中的S c M I K C31㊁S c M I K C13基因在穗子的表达量高,其他部位和生长时期均无表达㊂本研究根据转录组数据得出,经春化处理后,部分基因出现不同程度的响应,其中有17个基因出现上调表达,1个基因出现下调表达,其余29个基因未出现明显的表达差异,推测这些具有表达差异的基因在黑麦春化过程中发挥重要作用,与聚类分析中数据库分析结果一致㊂而29个未具有差异表达的基因中可能仍存在与黑麦春化有关的基因,这些基因通过碱基结构的改变等其他方式引起性状差异,无法通过转录组数据检测出表达量差别,具体原因有待通过基因测序等方法进行鉴定㊂通过本次生物信息学分析发现,利用自W h e a t O m-i c s网站上下载的R N A-s e q数据进行聚类分析时, S c M I K C09㊁S c M I K C35㊁S c M I K C31和S c M I K C13等4个基因在穗子的表达量较高,而其他部位和生长时期均无表达;再结合物种内共线性分析发现,黑麦中存在3对同源基因且每对各属于一个亚家族,其中S c M I K C31基因仅在穗子表达,且表达量高;通过R N A-s e q进行验证分析发现,S c-M I K C31基因出现上调表达现象,此基因在黑麦中的表达模式与S O C亚家族基因在拟南芥中与其开花转变有关的基因的表达模式相似,本次R N A-s e q验证结果与生物信息学所得结论一致,初步推测S c M I K C31基因为黑麦中与春化开花有关的基因㊂以黑麦为研究对象,在黑麦的基因组中,共鉴定出47个编码M I K C蛋白的基因,并对这些基因进行了理化性质㊁进化树㊁基因结构㊁基因保守基序㊁共线性㊁聚类分析等生物信息学分析,并利用课题组材料做转录组测序进行验证,较为全面㊁系统地鉴定了黑麦M I K C基因家族㊂结合生物信息学分析和R N A-s e q验证结果一致发现,S c-M I K C31基因仅在穗子处表达量高,因此推测该基因为黑麦中与春化开花有关的基因㊂参考文献:[1]A L V A R E Z-B U Y L L AER,L I L J E G R E NS J,P E L A ZS,e t a l. MA D S-b o x g e n e e v o l u t i o nb e y o n d f l o w e r s:E x p r e s s i o n i n p o l-l e n,e n d o s p e r m,g u a r dc e l l s,r o o t sa n dt r i c h o m e s[J].P l a n t J o u r n a l,2000,24(4):458.[2]L I U Y,C U I S,WUF,e t a l.F u n c t i o n a l c o n s e r v a t i o no fM I K C*-T y p eMA D S b o x g e n e s i n A r a b i d o p s i s a n d r i c e p o l l e nm a t u r a-t i o n[J].T h eP l a n tC e l l,2013,25(4):1288.[3]C H E N Q,L I J,Y A N GF.G e n o m e-w i d e a n a l y s i so f t h em a d s-b o x t r a n sc r i p t i o nf a c t o r f a m i l y i n S o l a n u m m e l o n g e n a[J].I n t e r n a t i o n a lJ o u r n a lo f M o l e c u l a rS c i e n c e s,2023,24(1): 826.[4]S O N G M,Z H A N G Y,J I A Q,e ta l.S y s t e m a t i ca n a l y s i so f MA D S-b o x g e n e f a m i l y i n t h eU s t r i a n g l e s p e c i e s a n d t a r g e-t e dm u t a g e n e s i s o f B n a A G h o m o l o g s t o e x p l o r e i t s r o l e i n f l o-r a l o r g a n i d e n t i t y i n B r a s s i c an a p u s[J].F r o n t i e r s i nP l a n t S c i e n c e,2023,13:1115513.[5]S O N G G Q,H A NX,R Y N E RJT,e t a l.U t i l i z i n g M I K C-t y p e MA D S-b o x p r o t e i nS O C1f o r y i e l d p o t e n t i a le n h a n c e m e n t i n m a i z e[J].P l a n tC e l lR e p o r t s,2021,40(9):1679. [6]S C H I L L I N GS,K E N N E D Y A,P A NS,e t a l.G e n o m e-w i d e a-n a l y s i so f M I K C-t y p e MA D S-b o x g e n e si n w h e a t:P e r v a s i v e d u p l i c a t i o n s,f u n c t i o n a l c o n s e r v a t i o n a n d p u t a t i v e n e o f u n c t i o n-a l i z a t i o n[J].N e w P h y t o l o g i s t,2020,225(1):511.㊃45㊃麦类作物学报第44卷[7]MO U Y,Y U A N C,S U N Q,e ta l.M I K C-t y p e MA D S-b o x t r a n s c r i p t i o n f a c t o r g e n e f a m i l y i n p e a n u t:G e n o m e-w i d e c h a r-a c t e r i z a t i o na n d e x p r e s s i o na n a l y s i su n d e r a b i o t i c s t r e s s[J].F r o n t i e r s i nP l a n t S c i e n c e,2022,13:980933.[8]WA N G Y,Z H A N GJ,HU Z,e ta l.G e n o m e-w i d ea n a l y s i so f t h eMA D S-b o x t r a n s c r i p t i o n f a c t o r f a m i l y i n S o l a n u ml y c o p-e r s i c u m[J].I n t e r n a t i o n a lJ o u r n a lo f M o l e c u l a rS c i e n c e s, 2019,20(12):2961.[9]L I U H,Y A N G L,T U Z,e t a l.G e n o m e-w i d e i d e n t i f i c a t i o no f M I K C-t y p e g e n e sr e l a t e dt os t a m e na n d g y n o e c i u m d e v e l o p-m e n ti n L i r i o d e n d r o n[J].S c i e n t i f i c R e p o r t s,2021,11: 6585.[10]D E B O D T S,R A E SJ,V A N D E P E E R Y,e ta l.A n dt h e n t h e r ew e r em a n y:MA D S g o e s g e n o m i c[J].T r e n d s i nP l a n t S c i e n c e,2003,8(10):479.[11]G R E E N U PA,P E A C O C K WJ,D E N N I SES,e t a l.T h em o-l e c u l a r b i o l o g y o f s e a s o n a l f l o w e r i n g-r e s p o n s e s i n A r a b i d o p-s i s a n dt h ec e r e a l s[J].A n n a l so f B o t a n y,2009,103(8): 1165.[12]X US,C H O N G K.R e m e m b e r i n g w i n t e r t h r o u g hv e r n a l i s a t i-o n[J].N a t u r eP l a n t s,2018,4:997.[13]MA R C H L E R-B A U E RA,D E R B Y S H I R E M K,G O N Z A L E S N R,e ta l.C D D:N C B I sc o n s e r v e dd o m a i nd a t a b a s e[J]. N u c l e i cA c i d sR e s e a r c h,2015,43:D222.[14]K UMA RS,S T E C H E R G,T AMU R A K.M E G A7:M o l e c u-l a r e v o l u t i o n a r y g e n e t i c s a n a l y s i s v e r s i o n7.0f o r b i g g e r d a t a-s e t s[J].M o l e c u l a r B i o l o g y a n d E v o l u t i o n,2016,33(7): 1870.[15]HU B,J I NJ,G U O A Y,e t a l.G S D S2.0:A nu p g r a d e d g e n ef e a t u r ev i s u a l i z a t i o n s e r v e r[J].B i o i n f o r m a t i c s,2015,31(8):1296.[16]C H E NC,C H E N H,Z H A N G Y,e t a l.T B t o o l s:A n i n t e g r a-t i v e t o o l k i t d e v e l o p e d f o r i n t e r a c t i v e a n a l y s e s o f b i g b i o l o g i c a ld a t a[J].M o le c u l a rP l a n t,2020,13(8):1194.[17]B A I L E Y T L,B O D E N M,B U S K E F A,e ta l.M E M E S U I T E:T o o l s f o rm o t i f d i s c o v e r y a n d s e a r c h i n g[J].N u c l e-i cA c i d sR e s e a r c h,2009,37:202.[18]MA S,WA N G M,WU J,e ta l.W h e a t O m i c s:A p l a t f o r mc o m b i n i n g m u l t i p l eo m i c sd a t at oa c ce l e r a t ef u n c t i o n a lg e-n o m i c ss t u d i e si n wh e a t[J].M o l e c u l a r P l a n t,2021,14 (12):1965.[19]T H E IßE N G.,K I M J.T.,S A E D L E R H.C l a s s i f i c a t i o na n d p h y l o g e n y o f t h e MA D S-b o x m u l t i g e n ef a m i l y s u g g e s td e-f i n e d r o l e s o fMA D S-b o x g e n e s u b f a m i l i e s i n t h em o r p h o l o g-i c a l e v o l u t i o no f e u k a r y o t e s[J].J o u r n a l o f M o l e c u l a rE v o-l u t i o n,1996,43(5):486.[20]H O NMA T,G O T O K.C o m p l e x e so f MA D S-b o x p r o t e i n sa r es u f f i c i e n t t oc o n v e r t l e a v e s i n t of l o r a lo r g a n s[J].N a-t u r e,2001,409:525.[21]张加强,朱开元,史小华.芍药MA D S-b o x基因家族的鉴定及适应性进化分析[J].分子植物育种,2019,17(21):6964. Z HA N GJQ,Z HU K Y,S H IX H.A d a p t i v e e v o l u t i o n a n d i-d e n t i f i c a t i o na n a l y s i so f MA D S-b o x g e n e f a m i l y i n P a e o n i a l a c t i f l o r a[J].M o l e c u l a r P l a n tB r e e d i n g,2019,17(21): 6964.[22]L IG,WA N G L,Y A N GJ,e ta l.A h i g h-q u a l i t yg e n o m ea s-s e m b l y h i g h l i g h t s r y e g e n o m i c c h a r a c t e r i s t i c s a n da g r o n o m i-c a l l y i m p o r t a n t g e n e s[J].N a t u r eG e n e t i c s,2021,53:578.[23]杨军丽,敖显鸿,王晓萍.黑麦染色体特异分子标记的开发及应用研究进展[J].分子植物育种,2020,18(13):4384.Y A N GJL,A O X H,WA N G XP.A d v a n c e s i n t h ed e v e l o p-m e n t a n d a p p l i c a t i o n o f c h r o m o s o m e s p e c i f i c m o l e c u l a r m a r k e r s i nr y e[J].M o l e c u l a r P l a n t B r e e d i n g,2020,18 (13):4384.[24]张月,王佳琪,于子建,等.豆科M I K C型MA D S-b o x基因家族生物信息学分析[J].中国油料作物学报,2022,44(4): 798.Z HA N G Y,WA N GJQ,Y UZ J,e t a l.B i o i n f o r m a t i c s a n a l y-s i s o fM I K C-t y p e MA D S-b o x g e n ef a m i l y i nl e g u m e s[J].C h i n e s eJ o u r n a l o f O i lC r o p S c i e n c e s,2022,44(4):798.[25]万志庭,鲁梦,吴沙沙,等.中药火麻仁基原植物大麻M I K C 型MA D S-b o x基因家族鉴定与表达分析[J].药学学报, 2021,56(11):3173.WA NZT,L U M,WU SS,e t a l.I d e n t i f i c a t i o na n de x p r e s-s i o na n a l y s i so ft h e M I K C-t y p e MA D S-b o x g e n ef a m i l y i n C a n n a b i s s a t i v a L.[J].A c t aP h a r m a c e u t i c aS i n i c a,2021, 56(11):3173.[26]Z H O U E,Z HA N G Y,WA N G H,e ta l.I d e n t i f i c a t i o na n dc h a r a c t e r i z a t i o no f t h eM I K C-t y p eMA D S-b o x g e n e f a m i l y i n B r a s s i c an a p u s a nd i t s r o le i nf l o r a l t r a n s i t i o n[J].I n t e r n a-t i o n a l J o u r n a l o f M o l e c u l a rS c i e n c e s,2022,23(8):4289.[27]WA N G D,H A O Z,L O N G X,e ta l.T h eT r a n s c r i p t o m eo fC u n n i n g h a m i a l a n c e o l a t a m a l e/f e m a l e c o n e r e v e a l t h e a s s o-c i a t i o nb e t w e e n M I K C MAD S-b o x g e n e sa n dr e p r o d u c t i v e o r g a n s d e v e l o p m e n t[J].B M CP l a n tB i o l o g y,2020,20(1): 508.[28]WA N G Y,Y A N G T,L IY,e t a l.G e n o m e-w i d e i d e n t i f i c a t i o na n d e x p r e s s i o na n a l y s i so fM I K C C g e n e s i nr o s e p r o v i d e i n-s i g h t i n t o t h e i r e f f e c t s o n f l o w e r d e v e l o p m e n t[J].F r o n t i e r si nP l a n t S c i e n c e,2022,13:1059925.[29]WA N GP,WA N GS,C H E N Y,e t a l.G e n o m e-w i d e a n a l y s i s o f t h eMA D S-b o x g e n e f a m i l y i nw a t e r m e l o n[J].C o m p u t a-t i o n a lB i o l o g y a n dC h e m i s t r y,2019,80:341.[30]G A NZ,WU X,B I A H OM B ASA M,e t a l.G e n o m e-w i d e i-d e n t i f i c a t i o n,e v o l u t i o n,a n d e x p r e s s i o n c h a r a c t e r i z a t i o n o f t h e p e p p e r(C a p s i c u m s p p.)MA D S-b o x g e n ef a m i l y[J].G e n e s,2022,13(11):2047.[31]WO NSY,J U N GJA,K I MJ S.G e n o m e-w i d e a n a l y s i s o f t h e MA D S-B o x g e n ef a m i l y i n C h r y s a n t h e m u m[J].C o m p u t a-t i o n a lB i o l o g y a n dC h e m i s t r y,2021,90:107424. [32]S HA R MAN,R U E L E N SP,D H A UW M,e t a l.A f l o w e r i n g l o c u s C h o m o l o g i sa v e r n a l i z a t i o n-r e g u l a t e dr e p r e s s o ri n B r a c h y p o d i u m a n di sc o l dr e g u l a t e di n w h e a t[J].P l a n t P h y s i o l o g y,2017,173(2):1301.[33]Q U Y,B IC,H E B,e ta l.G e n o m e-w i d ei d e n t i f i c a t i o na n dc h a r a c t e r i z a t i o no f t h e MA D S-b o x g e n e f a m i l y i n S a l i xs u-c h o w e n s i s[J].P e e rJ.,2019,7:e8019.[34]郑玲,谢爱玲,韩建明.高粱MA D S-b o x家族基因的鉴定与分析[J].东北农业科学,2019,44(5):26.Z H E N GL,X I EAL,H A NJM.I d e n t i f i c a t i o n a n d a n a l y s i s o f MA D S-b o x g e n e f a m i l y o f S o r g h u mb i c o l o r[J].J o u r n a l o f N o r t h e a s tA g r i c u l t u r a l S c i e n c e s,2019,44(5):26.㊃55㊃第1期汪凯旋等:黑麦M I K C型MA D S-b o x家族基因的鉴定和表达分析。
植物雄配子体发生和发育的遗传调控
高等植物的生活周期经历从二倍体孢子体世代到单 倍体配子体世代的交替循环。这种世代交替过程是通 过配子体发生和受精作用实现的。配子体发生过程产 生单倍体雌、雄配子, 而受精作用使得单倍体的雌、雄 配子体结合形成新二倍体世代。因此, 雄配子体发生和 发育对高等植物通过有性生殖进行世代交替至关重要。 植物配子体的发生是一个重新起始(de novo)的过程, 不 同于动物的配子体发生过程。雄配子体的发生包括雄 性生殖细胞的分化发育、小孢子的形成( 包括减数分 裂)、雄配子体(花粉粒)的形成和花粉管的生长, 一直到 雄配子(精子)与雌配子体结合。在这个过程中, 经历了 一系列的细胞分化发育作用。因此, 雄配子体不仅对 植物有性生殖有重要意义, 也是一个研究细胞分化发育 机制的好材料。近几年来, 雄配子体遗传机制已经成 为一个研究热点, 利用不同的分子遗传技术, 已发现一 些调控雄配子体形成和花粉管生长的重要基因。本文 着重总结和讨论雄配子体发生和发育遗传机制研究的 最新进展, 主要包括雄配子体形成的细胞学机制、雄 性生殖细胞分化发育、雄配子发育和花粉管生长等的 遗传机制。
成小孢子母细胞(microsporocyte,Msc)。初生周缘细 胞再进行平周分裂产生内外 2 层次生周缘细胞 (secondary parietal cells,SPC)。外层次生周缘细胞 直接发育成药室内壁(endothecium,En), 而内层的次生 周缘细胞再次平周分裂产生2层细胞, 内层的细胞形成 初生绒毡层 (primary tapetum, PT), 然后进一步发育为 成熟的绒毡层, 外层细胞形成中间层(middle layer)。拟 南芥花药发育可分为 14 个发育时期(Sanders et al., 1999)。在第 4期完成前, 由于细胞分裂的不同步, 细胞 排列没有明显的分层。而当第 4 期完成后, 进入第 5 期 时, 拟南芥花药具有排列整齐的5层细胞, 由外向内分别 是表皮层、花药内壁、中间层、绒毡层和小孢子母细 胞。此后, 第 5 层的小孢子母细胞经过减数分裂产生单 倍体的小孢子(microspores), 小孢子进一步发育为成熟 的花粉粒, 其中包含精细胞。在花药发育的过程中, 除 了出现活跃的细胞分化发育作用, 也出现细胞的程序性 死亡(programmed cell death)。首先是第 3 层的中间 层细胞退化消亡, 然后第4层的绒毡层成熟后为花粉粒 的形成提供物质, 最后在花粉粒成熟前退化消亡。最终, 成熟的花药共有 4 个充满花粉粒的药室。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Expression and Maintenance of Embryogenic PotentialIs Enhanced through Constitutive Expression of AGAMOUS-Like151Ellen W.Harding,Weining Tang,Karl W.Nichols2,Donna E.Fernandez,and Sharyn E.Perry* Department of Agronomy,University of Kentucky,1405Veterans Drive,Lexington,Kentucky40546–0312 (E.W.H.,W.T.,S.E.P.);and Department of Botany,University of Wisconsin,430Lincoln Drive,Madison, Wisconsin53706–1381(K.W.N.,D.E.F.)The MADS domain protein AGL15(AGAMOUS-Like15)has been found to preferentially accumulate in angiosperm tissues derived from double fertilization(i.e.the embryo,suspensor,and endosperm)and in apomictic,somatic,and microspore embryos.Localization to the nuclei supports a role in gene regulation during this phase of the life cycle.To test whether AGL15is involved in the promotion and maintenance of embryo identity,the embryogenic potential of transgenic plants that constitutively express AGL15was assessed.Expression of AGL15was found to enhance production of secondary embryos from cultured zygotic embryos,and constitutive expression led to long-term maintenance of development in this mode. Ectopic accumulation of AGL15also promoted somatic embryo formation after germination from the shoot apical meristem of seedlings in culture.These results indicate that AGL15is involved in support of development in an embryonic mode.The MADS domain protein AGL15(AGAMOUS-Like15)preferentially accumulates in a wide variety of tissues that are developing in an embryonic mode, suggesting that it may play an important role during this phase of the higher plant life cycle(Heck et al., 1995;Rounsley et al.,1995;Perry et al.,1996,1999). MADS domain proteins are a family of regulatory factors that share an approximately55-to60-amino acid residue domain(the MADS domain)that medi-ates dimer formation and sequence-specific binding to DNA(for review,see Riechmann and Meyerowitz, 1997).The plant MADS box gene family is relatively large,numbering107in Arabidopsis(Parenicova´et al.,2003).Many members of this group have been shown to play key roles in developmental decisions, as demonstrated by loss-of-function mutations re-sulting in homeotic transformation of organ identity (for review,see Riechmann and Meyerowitz,1997). However,it is not unusual for members of this family to have redundant functions,making a double or even triple mutant combination necessary before a phenotype is observed(Kempin et al.,1995;Liljegren et al.,2000;Pelaz et al.,2000).In cases where functional redundancy exists,ec-topic expression studies can be particularly reveal-ing.For example,the petunia(Petunia hybrida)MADS box gene FBP11produces ectopic ovules on floral organ surfaces when constitutively expressed(Co-lombo et al.,1995),substantiating FBP11’s proposed role as an ovule identity gene.MADS box genes expressed in inflorescence and floral meristems have been studied to the greatest extent,but members of the MADS box family are preferentially expressed in other tissues(Heck et al.,1995;Rounsley et al.,1995; Alvarez-Buylla et al.,2000;Burgeff et al.,2002). AGL15is the only MADS box gene reported to date that is preferentially expressed in developing em-bryos(Heck et al.,1995;Rounsley et al.,1995;Fer-nandez et al.,2000).Although other MADS box genes are expressed in embryos,they are also expressed at similar or higher levels at other stages of plant de-velopment.AGL15accumulates in the nuclei of cells in the embryo beginning very early in development (by the eight-cell stage for Arabidopsis)and remains at relatively high levels throughout morphogenesis and into maturation stage(Perry et al.,1996).The level of AGL15decreases during desiccation.AGL15 accumulates in nuclei of a wide variety of tissues developing in an embryonic mode including apomic-tic,somatic,and microspore embryos,embryonic tis-sue derived from the precocious germination system of Brassica napus,and extra-embryonic organs in mu-tants of Arabidopsis(Perry et al.,1999).AGL15is expressed after germination in Arabidopsis,in the vegetative shoot apical meristem(SAM),and bases of lateral organs such as leaves,cauline leaves,and floral organs(Fernandez et al.,2000).The level of1This work was supported by the National Science Foundation (grant no.IBN–9984274to S.E.P.),by the U.S.Department of Agriculture(grant no.96–35304–3699to D.E.F.),by the University of Wisconsin Graduate School,and by the University of Kentucky. This paper(no.03–06–036)is published with the approval of the Director of the Kentucky Agricultural Experiment Station.2Present address:Third Wave Technologies,Inc.,502S.Rosa Road,Madison,WI53719–1256.*Corresponding author;e-mail sperr2@;fax859–257–7125.Article,publication date,and citation information can be foundlower than found in the embryo(Heck et al.,1995; Fernandez et al.,2000).The presence of AGL15in the nuclei of a wide variety of tissue types developing in an embryonic mode suggests that AGL15may be important for this phase of the life cycle.Other transcriptional regula-tors that are preferentially expressed during embry-ogenesis have been shown to promote somatic em-bryo development when ectopically expressed (Lotan et al.,1998;Stone et al.,2001;Boutilier et al., 2002).In this report,evidence that AGL15also acts to promote development in an embryonic mode is pre-sented.Providing AGL15via a transgene that causes constitutive expression supported maintenance of embryo development in culture for extended periods of time,over6years to date.The effect of AGL15was also examined in genetic backgrounds where somatic embryos readily initiate from the SAM(Mordhorst et al.,1998).AGL15enhanced embryo production from the meristems in these mutant backgrounds and in a wild-type background.RESULTSExpression of AGL15Leads to Extension of thePeriod of Embryonic Development in Culture Previous results have demonstrated that in all cases tested,embryos or embryonic tissue from flow-ering plants accumulate AGL15(Perry et al.,1996, 1999).The correlation is suggestive,but does AGL15 directly contribute to either the establishment or maintenance of the embryonic phase?Plants carrying transgenic constructs consisting of the cauliflower mosaic virus(CaMV)35S promoter driving constitu-tive expression of full-length AGL15(Fernandez et al.,2000)were used to address this question.The full-length transgenes,referred to in this report as MIKC constructs,encode the conserved DNA-binding MADS domain,a short linker region(called an I domain),the weakly conserved K domain,and the unique C-terminal domain.Two forms of the MIKC transgene were used to transform Arabidop-sis:One contains the first three introns,whereas the other represents the cDNA(Fernandez et al.,2000). The transgene with the first three introns generallyprovides higher levels of expression of AGL15.Trans-genic plants expressing full-length AGL15via the35S promoter accumulate AGL15in many tissues,includ-ing those in inflorescence meristems,flowers,and flower buds(Perry et al.,1999;Fernandez et al., 2000),leaves(C.Zhu and S.Perry,unpublished data),and developing seedlings and siliques(S. Perry,unpublished data).When developing embryos were removed from the seed at the green bent coty-ledon stage(10–11d after flowering)and cultured on germination media(GM)without exogenous growth regulators,embryonic foci appeared on the cultured embryos within2to3weeks,as shown in Figure1A. Often,the foci appeared at sites where the embryo had been wounded during isolation,but they also formed at the shoot apex and cotyledons and occa-sionally on the hypocotyl.Often,the root apical mer-istem activated,producing an elongated root(Fig. 1A).As shown in Figure1B,over40%of the embryos cultured from MIKC(with introns)plants showed developing embryonic foci within3weeks after the start of culture.A total of530cultured embryos from two independent transgenic lines expressing moder-ate levels of AGL15(described by Fernandez et al., 2000)were scored for secondary embryo develop-ment.Upon subculturing,over80%of the embryos with embryonic foci continued producingembryonic Figure1.Production and maintenance of embryonic culture tissue (ECT).A,Cultured zygotic embryo carrying the MIKC transgene. Developing embryonic foci are indicated with a blue arrowhead.The developing root of the cultured zygotic embryo is indicated with a red arrowhead.Barϭ1mm.B,Percentage of cultured zygotic embryos that produced embryonic foci.Results shown are means and SE of the mean derived from six to eight experiments.Ws,wt, Wild-type zygotic embryos cultured on GM.MIKC,Zygotic embryos from a hemizygous transgenic plant carrying one copy of the35S: AGL15transgene cultured on GM plus kanamycin.MIKC(kan-r)*, Recalculated percentage of the MIKC embryos that produced sec-ondary embryos estimating that only approximately75%of cultured MIKC zygotic embryos carried the transgene.MIK,Zygotic embryos from a transgenic plant with a transgene consisting of the35S pro-moter driving expression of a truncated form of AGL15lacking the C-terminal domain.C,Percentage of the embryonic foci that contin-ued to develop in embryonic mode after6to7weeks in culture. Results shown are means and SE s from at least four experiments.D, Appearance of the ECT from an MIKC embryo after approximately 1.5years in culture.Barϭ2.5mm.Harding et al.tissue for at least6to7weeks(Fig.1C).At the time of submission of this manuscript,one set of cultured embryos has been producing additional embryonic tissue continuously for over6years.Appearance of the cultured tissue after approximately1.5years is shown in Figure1D.Excised wild-type(Was-silewskija[Ws]ecotype)embryos also produced sec-ondary embryos in culture,but at a lower frequency (18.2%of embryos cultured,se3.7%,873embryos total scored,Fig.1B).Over a2-month period,these foci gradually stopped forming embryonic tissue and began forming leaves(indicated by the presence of trichomes;Fig.1C).The MIKC(with introns)transgenic plants used in these experiments were hemizygous for the trans-gene because the homozygous individuals in these lines are sterile.Therefore,the percentage of MIKC embryos that produce secondary embryos is likely to be an underestimate because25%of the cultured embryos arrest for another reason,i.e.they are kana-mycin sensitive.If the efficiency of production of secondary embryos is recalculated based on the total kanamycin-resistant embryos cultured(estimated as 75%of the total),then over one-half(54.8%,se7.5%) of the cultured embryos showed secondary embry-onic tissue development(Fig.1B,MIKC[kan-r,kana-mycin resistant]).Transgenic plants that expressed a truncated form of AGL15lacking the C-terminal do-main were also generated.These plants expressed a form of AGL15consisting of only the DNA-binding MADS domain,the I-linker domain,and the K do-main.Similar constructs with AGAMOUS and Serum Response Factor sequences produce dominant nega-tive effects(Gauthierrouviere et al.,1993;Mizukami et al.,1996;Belaguli et al.,1999).In general,plants carrying the transgene encoding truncated AGL15, referred to as the MIK transgene,showed phenotypic changes that were opposite of those in plants carry-ing the full-length form of AGL15.For example,the MIKC transgenic plants flower later than wild type (Fernandez et al.,2000),whereas the MIK transgenic plants flower earlier than wild type(K.W.Nichols and D.E.Fernandez,unpublished data).However, MIKC and MIK zygotic embryos progressed through morphogenesis at the same rate as wild-type em-bryos(Fernandez et al.,2000;data not shown).Cul-tured embryos carrying the MIK transgene produced embryonic foci at a very low frequency(Fig.1B,2.4%, se0.7%,714embryos total scored from three inde-pendent MIK transgenic lines).No instances of con-tinued embryonic tissue production were observed after2months.What is the evidence that the MIKC culture tissue was developing in an embryonic mode?The organs produced more closely resembled cotyledons than leaves.The margins of the organs were smooth,and no trichomes were present(Fig.1,A and D).The organs also had a simple vasculature,much like that found in cotyledons from seedlings(compare Fig. 2A,cotyledon from a seedling,with Fig.2C,organ Figure2.Characterization of the ECT.A to D,Cleared organs observed using dark-field opticsto examine vasculature.Cotyledon(A)and leaf(B)from a germinated seedling with the MIKCtransgene.C,Cotyledon-like organ from the em-bryonic cultures.D,Leaf-like organ from theembryonic cultures.E and F,Examples of acti-vated root apical meristems(E)and intact em-bryos(F)occasionally produced from embryoniccultures.G and H,Embryonic-like structures pro-duced in the axils(G)or on the surface(H)oflateral organs.I and J,-Glucuronidase(GUS)activity in the ECT carrying a soybean(Glycinemax)-conglycinin promoter:GUS construct.K,Sudan red7B staining of ECT indicating accumu-lation of triacylglycerols.L,GUS activity in theECT carrying an AGL15promoter:GUS construct.Arrowheads in B,D,J,K,and L indicatetrichomes.Bars in A to D and J to Lϭ1mm;inE,H,and I,barsϭ0.5mm.AGL15Promotes Embryonic Development in Culturefrom the ECT),rather than the complex network of vasculature found in leaves from seedlings(Fig.2B). During the first few months in culture,leaves with serrated margins,trichomes,and a more complex vasculature were also found at low frequency(Fig. 2D).Besides cotyledon-like organs,what appeared to be fused embryonic axes and root meristems,which occasionally produced an elongating root,were often present(Fig.2,E,F,and I).In addition,whole em-bryos were occasionally observed on the surface of the cotyledon-like organs(Fig.2F).New embryonic structures originated from a variety of regions,in-cluding axils of older organs(Fig.2G)and lamina of cotyledon-like organs(Fig.2H).To test whether the tissues with embryonic features expressed seed-specific programs,a transgene con-sisting of the soybean-conglycinin promoter driving expression of the reporter gene GUS(Hirai et al., 1994)was introduced into the MIKC transgenic plants.Developing embryos containing both trans-genes were removed from the seeds at the green bent cotyledon stage and placed into culture.Embryonic foci appeared within3weeks and were stained for GUS activity.As shown in Figure2I,GUS activity was associated with all parts of fused embryonic axes and cotyledons.In cases where leaves were also pro-duced(scored by the presence of trichomes),GUS staining was apparent only in the cotyledon-like or-gans that did not have trichomes and not in organs resembling leaves(Fig.2J).Developing foci also stained intensely with the dye Sudan Red7B(fat red, Fig.2K),which specifically stains neutral lipids (Brundrett et al.,1991),such as the triacylglycerols that accumulate during Arabidopsis embryogenesis (Ogas et al.,1997).Little staining was observed in leaf-like organs produced in culture(Fig.2K).If the culture tissues have embryo identity,rela-tively high levels of AGL15promoter activity might be expected.Immature zygotic embryos that contain a transgene consisting of2.5-kb5Ј-and2.5-kb3Ј-regulatory regions of AGL15driving expression of the reporter gene GUS(Fernandez et al.,2000)were excised and cultured.These embryos,like wild-type embryos,will transiently produce new embryonic tissues in culture.As shown in Figure2L,GUS activ-ity was detected in these tissues,but not in leaf-like organs produced in culture,indicating that AGL15 promoter activity was associated with development in an embryonic mode.The mode of development of the culture tissue was further investigated at a molecular level.Cultures that had been maintained for extended periods(over 5years)were used for these experiments.Reverse transcription(RT)-PCR and gene-specific oligonucle-otide primers were used to compare expression of several embryo markers in the culture tissue with expression in seedlings and siliques.LEC1(LEAFY COTYLEDON1)and LEC2(LEAFY COTYLEDON2) both encode transcriptional regulators that are ex-pressed primarily during embryonic development (Lotan et al.,1998;Stone et al.,2001).As shown in Figure3,both LEC1and LEC2were expressed in the ECT.As expected,expression was also observed in silique tissue,particularly at earlier stages of devel-opment,but not in wild-type seedlings(Fig.3)or in MIKC seedlings(data not shown).In addition,one of the Arabidopsis12S cruciferin seed storage protein genes(AtCRU3)was expressed in the culture tissue and in older stage siliques but not in seedlings(Fig.3).The control,-2-tubulin(TUB2;Snustad et al., 1992),was expressed in all tissues.Expression of AGL15Stimulates Production of Embryos from SAMsA group of Arabidopsis mutants with enlarged SAMs showed enhanced production of embryos from the SAM when seedlings were grown in liquid cul-ture media containing2,4-dichlorophenoxyacetic acid(2,4-D;Mordhorst et al.,1998;von Reckling-hausen et al.,2000).This group of mutants includes amp1(altered meristem program;allelic to pt1,cop2,and hpt),clavata1,and clavata3.Increased size of the SAM is correlated with increased frequency of somatic embryo development in this system(Mordhorst et al.,1998).In the amp1background,where the SAM is approximately twice the size of wild type,30%of the seedlings produce secondary embryos(Mordhorst et al.,1998).This finding was intriguing because the very young SAM is one of two places where AGL15 can be detected immunologically after germination in Arabidopsis(Fig.4;Fernandez et al.,2000).Figure 4A shows immunohistochemical localization of AGL15in the SAM of a4-d-old seedling.AGL15was detected in the nuclei of the cells in the SAM and in the young leaf.However,by6d after germination, nuclear localized AGL15could no longer be detected in the SAM and leaves(Fig.4B).Figure3.Expression of embryo-specific genes in the ECT.Gene-specific primers and RT-PCR were used to examine expression of LEAFY COTYLEDON1,LEAFY COTYLEDON2,and a12S cruciferin gene in the ECT and in Ws seedlings and staged silique tissue. Products were analyzed on an agarose gel.Tubulin(TUB2)served as a control.Harding et al.To test whether altering AGL15levels affects pro-duction of somatic embryos in the amp1background,the MIKC and MIK transgenes were introduced into the amp1mutant background via genetic crosses.Ho-mozygous amp1progeny were identified in the F 2generation by screening for seedlings with three cot-yledons,and the transgene was selected by kanamy-cin resistance.Seed was germinated in liquid culture with 2,4-D as described by Mordhorst et al.(1998),with kanamycin present to eliminate any seedlings lacking the MIKC or MIK transgenes.amp1homozy-gous mutants were germinated in media without kanamycin.As shown in Figure 5A,under our culture condi-tions,only 2%(se 0.9%,n ϭ5experiments,891total seedlings scored)of the amp1homozygous seedlings produced new embryos at the SAM.However,when the MIKC transgene was present,27.4%of the amp1seedlings produced new structures at the SAM as shown in Figure 5,B and C (se 2.0%,n ϭ5experi-ments,1,265total kanamycin-resistant seedlings scored).The new growth lacked trichomes and ap-peared to be similar to the shoot meristem embryos reported previously (Mordhorst et al.,1998).Approx-imately another one-third had green smooth meris-tem development (data not shown)that might corre-spond to the embryogenic callus reported by von Recklinghausen et al.(2000).amp1homozygous seed-lings carrying the MIK transgene did not produce embryo-like structures in the culture system (Fig.5A,0.8%,se 0.2%,n ϭ5experiments,1,857total kanamycin-resistant seedlings scored).Typically,the meristem did not develop in these seedlings (Fig.5,D and E).The seedlings callused and looked much like the amp1seedlings,except that the tips of the cotyle-dons often remained green.The MIKC transgene was also able to enhance pro-duction of embryos from the SAM in the absence of the amp1mutation.Although the frequency of pro-duction was somewhat variable,the MIKC seedlings produced meristem-derived embryos at a higher fre-quency on average than Ws wild-type or MIK seed-lings.For MIKC,18.7%(se 8.9%)of seedlings pro-duced embryo structures,compared with 2.8%(se 1.9%)for Ws wild-type seedlings and 1.6%(se 0.8%)for MIK seedlings (Fig.5A).All numbers are means from at least four independent experiments scoring a total of 810to 1,114seedlings.The seedlings bearing embryonic structures were assessed further to confirm that development was occurring in an embryonic mode.MIKC seedlings that produced new structures at the SAM were sep-arated from MIKC seedlings that did not,and RNA was extracted from both sets of seedlings for RT-PCR.As shown in Figure 6A,liquid culture grown seedlings with SAM development showed increased accumulation of LEC1,LEC2,and AtCRU3mRNA relative to seedlings lacking SAM development.Wild-type and MIKC seedlings grown on GM plates did not produce new embryos at the SAM,and none of the embryo markers accumulated in these tissues (Fig.3;data not shown).To examine the effect of AGL15accumulation on early stages of somatic embryo development,expres-sion of AtSERK1was assessed shortly after culture initiation (7d).AtSERK1is expressed in tissues with increased embryogenic competence,and ectopic ex-pression of this gene enhances efficiency of somatic embryo initiation in culture (Hecht et al.,2001).As shown in Figure 6B,amp1seedlings containing the MIKC transgene showed increased accumulation of AtSERK1mRNA compared with amp1seedlings with or without the MIK transgene.AtSERK1was also expressed in the ECT derived from cultured MIKC zygotic embryos (Fig.6B).Because Mordhorst et al.(1998)found that there is a correlation between SAM size and ability to pro-duce SAM somatic embryos in culture,the meristems of MIKC and MIK in wild-type and amp1mutant backgrounds and Ws and amp1were examined.Seed-lings grown on GM plates and mature embryos were cleared in Hoyer’s solution and examined using dif-ferential interference contrast (DIC)optics.As shown in Figure 7,A and B,the meristem of an MIKC seedling was similar in size to that of a wild type (Ws seedling).As shown in Figure 7C,when images of meristems were measured,no significant differences were observed between Ws,MIKC and MIK seed-lings.amp1,as expected,had a larger meristem,but the addition of the AGL15transgenes did not increase meristem size over that found for amp1alone.Like-wise,comparative meristem sizes in mature embryos were similar (data not shown).Differences at the meristem became apparent shortly after initiation of culture in media containing 2,4-D.By 5d in culture,the SAM of amp1with MIKC seedlings was enlarged compared with amp1alone (Fig.8,A and B,respectively).A “collar”of tissue,as described by von Recklinghausen et al.(2000),per-haps derived from the outer SAM,was clearly appar-ent in seedlings carrying the MIKC transgene,aswasFigure 4.Accumulation of AGL15in the shoot apex of seedlings.A,Four-day-old Ws wild-type seedling.B,Six-day-old Ws wild-type seedling.LP,Leaf primordia;St,stipule primordia.Bars ϭ50m.AGL15Promotes Embryonic Development in Culturedevelopment at the central region of the SAM.Cell proliferation at the SAM continued,and,by 10d in culture,the SAM of amp1with MIKC was smooth,enlarged,and green in color (data not shown).By 7d after culture,the SAM of amp1seedlings carrying theMIKC transgene was enlarged and showed cytoplas-mically dense protrusions in the central part of the meristem,as revealed by staining of tissue sections (arrowhead,Fig.8C).In amp1,only callus develop-ment was obvious at the meristem (data not shown).The meristem region of amp1seedlings with the MIK transgene had a relatively flat meristem (Fig.8D)or a dome near the apex that did not have any cytoplas-mically dense protrusions (data not shown).DISCUSSIONIn this report,results are presented demonstrating that continuous expression of AGL15driven by the CaMV 35S promoter (MIKC construct)enhances first the production of secondary embryonic tissue from cultured zygotic embryos and then supports the long-term maintenance of the embryonicphase.Figure 5.Embryonic development from the shoot apex of seedlings in culture.A,Percentage of seedlings that showed embryonic devel-opment at the SAM when germinated in liquid media containing 2,4-D.Results shown are means and SE s of four to six independent experiments.amp1,amp1mutant without any transgenes.amp1,MIKC ,amp1mutant containing a transgene consisting of the 35S promoter driving expression of full-length AGL15.amp1,MIK ,amp1mutant containing a transgene consisting of the 35S promoter driving expression of a truncated form of AGL15lacking the C-terminal domain.WS ,wt ,Wild-type Arabidopsis seedlings.MIKC and MIK ,Transgenic Ws seedlings expressing the different forms of AGL15.B to E,SAM development in seedlings germinated in liquid culture containing 2,4-D.B and C,amp1mutant carrying a transgene con-sisting of the 35S promoter driving expression of full-length AGL15.D and E,amp1mutant carrying a transgene consisting of the 35S promoter driving expression of a truncated form of AGL15lacking the C-terminal domain.Blue arrowheads indicate development of embryo-like tissue at the shoot apex;red arrowheads indicate lack of development at the shoot apex.Bar ϭ1mm.Figure 6.Expression of embryo-specific genes in seedlings germi-nated in liquid culture with 2,4-D.A,MIKC seedlings with SAM development (ϩ)were separated from MIKC seedlings lacking SAM development (Ϫ)after 21d in culture and assessed for expression of embryo-specific genes.Gene-specific primers and RT-PCR were used to assess expression of LEAFY COTYLEDON1,LEAFY COTYLE-DON2,and a 12S cruciferin gene in the liquid culture seedlings and in staged 11-to 12-d-old silique tissue.B,amp1liquid culture seedlings with the MIKC or MIK transgene or lacking any transgene were assessed for expression of AtSERK17d after culture.ECT was also assessed for expression of AtSERK1.Tubulin (TUB2)served as a control.RT-PCR products were analyzed on an agarose gel.Harding et al.There are several published reports of induction of Arabidopsis somatic embryo cultures from immature zygotic embryos (Sangwan et al.,1992;Wu et al.,1992;Pillon et al.,1996;Luo and Koop,1997;Ikeda-Iwai et al.,2002)or from leaf protoplasts (O’Neill and Mathias,1993;Luo and Koop,1997).These cultures require the addition of exogenous auxins and,in some cases,cytokinins.Auxin is thought to induce embryogenic competence,but how this occurs is not yet understood (Harada et al.,1998).The synthetic auxin 2,4-D has been found to promote recurrent embryony on the surface of cultured zygotic em-bryos,perhaps by generating cells that recapitulate the current developmental program.However,2,4-D leads to dedifferentiation and formation of embryo-genic callus in the case of the somatic embryos de-rived from the zygotic embryos (Pillon et al.,1996).In the absence of a sufficiently high level of 2,4-D,non-embryogenic callus results (Pillon et al.,1996).Nota-bly,development of secondary embryos in our cul-ture system occurred in the absence of exogenous growth regulators,and continued embryonic devel-opment with MIKC tissues was sustained for exten-sive periods of time.Whereas both wild-type and MIKC transgenic de-veloping embryos gave rise to secondary embryos,MIKC transgenic embryos produced embryonic structures at a significantly higher frequency.Over one-half of cultured MIKC embryos produced sec-ondary embryos;however,only 18%of cultured wild-type embryos showed this development.Trans-genic embryos expressing a truncated form of AGL15lacking the C-terminal domain (MIK construct)were unable to efficiently promote secondary embryo de-velopment.This type of truncated construct has been found to have dominant negative effects for other MADS domain proteins (Gauthierrouviere et al.,1993;Mizukami et al.,1996;Belaguli et al.,1999),possibly by blocking endogenous protein activity ei-ther by formation of nonfunctional heterodimers or occupation of DNA-binding sites.Although the majority of MIKC embryos that be-gan embryonic development continued producing embryonic tissue (cotyledons)over extended periods of time,wild-type cultures shortly switched to gen-erating vegetative tissues (leaves).The wild-type em-bryos contain endogenous AGL15at the time of ex-cision (Perry et al.,1996),which may contribute to competency to promote development ofsecondaryFigure 8.Appearance of the SAM of seedlings in liquid culture containing 2,4-D.A and B,Appearance of the apical region of amp1seedlings with the MIKC transgene (A)or amp1seedlings lacking a transgene (B)after 5d in culture.C and D,Tissue sections (7m)stained with toluidine blue O of amp1seedlings containing either the MIKC (C)or the MIK (D)transgene after 7d in culture.Arrows in A and C,Ring of tissue proliferation;black arrowheads,proliferation at the central zone of the SAM.White arrowheads in B and D,Little to no proliferation at the meristem.Bar in A and B ϭ500m;bar in C and D ϭ200m.Figure 7.Relative size of the SAM of seedlings with and without MIKC and MIK transgenes in wild-type and amp1mutant back-grounds.A and B,Wild-type and MIKC seedlings were cleared and examined under DIC optics.A,Ws wild-type seedling;B,seedling containing a transgene consisting of the 35S promoter driving ex-pression of full-length AGL15.C,Average size (diameter)of the SAM measured in millimeters from pictures of seedlings that were at a final magnification of 125ϫ.Bar ϭmean size with SE ;the number above the bar indicates the number of seedlings photographed and mea-sured.Bar in A and B ϭ50m.AGL15Promotes Embryonic Development in Culture。