抽象代数第二章

合集下载

简单的抽象代数基本知识1

简单的抽象代数基本知识1

二.群的定义与性质
1、群的定义
设G是一个带有运算“o ”的非空集合,且其中的运 算满足以下四个条件,则称(G ,o)是一个群
(1) 封闭律: ∀a,b ∈ G 有 ao b ∈G
(2) 结合律: ∀a,b, c ∈ G 有
(a o b) o c = a o (b o c)
(3) 幺元律: 存在 e ∈ G,使 ∀a ∈ G ,有
检例验如一A=个{1系,2,统3,4是,5否},构f成(a代,b)数=lc系m统(a,,b)最(最重小要公的倍一数) 就点不就构是成看代运数算系对统集。合因是为否,封f 闭(3,,5)即=1运5不算在的集结合果A是中否, f 还对在A不集封合闭A中。。
Department of Mathematics
(1) 如果G的一个子群H不等于G,即H ⊂ G,
则(H,*)叫做(G,*)的真子群。 (2) G的子群H的运算必须与G的运算一样,
在群中成立的性质在子群仍成立。
Department of Mathematics
4,子群的例 例3. (mZ,+)是整数加法群(Z,+) 的一个子群 例4. 行列式等于1的所有n阶矩阵作成所有n阶非奇
则称∗ 在A上是可结合的。
(3) 若对于任意的 a,b,c∈A, 有
ao(b∗c) = (aob)∗(aoc) (b∗c)oa = (boa)∗(coa)
则称运算 o对运算 ∗是可分配的。
Department of Mathematics
3,与二元运算相关的一些特殊的元素 (1)单位元
如果 ∃el ∈ A, 对于∀x ∈ A都有el o x = x ,则称 el 为运算 o 的左单位元,同理可以定义右单位元 er ,

抽象代数高等数学教材

抽象代数高等数学教材

抽象代数高等数学教材抽象代数,作为数学的一个重要分支,研究的是代数结构的抽象概念及其性质。

它是现代数学的基石之一,也是高等数学中的一门重要课程。

本教材旨在全面而系统地介绍抽象代数的基本概念、理论和方法,帮助读者建立起对抽象代数的深入理解和应用能力。

第一章:群论1.1 群的定义与性质1.2 群的子群与商群1.3 幺半群与半群1.4 群同态与同构1.5 群的作用与置换群第二章:环论2.1 环的定义与性质2.2 整环与域2.3 环的同态与同构2.4 素理想与极大理想2.5 多项式环与唯一因子分解整环第三章:域论3.1 域的定义与性质3.2 代数扩域与超越扩域3.3 有限域与伽罗华理论3.4 不可约多项式与域的扩张第四章:线性代数4.1 线性空间的定义与性质4.2 线性变换与矩阵4.3 特征值与特征向量4.4 正交矩阵与对角化4.5 线性空间的直和与内积空间第五章:模论5.1 模的定义与性质5.2 子模与商模5.3 生成元与基本定理5.4 非交换环上的模5.5 自由模与有限生成模第六章:域扩张与代数闭包6.1 域扩张的概念与性质6.2 代数元与超越元6.3 代数闭包与代数簇6.4 代数闭域与代数不变量6.5 有理函数与分式域的构造第七章:范畴论与同调代数7.1 范畴的基本概念与性质7.2 范畴的构造与自然变换7.3 函子与函子范畴7.4 外代数与同调代数基础7.5 奇异同调与同调算子第八章:群表示论8.1 群表示的基本概念与性质8.2 单群与群同态8.3 群表示与欣格尔引理8.4 卷积公式与算术引理8.5 特殊群的表示与表示的构造结语:本教材通过系统而严谨的讲解,涵盖了抽象代数的核心内容,旨在培养读者对抽象代数的兴趣和学习动力,提升读者对数学的抽象思维能力和证明能力。

在学习的过程中,读者还可结合习题和实例进行巩固和应用,从而更好地掌握抽象代数的理论与方法。

希望本教材能成为读者学习抽象代数的重要参考资料,为他们在数学领域的探索和研究奠定坚实基础。

【抽象代数】02-代数与群

【抽象代数】02-代数与群

【抽象代数】02-代数与群1. 代数系统1.1 运算律 我们已经知道函数的概念,它表⽰集合间的⼀种映射关系。

多数场景⾥,像和原像往往是同⼀个集合,这⾥就讨论这样的函数。

⼀元函数f:A↦A也被称为集合A上的变换,其中双射的变换也称为置换。

⼀般如下式的多元函数,也被称为集合A上的n元运算。

集合S以及其上的⼀些运算f1,f2,⋯,f m组成的系统叫代数系统(algebraic system),在不混淆的情况下也可⽤S表⽰这个代数系统。

代数系统可以让我们抛开具体运算对象,⽽只关注于它们共有的结构和性质。

f:A×A×⋯×A↦A ⼆元运算是最常见的运算,⽐如各种对象(数、向量、多项式等)上的加减乘运算,以及变换的复合运算。

这⾥就主要研究⼆元运算下的代数系统,参照的例⼦主要是来⾃数论和置换变换。

下⾯的讨论,在思想分析上会⽐较啰嗦⼀点,但这些正是抽象代数的根基,某些证明过程和结果反⽽不那么重要。

希望你可以在学习时,经常合上书本,⾃⼰重新构建这些理论,体验抽象代数的思维。

我们先把问题简单化,研究只有⼀个⼆元运算的代数系统,那么如何研究?对于这个运算本⾝需要研究它形式上的特点,⽽对于整个代数系统还需要分析其结构特点。

我们⽤特定的符号a∘b来表⽰要研究的⼆元运算f(a,b),有时也简写为ab,并且说成是“乘法”,这个代数系统简单记为⟨S,∘⟩。

如果还有另⼀个系统⟨G,⋆⟩,它们之间有⼀⼀映射f:S↦G,并且满⾜下式,则这两个系统称为同构的(isomorphic),记作S≅G。

显然同构是个等价概念,同构的代数系统可以看作是完全⼀样的,本质上可以不加区分。

f(a∘b)=f(a)⋆f(b) 从运算的形式上看,有两种⽐较重要的性质是需要研究的,⼀个就是运算的复合,另⼀个就是变量的位置互换。

运算的复合是指变量本⾝⼜是另⼀个运算的结果,⽐如(a∘b)∘(c∘d)。

我们⼤部分研究对象的运算都满⾜下式的特点,它称为运算的结合律。

第二章--同余---第七节--简化剩余系(2)

第二章--同余---第七节--简化剩余系(2)

初 等 数 论 (16)(第二章 同余 第七节 简化剩余系(2))一、复习二、例题例2 什么样的正整数满足ϕ (2x ) = ϕ (3x )解 设x =2a 3b y ,其中ab 为非负整数,y |6/。

若b > 0,(a 、b 大于或等于0)则ϕ (2x ) =ϕ (2a +1) ϕ (3b ) ϕ (y ) =2a ×3b -1×(3-1)ϕ (y )ϕ (3x ) =ϕ (2a ) ϕ (3b +1) ϕ (y ) =2a -1×3b ×(3-1)ϕ (y )这时ϕ (2x )和ϕ (3x )不会相等。

所以在ϕ (2x ) =ϕ (3x )时,b = 0,x =2a y 。

这时,ϕ (2x ) =2a ×ϕ (y ),ϕ (3x ) =2×ϕ (2a )×ϕ (y )由ϕ (2x ) = ϕ (3x )得ϕ (2a ) =2a -1, (a > 0)故 x =2a y ,a 为正整数,y |6/。

例如 x = 215×35,则ϕ (2×215×35) =215×ϕ (35)ϕ (3×215×35) =(3 - 1)×214×ϕ (35)例3 证明:n n 41)(=ϕ不可能成立。

证明 若n n 41)(=ϕ,则n 4。

设 k p p p n αααα 21212=,其中p i 为奇质数,a ≥ 2,则k k p p p n αααα 21212241-=)1()1(2)(111211121--=----k k p p p p p n k ααααϕ,于是 )1()1)(1(22121---=k k p p p p p p上式右边为偶数,左边为奇数,矛盾。

故不存在n ,使得n n 41)(=ϕ。

例4 设m 与n 是正整数,证明:ϕ (mn )ϕ ((m ,n )) = (m ,n )ϕ (m )ϕ (n )。

近世代数(抽象代数)课件

近世代数(抽象代数)课件
例 4 设 K4 {e, a, b, c} ,我们可以利用 下表来定义 K4 上的乘法“ ”:
· eabc e eabc aaecb bb c e a c cba e

11
CHENLI
§1 代数运算
定义 1.2 设“ ”是非空集合 A 上的一个代数 运算.
意一个二元运算,并将其称为乘法.当 ab c
时, c 称为 a 与 b 的乘积;甚至还将等式 ab c
简写成 ab c .

6
CHENLI
§1 代数运算
例 1 设 R 是实数集.于是,平常的加法“”,减 法“-”和乘法“”都是 R 上的二元运算;除法“”是 R , R \{0}到 R 的代数运算,不是 R 上的二元运算.
明:在不改变元素顺序的前提下,无论怎样在其中添
加括号其中添加括号,这 n 个元素的乘积总等于
n
ai ,
i 1
从而与加括号的方式无关.

23
CHENLI
§1 代数运算
事实上,当 n 1或 n 2 时,无需加括号,我们的结论
自然成立.当 n 3时,由于“ ”适合结合律,我们的结论成

17
CHENLI
§1 代数运算
但是,当“ ”适合结合律时,我们可以定义 A 中任意有限 n ( n 3 )个元素 a1, a2 , , an 的乘积 a1a2 an .这是因为,容易证明,对于 A 中任意 n 个元素 a1, a2 , , an ,只要不改变它们的次序,运 算结果与加括号的方式无关(见习题 2).这样一 来,我们便可定义 a1, a2 , , an 的乘积 a1a2 an 就 是按任意一种方式添加括号后的算出的结果.

2
CHENLI

抽象代数Chapter2习题答案

抽象代数Chapter2习题答案
Math 5285H: Fundamental Structures of Algebra I
HW 2 Solutions, (October 5th, 2011)
All problems from Chapter 2 of Artin’s Algebra. 1.3 If map r : N → N was a right inverse for the shift map s, then the composition sr would send 1 to 1. However, the number 1 is not in the image of s so such a right inverse is impossible. For any n ∈ N, define the map ℓn by ℓn (i) = i − 1 if i ≥ 2 and ℓn (1) = n. Then the composition ℓn s is the identity on N. Thus we have exhibited an infinite number of left inverses. 2.1 Group multiplication table for S3 = {e, (12), (13), (23), (123), (132)} with first row (resp. column) corree (12) (23) (13) (123) (132) (12) e (123) (132) (23) (13) (23) (132) e (123) (13) (12) sponding to left (resp. right-) multiplication by identity e: . (13) (123) (132) e (12) (23) (123) (13) (12) (23) (132) e (132) (23) (13) (12) e (123) 2.2 Let S ′ be the subset of S consisting of invertible elements. We must show that the associative law of composition, ◦, on S restricts to a law of composition on S ′ . In other words, we need to show closure: if s1 and s2 are invertible (i.e. in S ′ ), then s1 ◦ s2 is also invertible (i.e. in S ′ ). But this is clearly true since 1 −1 ′ s− 2 ◦ s1 is the inverse of s1 ◦ s2 . This law of composition on S is associative since it is associative on S . To complete the proof that subset S ′ is a group, we need to check that identity and inverses are in S ′ , and these follow quickly. 2.4 a) Yes, GLn (R) is a subgroup of GLn (C), clearly the product of two invertible matrices with real entries is an invertible matrix with real entries (implies closure ). The identity matrix has real entries, and the inverse of a matrix with real entries also has real entries. b) Yes, {−1, 1} is a subgroup of R× . (Similar technique as in part (a).) c) No, the inverse of a positive integer (under addition) is not a positive integer. d) Yes, {positive reals} is a subgroup of R× . (Similar technique as in part (a).) e) No, matrix a 0 is not invertible. 0 0 1

《抽象代数基础》习题解答

《抽象代数基础》习题答解于延栋编盐城师范学院数学科学学院二零零九年五月第一章 群 论§1 代数运算1.设},,,{c b a e A =,A 上的乘法”“⋅的乘法表如下:证明: ”“⋅适合结合律.证明 设z y x ,,为A 中任意三个元素.为了证明”“⋅适合结合律,只需证明)()(z y x z y x ⋅⋅=⋅⋅.下面分两种情形来阐明上式成立.I.z y x ,,中至少有一个等于e .当e x =时,)()(z y x z y z y x ⋅⋅=⋅=⋅⋅;当e y =时,)()(z y x z x z y x ⋅⋅=⋅=⋅⋅;当e z =时,)()(z y x y x z y x ⋅⋅=⋅=⋅⋅.II .z y x ,,都不等于e .(I)z y x ==.这时,)()(z y x e x x z z e z y x ⋅⋅=⋅===⋅=⋅⋅.(II)z y x ,,两两不等.这时,)()(z y x x x e z z z y x ⋅⋅=⋅==⋅=⋅⋅.(III)z y x ,,中有且仅有两个相等.当y x =时,x 和z 是},,{c b a 中的两个不同元素,令u 表示},,{c b a 中其余的那个元素.于是,z z e z y x =⋅=⋅⋅)(,z u x z y x =⋅=⋅⋅)(,从而,)()(z y x z y x ⋅⋅=⋅⋅.同理可知,当z y =或x z =时,都有)()(z y x z y x ⋅⋅=⋅⋅.2.设”“⋅是集合A 上一个适合结合律的代数运算.对于A 中元素,归纳定义∏=ni ia 1为: 111a a i i =∏=,1111+=+=⋅⎪⎪⎭⎫ ⎝⎛=∏∏r r i i r i i a a a .证明:∏∏∏+==+==⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛m n k k m j j n n i i a a a 111.进而证明:在不改变元素顺序的前提下,A 中元素的乘积与所加括号无关.证明 当1=m 时,根据定义,对于任意的正整数n ,等式成立.假设当r m =(1≥r )时,对于任意的正整数n ,等式成立.当1+=r m 时,由于”“⋅适合结合律,我们有⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛∏∏=+=m j j n n i i a a 11⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=∏∏+=+=111r j j n n i i a a ⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=++=+=∏∏111r n r j j n n i i a a a 111++=+=⋅⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=∏∏r n r j j n n i i a a a ∏∏∏+=++=+++===⋅⎪⎪⎭⎫ ⎝⎛=m n k k r n k k r n r n i i a a a a 11111.所以,对于任意的正整数n 和m ,等式成立.考察A 中任意n (1≥n )个元素n a a a ,,,21 :当3≥n 时,要使记号n a a a ⋅⋅⋅ 21变成有意义的记号,必需在其中添加一些括号规定运算次序.现在我们来阐明:在不改变元素顺序的前提下,无论怎样在其中添加括号,运算结果总是等于∏=ni i a 1.事实上,当1=n 或2=n 时,无需加括号,我们的结论自然成立.当3=n 时,由于”“⋅适合结合律,我们的结论成立.假设当r n ≤(1≥r )时我们的结论成立.考察1+=r n 的情形:不妨设最后一次运算是b a ⋅,其中a 为n a a a ,,,21 中前s (n s <≤1)个元素的运算结果,b 为n a a a ,,,21 中后s n -个元素的运算结果.于是,根据归纳假设,∏==s j j a a 1, ∏-=+=sn k k s a b 1.所以最终的运算结果为∏∏∏=-=+==⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=⋅n i i s n k k s s j j a a a b a 111. 3.设Q 是有理数集.对于任意的Q ,∈b a ,令2b a b a +=⋅,证明: ”“⋅是Q 上的一个代数运算,它既不适合结合律也不适合交换律.证明 众所周知,对于任意的Q ,∈b a ,Q 2∈+=⋅b a b a .所以”“⋅是Q 上的一个代数运算.令0=a ,1=b ,2=c .由于521212)10()(2=+=⋅=⋅⋅=⋅⋅c b a ,255050)21(0)(2=+=⋅=⋅⋅=⋅⋅c b a ,从而,)()(c b a c b a ⋅⋅≠⋅⋅,所以”“⋅不适合结合律.由于521212=+=⋅=⋅c b ,312122=+=⋅=⋅b c ,.从而,b c c b ⋅≠⋅.所以”“⋅不适合交换律.§2 群的概念1.证明:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=Z d c b a d c b a G ,,, 关于矩阵的加法构成一个群. 证明 首先,众所周知,∅≠G ,G B A ∈+,G B A ∈∀,.由于矩阵的加法适合结合律,G 上的加法适合结合律.其次,令⎪⎪⎭⎫ ⎝⎛=0000O ,则G O ∈,并且A O A A O =+=+,G A ∈∀.最后,对于任意的G d c b a A ∈⎪⎪⎭⎫ ⎝⎛=,令⎪⎪⎭⎫ ⎝⎛----=-d c b a A ,则G A ∈-且O A A A A -+-=-+)()(.所以G 关于矩阵的加法构成一个群.2.令⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=1001,1001,1001,1001G ,证明:G 关于矩阵的乘法构成一个群. 证明 将⎪⎪⎭⎫ ⎝⎛1001记作E ,并将G 中其余三个矩阵分别记作C B A ,,.于是,G 上的乘法表如下:由于矩阵的乘法适合结合律,G 上的乘法适合结合律.从乘法表可知,X XE EX ==,E XX =,G Y X ∈∀,.所以G 关于矩阵的乘法构成一个群.3.在整数集Z 中,令2-+=⋅b a b a ,Z ∈∀b a ,.证明:Z 关于这样的乘法构成一个群.证明 对于任意的Z ∈c b a ,,,我们有42)2()2()(-++=-+-+=⋅-+=⋅⋅c b a c b a c b a c b a ,42)2()2()(-++=--++=-+⋅=⋅⋅c b a c b a c b a c b a ,从而)()(c b a c b a ⋅⋅=⋅⋅.这就是说,该乘法适合结合律.其次,Z ∈2,并且对于任意的Z ∈a ,我们有222222⋅=-+==-+=⋅a a a a a ,a a a a a a a a ⋅-=-+-=--+=-⋅)4(2)4(2)4()4(.所以Z 关于该乘法构成一个群.4.写出3S 的乘法表.解 )}231(),321(),32(),31(),21(),1{(3=S ,3S 的乘法表如下:5.设),(⋅G 是一个群,证明: ”“⋅适合消去律.证明 设G c b a ∈,,.若c a b a ⋅=⋅,则c c e c a a c a a b a a b a a b e b =⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅=----)()()()(1111.同理,若a c a b ⋅=⋅,则c b =.这就表明,”“⋅适合消去律.6.在5S 中,令⎪⎪⎭⎫ ⎝⎛=4513254321f ,⎪⎪⎭⎫ ⎝⎛=2543154321g . 求gf fg ,和1-f .解 我们有⎪⎪⎭⎫ ⎝⎛=3451254321fg ,⎪⎪⎭⎫ ⎝⎛=5214354321gf ,⎪⎪⎭⎫ ⎝⎛=-45213543211f . 7.设)(21k i i i a =,求1-a .解 我们有)(11i i i a k k -=.8.设f 是任意一个置换,证明:))()()(()(21121k k i f i f i f f i i i f =⋅⋅-. 证明 事实上,易见,)(,),(),(21k i f i f i f 是},,2,1{n 中的k 个不同的数字.由直接计算可知,11),())()()((1121-≤≤=⋅⋅+-k j i f i f f i i i f j j k ;)())()()((1121i f i f f i i i f k k =⋅⋅- .其次,对于任意的)}(,),(),({\},,2,1{21k i f i f i f n i ∈,i 在121)(-⋅⋅f i i i f k 之下的像是i 本身.所以))()()(()(21121k k i f i f i f f i i i f =⋅⋅-.9.设S 是一个非空集合,”“⋅是S 上的一个代数运算,若”“⋅适合结合律,则称),(⋅S 是一个半群(或者称S 关于”“⋅构成一个半群).证明:整数集Z 关于乘法构成一个半群,但不构成一个群.证明 众所周知,Z 是非空集合,对于任意的Z ,∈b a ,总有Z ∈⋅b a ,并且整数乘法适合结合律,所以Z 关于乘法构成一个半群.其次,令1=e .于是,对于任意的Z ∈a ,总有a e a a e =⋅=⋅.但是,Z 0∈,并且不存在Z ∈b ,使得e b =⋅0.所以Z 关于乘法不构成一个群.10.设A 是一个非空集合,S 是由A 的所有子集构成的集合.则集合的并”“ 是S 上的一个代数运算.证明:),( S 是一个半群.证明 众所周知,对于任意的S Z Y X ∈,,,总有)()(Z Y X Z Y X =.这就是说,S 上的代数运算”“ 适合结合律,所以),( S 是一个半群.注 请同学们考虑如下问题:设A 是一个非空集合,S 是由A 的所有子集构成的集合.定义S 上的代数运算”“∆ (称为对称差)如下:)\()\(X Y Y X Y X =∆,S Y X ∈∀,.求证:),(∆S 是一个交换群.11.令⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=Z ,,,d c b a d c b a S .证明S 关于矩阵的乘法构成一个半群. 证明 众所周知,对于任意的S C B A ∈,,,总有S AB ∈,)()(BC A C AB =.这就是说,矩阵的乘法是S 上的一个代数运算,并且适合结合律,所以S 关于矩阵的乘法构成一个半群.12.设),(⋅S 是一个半群,S e ∈称为S 的一个左(右)单位元,如果对于任意的S a ∈都有a a e =⋅(a e a =⋅).对于S a ∈,如果存在S b ∈使e a b =⋅(e b a =⋅),则称a 左(右)可逆的,b 是a 的一个左(右)逆元.假设S 有左(右)单位元e 且S 中每个元素都有关于e 的左(右)逆元.证明:),(⋅S 是一个群.证明 设a 是S 中任意一个元素.任取S b ∈,使得e b a =⋅.再任取S c ∈,使得e c b =⋅.于是,我们有c e c b a c b a e a a ⋅=⋅⋅=⋅⋅=⋅=)()(且e c b c e b c e b a b =⋅=⋅⋅=⋅⋅=⋅)()(.因此a b e b a ⋅==⋅.所以e a a b a a b a a e ⋅=⋅⋅=⋅⋅=⋅)()(.由以上两式可知,e 是单位元,S 中每个元素a 都有逆元b .所以),(⋅S 是一个群. 对于S 有左单位元e 且S 中每个元素都有关于e 的左逆元的情形,请同学们自己证明.13.设G 是一个群,证明:111)(---=a b ab ,G b a ∈∀,.证明 对于任意的G b a ∈,,我们有e aa aea a bb a a b ab ====------111111)())((,e b b eb b b a a b ab a b ====------111111)())((.所以111)(---=a b ab ,G b a ∈∀,.16.设G 是一个群,证明:G 是交换群的充要条件是222)(b a ab =,G b a ∈∀,.证明 必要性是显然的.现在假设G 满足该条件.于是,对于任意的G b a ∈,,我们有222)(b a ab =,即aabb abab =.运用消去律(第5题)立即可得ba ab =.所以G 是交换群.17.设G 是一个群.假设对于任意的G a ∈都有e a =2,证明:G 是交换群. 证明 我们有222)(b a ee e ab ===,G b a ∈∀,.由上题知,G 是交换群.18.设G 是非空集合,”“⋅是G 上的一个代数运算且适合结合律.(1)证明:),(⋅G 是一个群当且仅当对于任意的G b a ∈,,方程b x a =⋅和b a y =⋅在G 中都有解.(2)假设G 是有限集,证明:),(⋅G 是一个群当且仅当”“⋅适合消去律.证明 (1)当),(⋅G 是一个群时,显然,对于任意的G b a ∈,,b a x ⋅=-1是方程b x a =⋅的解,1-⋅=a b y 是方程b a y =⋅的解.现在假设对于任意的G b a ∈,,方程b x a =⋅,b a y =⋅在G 中都有解.任取G a ∈,考察方程a x a =⋅.根据假设,方程a x a =⋅有解G e x ∈=.设b 是G 中任意一个元素,考察方程b a y =⋅.根据假设,方程b a y =⋅有解G c y ∈=.于是,我们有b ac e a c e a c e b =⋅=⋅⋅=⋅⋅=⋅)()(.由于G b ∈的任意性,上式表明e 是半群),(⋅G 的一个右单位元.再考察方程e x a =⋅.根据假设,方程e x a =⋅有解G d ∈.由于G a ∈的任意性,这表明G 中每个元素关于右单位元e 都有右逆元.所以),(⋅G 是一个群.(2)当),(⋅G 是一个群时,根据第5题,”“⋅适合消去律.现在假设},,,{21n a a a G =,并且”“⋅适合消去律.任取},,2,1{,n k i ∈,考察方程k i a x a =⋅.由于”“⋅适合左消去律,因此k a 必出现于乘法表的第i 行中.这就意味着存在},,2,1{n j ∈,使得k j i a a a =⋅,从而方程k i a x a =⋅在G 中有解.同理,由于”“⋅适合右消去律,方程k i a a y =⋅在G 中有解.这样一来,根据(1),),(⋅G 是一个群.19.证明命题2.8中的表示法在不计循环置换的顺序的意义下是唯一的.注注 宜将这道题表述成“证明:在不计循环置换的顺序的意义下,在用命题2.8中的证明中所说的方法将一个置换n S f ∈表示成两两不相交的循环置换的乘积时,表达式是唯一的”.证明 显然,当f 是单位置换时,表达式就是f f =.不妨设f 不是单位置换,u f f f f 21=和v g g g f 21=都是在用命题2.8中的证明中所说的方法将置换n S f ∈表示成两两不相交的循环置换的乘积的表达式.于是,u f f f ,,,21 两两不相交,v g g g ,,,21 两两不相交,而且它们的阶都大于或等于2.考察任意的l f (u l ≤≤1):设)(21s l i i i f =.由u f f f f 21=和v g g g f 21=可知,存在'l (v l ≤≤'1),使得)(21't l j j j g =,},,,{211t j j j i ∈.不妨设11j i =.由u f f f f 21=和v g g g f 21=可知,t s =并且k k j i =,},,2,1{s k ∈∀,从而,'l l g f =.由于u f f f ,,,21 两两不相交,v g g g ,,,21 两两不相交,并且不计循环置换的顺序,不妨设l l g f =,},,2,1{u l ∈∀.假设v u <,则u g g g f 21=,由此可见,当v l u ≤<时,l g 必与u g g g ,,,21 v u =.这就表明,v g g g f 21=和v g g g f 21=是同一个表达式.§3 子 群1.设)(P n GL G =是数域P 上的n 级一般线性群,H 是G 的由全体n 阶可逆的对角矩阵组成的子集,证明:H 是G 的子群.证明 众所周知,H 非空,并且有H A AB ∈-1,,H B A ∈∀,,其中AB 表示矩阵A 与矩阵B 的乘积,1-A 表示矩阵A 的逆矩阵.所以H 是G 的子群.2.设G 是一个群,H 是G 的非空子集,证明:H 是G 的子群的充分必要条件是H ab ∈-1,H b a ∈∀,.证明 由定理3.3可知,当H 是G 的子群时,H 满足条件. 假设H 满足条件.对于任意的H b a ∈,,我们有H aa e ∈=-1.因为H 满足条件,由H b a e ∈,,可知,H ea a ∈=--11,H eb b ∈=--11.因为H 满足条件,由H b a ∈-1,可知11)(--=b a ab .总而言之 对于任意的H b a ∈,,我们有H a ab ∈-1,.根据定理3.3,H 是G 的子群.3.设H 是群G 的子群,G a ∈,证明:}|{11H h aha aHa ∈=--也是G 的子群(称为H 的一个共轭子群).证明 显然,1-aHa 是G 的非空子集.设121,-∈aHa b b .于是,存在H h h ∈21,,使得111-=a ah b ,121-=a ah b .因此11211121))((----=a ah a ah b b1112111211)(------∈==aHa a h h a a ah a ah . 所以1-aHa 是G 的子群.4.设G 是交换群,0>n 为整数,令}|{e a G a H n =∈=,证明:H 是G 的子群. 证明 显然H e ∈.若H b a ∈,,则e ee b a ab n n n ===--11)()(,从而,H ab ∈-1.由此可见,H 是G 的子群.5.设G 是交换群,证明:G 的所有阶为有限的元素构成的集合是G 的子群. 证明 令H 表示G 的所有阶为有限的元素构成的集合.显然H e ∈.设H b a ∈,,其中m a =||,n b =||.于是,e ee b a ab m n n m mn ===--)()()(1,从而,H ab ∈-1.由此可见,H 是G 的子群.6.设G 是群,G b a ∈,,证明:a 与1-bab 具有相同的阶.证明 显然,对于任意的正整数n ,11)(--=b ba bab n n ,从而,e bab e b ba e a n n n =⇔=⇔=--)(11.由此可见,a 与1-bab 具有相同的阶.7.设)(21k i i i a =是循环置换,求a 的阶.解 当1=k 时,显然,)1(=a ,k a =||.当1>k 时,我们有11(+=j i i i a )1()1≠-j i ,}1,,2,1{-∈∀k j ,)1(=k a ,从而,k a =||.8.设群G 的除单位元外的每个元素的阶都为2,证明:G 是交换群. 证明 参看§2习题第17题.9.设G 是群,G b a ∈,,证明:ab 与ba 具有相同的阶. 证明 注意到111))((---=a ab a ba ,根据第6题的结论,ab 与ba 具有相同的阶.10.设G 是群,G b a ∈,,ba ab =.假设a 的阶与b 的阶互素,证明:||||||b a ab =.证明 令m a =||,n b =||,k ab =||.由于e e e b a ab m n m n n m mn ===)()()(,根据命题3.12可以断言mn k |.其次,我们有kn kn k n kn kn kn kn a e a b a b a ab e =====)()(,从而,根据命题 3.12,kn m |.因为m 与n 互素,由kn m |可知k m |.同理可知,k n |.由于m 与n 互素,因此k mn |.所以mn k =,即||||||b a ab =.11.设Z 是整数集关于加法构成的群,H 是Z 的子群,证明:存在H n ∈使〉〈=n H .证明 众所周知,H ∈0.当}0{=H 时,显然〉〈=0H .现在假设}0{≠H .于是,存在H m ∈使0≠m .这时H m ∈-,并且,在m 和m -中,一个是正数,另一个是负数.令n 表示H 中的最小正数.显然,我们有H qn ∈,Z ∈∀q .现在考察任意的H m ∈:众所周知,存在整数q 和r ,使得r qn m +=,n r <≤0.于是,H qn m r ∈-=.由于令n 是H 中的最小正数,必有0=r ,从而,qn m =.上述表明}|{Z ∈=q qn H .所以〉〈=n H .12.设G 是一个群,1H ,2H 都是G 的子群.假设1H 不包含于2H 且2H 不包含于1H ,证明:21H H 不是G 的子群.证明 由于1H 不包含于2H 且2H 不包含于1H ,是G 的子群,因此存在21\H H a ∈且存在12\H H b ∈.于是,21,H H b a ∈.假设1H ab ∈,则11)(H ab a b ∈=-,矛盾.因此1H ab ∉.同理,2H ab ∉.这样一来,21H H ab ∉.所以21H H 不是G 的子群.13.设G 是一个群, ⊆⊆⊆⊆n G G G 21是G 的一个子群链,证明:nn G ∞=1 是G 的子群.证明 设n n G b a ∞=∈1, .于是,存在正整数i 和j 使得i G a ∈,j G b ∈.令},max{j i k =.k G b a ∈,.由于k G 是G 的子群,因此k G ab ∈-1,从而,n n G ab ∞=-∈11 .所以n n G ∞=1 是G 的子群.14.证明:)}1()31(),12{(n (2≥n )是n S 的一个生成集.证明 考察任意的对换n S j i ∈)(:若1=i 或1=j ,则)}1()31(),12{()(n j i ∈.若1≠i 且1≠j ,则)1()1()1()(i j i j i =.这就是说,对于每一个对换n S j i ∈)(,要么它本身属于)}1()31(),12{(n ,要么它可以表示成)}1()31(),12{(n 中的一些对换的乘积.这样一来,根据推论2.10可以断言,每一个n S f ∈可以表示成)}1()31(),12{(n 中的一些对换的乘积.由此可见,〉〈⊆)1()31(),12(n S n ,从而,〉〈=)1()31(),12(n S n .§4 循环群1.证明:循环群是交换群.证明 设〉〈=a G 是一个循环群.于是,}|{Z ∈=n a G n (参看课本第12页倒数第4行).众所周知,m n n m n m a a a a a ==+,Z ∈∀n m ,.所以G 是交换群.2.设G 是一个群,G a ∈.假设a 的阶为n ,证明:对任意整数r ,有),(||n r n a r =. 证明 令〉〈=a H .由于n a =||,根据命题3.10,H ),(||n r n a r =. 3.设〉〈=a G 是一个n 阶循环群,r 是任意整数,证明:r a 与),(n r a 具有相同的阶且〉〈=〉〈),(n r r a a .证明 根据命题4.2,我们有||),()),,((||),(r n r a n r n n n r n a ===. 根据命题 3.10,〉〈r a 和〉〈),(n r a 都是G 的),(n r n 阶子群.显然,),(n r r a a 〈∈,从而,〉〈⊆〉〈),(n r r a a .由此可见,〉〈=〉〈),(n r r a a .4.设〉〈=a G 是一个n 阶循环群,证明:G a r =〉〈当且仅当1),(=n r .证明 根据命题4.2,我们有G a r =〉〈n a r =⇔||n n r n =⇔),(1),(=⇔n r . 5.设〉〈=a G 是循环群,〉〈=s a H 和〉〈=t a K 是G 的两个子群,证明:〉〈=],[t s a K H .证明 显然K H a t s ∈],[,从而,K H a t s ⊆〉〈],[. 为了证明〉〈=],[t s a K H ,现在只需证明〉〈⊆],[t s a K H .考察任意的K H x ∈:当x 为G 的单位元e 时,显然〉〈∈],[t s a x .不妨假定e x ≠.于是,由H x ∈知,存在Z ∈i ,使得is a x =;由K x ∈知,存在Z ∈j ,使得jt a x =.因为e x ≠,所以0≠st .众所周知,1)),(,),((=t s t t s s , 从而,存在Z ,∈v u ,使得1),(),(=+t s vt t s us . 于是,我们有),(),(),(),(),(),()()(t s vtis t s usjt t s vtt s ust s vt t s us a a x x x x ===+〉〈∈==+],[],)[(],[],[t s t s iv ju n t s niv t s nju a a a a ,其中,当0≥st 时1=n ,当0<st 时1-=n .综上所述,对于任意的K H x ∈,总有〉〈∈],[t s a x .所以〉〈⊆],[t s a K H .6.设〉〈=a G 是n 阶循环群,〉〈=s a H 和〉〈=t a K 是G 的两个子群,证明:K H =的充要条件是),(),(n t n s =.证明 假设K H =.根据命题4.2,我们有),(||||),(n t n a a n s n t s ===, 从而,),(),(n t n s =.假设),(),(n t n s =.于是,),(),(n t n s a a =,从而,〉〈=〉〈),(),(n t n s a a .这样根据第3题的结论可以断言,〉〈=〉〈t s a a ,即K H =.7.设G 是无限循环群,证明:G 有且仅有两个生成元.证明 由于G 是无限循环群,不妨设a 是G 的一个生成元.于是,1-a 也是G 的一个生成元,并且a a ≠-1.这就是说,G 有两个不同的生成元.其次,假设b 是G 的任意一个生成元.由于〉〈=a G ,因此存在Z ∈n ,使得n a b =.由于〉〈=b G 且G a ∈,因此存在Z ∈k ,使得nk k a b a ==.由此可见,1±=n ,即a b =或1-=a b .所以G 有且仅有两个生成元.8.设〉〈=a G 是无限循环群,〉〈=s a H 和〉〈=t a K 是G 的两个子群,证明:K H =的充要条件是t s ±=.证明 当t s ±=时,显然K H =.假设K H =.显然,当}{e H =时,0==t s ,从而,t s ±=.不妨假定}{e H ≠.于是0≠s .由K a s ∈可知,存在Z ∈i ,使得it s =;由H a t ∈可知,存在Z ∈j ,使得js t =.因此ijs s =.由于0≠s ,由ijs s =可知1=ij ,从而,1±=i .所以t s ±=.§5 正规子群与商群1.证明:循环群的商群也是循环群.证明 设〉〈=a G 是循环群,H 是G 的子群.于是,我们有〉〈=∈=∈=aH n aH n H a H G n n }Z |){(}Z |{/.这就表明,H G /是循环群.2.设G 是群,i N ,I i ∈,是G 的一族正规子群,证明:i I i N ∈ 也是G 的正规子群.证明 众所周知,i I i N ∈ 是G 的正规子群.显然,我们有a N a N aN N a i I i i I i i I i i I i )()()()(∈∈∈∈=== ,G a ∈∀.所以i I i N ∈ 也是G 的正规子群.3.设1N ,2N 是群G 的正规子群且}{21e N N = ,证明:对于任意的1N a ∈,2N b ∈,都有ba ab =.证明 对于任意的1N a ∈,2N b ∈,由于1N 是群G 的正规子群,根据命题5.11我们有111N b ba ∈--,从而,111N b aba ∈--;由于2N 是群G 的正规子群,根据命题5.11我们有21N aba ∈-,从而,211N b aba ∈-=.因此2111N N b aba ∈--,从而,e b aba =--11.由此可见ba ab =.4.设H 是群G 的子群且2]:[=H G ,证明:H 是G 的正规子群.证明 我们已经知道,H Ha H a H aH =⇔∈⇔=,G a ∈∀.任意给定G a ∈.当H a ∈时,Ha H aH ==.当H a ∉时,Ha H aH H =∅=,并且,由2]:[=H G 可知,aH H G aH H ==.由此可见Ha aH =.所以H 是G 的正规子群.5.设H 是群G 的有限子群,n H =||.假设G 只有一个阶为n 的子群,证明:H 是G 的正规子群.证明 任取G a ∈,考察1-aHa :由§3习题第3题知,1-aHa 是G 的子群.定义H 到1-aHa 的映射ϕ如下:1)(-=axa x ϕ,H x ∈∀.显然ϕ是双射.因此n aHa =-||1.由于G 只有一个阶为n 的子群,因此H aHa =-1.这样一来,由于a 的任意性,根据命题5.11可以断言,H 是G 的正规子群.6.设G 是群,H 和K 是G 的子群,(1)证明:HK 是G 的子群KH HK =⇔.(2)假设H 是G 的正规子群,证明:HK 是G 的子群.(3)假设H 和K 都是G 的正规子群,证明:HK 是G 的正规子群.证明 (1)假设HK 是G 的子群.于是,对于任意的G a ∈,我们有HK a ∈HK a ∈⇔-1⇔存在H h ∈和K k ∈,使得hk a =-1⇔存在H h ∈和K k ∈,11--=h k aKH a ∈⇔.所以KH HK =.假设KH HK =.为了证明HK 是G 的子群,任意给定HK b a ∈,.于是,存在H h h ∈21,和K k k ∈21,,使得11k h a =,22k h b =.因此121211122111))(())((----==h k k h k h k h ab .由于KH HK k k h =∈-)(1211,因此存在H h ∈3和K k ∈3,使得331211)(h k k k h =-,从而, HK KH h h k h h k h k k h ab =∈===-=---)()())((123312331212111.这样一来,由于HK b a ∈,的任意性,我们断言:HK 是G 的子群.(2)由于H 是G 的正规子群,我们有KH kH Hk HK K k K k ===∈∈ . 这样,根据(1),HK 是G 的子群.(3)根据(2),HK 是G 的子群.此外,还有a HK Ka H aK H K Ha K aH HK a )()()()()()(=====,G a ∈∀.所以HK 是G 的正规子群.7.设G 是群,H 和K 是G 的子群且H K ⊆,证明:]:][:[]:[K H H G K G =. 注 证明这道题时还要用到如下约定:∞=∞⋅∞=⋅∞=∞⋅n n ,N ∈∀n .此外,这道题与§7中的Lagrange 定理类似,而且其证明难度不亚于Lagrange 定理的证明难度,因此安排在这里不太合适.证明 首先,由于K 是H 的子群,因此G a aH aK ∈∀⊆,.由此可见,当∞=]:[H G 时,∞=]:[K G ,从而,]:][:[]:[K H H G K G =.其次,由于}|{}|{G a aK H h hK ∈⊆∈,因此当∞=]:[K H 时,∞=]:[K G ,从而]:][:[]:[K H H G K G =.现在假设∞<]:[H G 且∞<]:[K H .令m H G =]:[,n K H =]:[.由m H G =]:[知,存在G a a a m ∈,,,21 ,使得H a G r mr 1== ,其中诸H a r 两两不相交.由n K H =]:[知,存在H b b b n ∈,,,21 ,使得K b H s ns 1== ,其中诸K b s 两两不相交.这样一来,我们有K b a K b a G s r n s m r s n s r m r )()(1111====== .)(*现在我们来阐明上式中的诸K b a s r )(两两不相交.为此,设},,2,1{',m r r ∈,},,2,1{',n s s ∈,我们来比较K b a s r )(与K b a s r )(''.当'r r ≠时,由于H K b s ⊆,H K b s ⊆',因此∅=⊆H a H a K b a K b a r r s r s r ''')()( ,从而,∅=K b a K b a s r s r )()('' ,即K b a s r )(与K b a s r )(''不相交.当'r r =且's s ≠时,∅=K b K b s s ' ,从而,K b a K b a K b a K b a s r s r s r s r )()()()(''''' =∅=∅==''')(r s s r a K b K b a ,即K b a s r )('与K b a s r )(''不相交.所以)(*式中的诸K b a s r )(两两不相交.这样一来,根据)(*式可以断言,mn K G =]:[,即]:][:[]:[K H H G K G =.8.设H 是群G 的子群,假设H 的任意两个左陪集的乘积仍是一个左陪集,证明:H 是G 的正规子群.证明 任取G a ∈.由于H 是H 的左陪集,因此存在H 的左陪集bH ,使得bH aH H H Ha ==)()(,由此可见,bH Ha ⊆,bH a ∈,从而bH aH =.所以aH Ha ⊆.由于a 的任意性,根据上式我们又可以断言,H a Ha 11--⊆.将上式两边左乘a ,右乘a ,得Ha aH ⊆.所以Ha aH =.由于a 的任意性,这就意味着H 是G 的正规子群.§6 群的同构与同态1.设f 是群1G 到群2G 的同构,g 是群2G 到群3G 的同构,证明:1-f 是群2G 到群1G 的同构;gf 是群1G 到群3G 的同构.证明 众所周知,1-f 是2G 到1G 的双射.其次,又因f 保持乘法运算,故对于任意的2','G b a ∈总有''))'())'(())'()'((11b a b f f a f f b f a f f ==----,从而,)'()'()''(111b f a f b a f ---=.所以1-f 是群2G 到群1G 的同构.众所周知,gf 是1G 到3G 的双射.又因f 和g 都保持乘法运算,故对于任意的1,G b a ∈总有))()()(())(())(())()(())(())((b gf a gf b f g a f g b f a f g ab f g ab gf ====. 所以gf 是群1G 到群3G 的同构.2.设H 是群G 的子群,1-aHa 是H 的共轭子群,证明:1-aHa 与H 同构. 证明 定义H 到1-aHa 的映射f 如下:1)(-=axa x f ,H x ∈∀.直接从f 的定义可以明白,f 是满射.利用消去律容易推知,f 是单射.因此f 是双射.其次,对于任意的H y x ∈,总有)()())(()()(111y f x f aya axa a xy a xy f ===---.所以f 是群H 到群1-aHa 的同构,从而,H aHa ≅-1.3.设f 是群G 到群'G 的同构,证明:对于任意的G a ∈,|)(|||a f a =.举例说明,若f 是群G 到群'G 的同态,则a 的阶与)(a f 的阶不一定相同.证明 将群G 和群'G 的单位元分别记做e 和'e .注意到根据命题6.5,我们可以断言:对于任意的正整数n ,我们有')(')(e a f e a f e a n n n =⇔=⇔=.由此可见,|)(|||a f a =.假设2||≥G ,}{'e G =,其中e 为G 的单位元,f 为G 到'G 的映射.则f 是G 到'G 的同态.任取G a ∈,使得e a ≠,则0||>a ,1|||)(|==e a f ,从而,|)(|||a f a ≠.4.分别建立HN 到)/(N H H 和G 到)//()/(N H N G 的同态来证明定理6.11.注 定理6.11的内容如下:设G 是一个群,N 是G 的正规子群.(1)若H 是G 的子群,则N HN N H H /)()/(≅ ;(2)若H 是G 的正规子群且N H ⊇,则H G N H N G /)//()/(≅. 证明 (1)设H 是G 的子群.显然,N H 是H 的正规子群;N 是HN 的正规子群.考察任意的HN a ∈:假设332211h n n h n h a ===,其中,H h h ∈21,,N n n ∈21,.则11221-=n n h h ,从而,N H n n h h ∈=--121211.因此)()(21N G h N H h =. 这样一来,我们可以定义HN 到)/(N H H 的映射f 如下:对于任意的HN a ∈,)()(N H h a f =,若hn a =,其中H h ∈,N n ∈.由HN H ⊆可知,f 是满射.任意给定HN b a ∈,.不妨设11n h a =,22n h b =.由于HN 是G 的子群,因此HN ab ∈,从而,存在H h ∈3和N n ∈3,使得332211n h n h n h ab ==.因此)()(3N H h ab f =.另一方面,我们有)())())((()()(2121N H h h N H h N H h b f a f ==.注意到N 是G 的正规子群和命题5.11,易知N H h n h n n h h h h h ∈=-----111112123211321)))((()(,从而,)()(321N H h N H h h =,即)()()(b f a f ab f =.所以f 是HN 到)/(N H H 的满同态.最后,对于任意hn a =(H h ∈,N n ∈),我们有N a N h N H h N H N H h f a ∈⇔∈⇔∈⇔=⇔∈ )()(Ker . 因此N f =)(Ker .这样一来,根据群的同态基本定理,N HN N H H /)()/(≅ .(2)设H 是G 的正规子群且N H ⊇.显然,N H /是N G /的正规子群.定义G 到)//()/(N H N G 的映射f 如下:)/)(()(N H aN a f =,G a ∈∀.显而易见,f 是满射.由于N H /是N G /的正规子群,因此对于任意的G b a ∈,,总有)/)(/)()(()/)(()(N H N H bN aN N H abN ab f ==)()()/)()(/)((b f a f N H bN N H aN ==.因此f 是G 到)//()/(N H N G 的满同态.其次,对于任意的G a ∈,我们有N H aN N H N H aN f a //)/)(()(Ker ∈⇔=⇔∈hN aN H h =∈⇔使得存在,H a ∈⇔.因此H f =)(Ker .这样一来,根据群的同态基本定理,H G N H N G /)//()/(≅.5.设G 是群,1G ,2G 是G 的有限子群,证明:||||||||212121G G G G G G =. 注 与§5习题中第8题类似,这道题也宜安排在§7习题中. 证明 令21G G H =.于是,H 既是1G 的子群,又是2G 的子群.设m H G =]:[1.则有)(11H c G j mj == ,(*)其中1G c j ∈,m j ≤≤1.显然,诸H c j 两两不相交;有且仅有一个},,2,1{m j ∈,使得H c j ∈;并且||||211G G G m =. 由于2G H ⊆,因此22G HG =.这样,由(*)式可以推得)())(())((21212121G c HG c G H c G G j m j j m j j mj ====== .(**)对于任意的},,2,1{,m j i ∈,考察2G c i 与2G c j :若22G c G c j i =,则21G c c i j ∈-,从而,H G G c c i j =∈-211 .由此可得,H c H c j i =,从而,j i =.这就表明,诸2G c j 两两不相交. 这样一来,由(**)式可以知,||||||||||2121221G G G G G m G G =⋅=. 6.设G 是群,证明:G G →1-a a是群G 到群G 的同构的充分必要条件是G 为交换群.如果G 是交换群,证明:对于任意的Z ∈k ,G G →k a a是一个同态.证明 将G 到自身的映射G G →1-a a记做f .显然f 是双射.于是,f 是群G 到群G 的同构)()()(b f a f ab f =⇔,G b a ∈∀,,即111)(---=b a ab ,G b a ∈∀, 11)()(--=⇔ba ab ,G b a ∈∀,ba ab =⇔,G b a ∈∀,是交换群G ⇔.假设G 是交换群,Z ∈k .将G 到自身的映射G G →k a a记做g .于是,我们有)()()()(b g a g b a ab ab g k k k ===,G b a ∈∀,.所以g 是一个同态.7.设f 是群G 到群'G 的满同态,'H 是'G 的正规子群,证明:'/')'(/1H G H f G ≅-.证明 由于'H 是'G 的正规子群,根据定理6.7,)'(1H f -是G 的正规子群.现在定义G 到'/'H G 的映射g 如下:')()(H a f a g =.由f 是群G 到群'G 的满同态可知g 是G 到'/'H G 的满射.其次,注意到'H 是'G 的正规子群,对于任意的G b a ∈,,有)()()')()(')(('')()(')()(b g a g H b f H a f H H b f a f H ab f ab g ====. 所以g 是G 到'/'H G 的满同态.最后,对于任意的G a ∈,我们有)'(')('')()(Ker 1H f a H a f H H a f g a -∈⇔∈⇔=⇔∈.因此)'()(Ker 1H f g -=.这样一来,根据群的同态基本定理,'/')'(/1H G H f G ≅-.8.设G 是群,1G ,2G 是G 的正规子群.假设21G G G =且}{21e G G = (此时称G 是1G 和2G 的内直积),证明:21G G G ⨯≅.证明 定义21G G ⨯到G 的映射f 如下:ab b a f =)),((,21),(G G b a ⨯∈∀.由21G G G =可知,f 是满射.现在设212211),(),,(G G b a b a ⨯∈,并且)),(()),((2211b a f b a f =.于是,2211b a b a =,从而,11112112G G b b a a ∈=--,从而,e b b a a ==--112112.这意味着21a a =且21b b =,即),(),(2211b a b a =.由此可见,f 是单射,从而,f 是双射. 对于任意的212211),(),,(G G b a b a ⨯∈,我们有))(()),(()),)(,((212121212211b b a a b b a a f b a b a f ==,))(()),(()),((22112211b a b a b a f b a f =.由于1G ,2G 是G 的正规子群且}{21e G G = ,由§5习题第3题可知,))(())((22112121b a b a b b a a =.因此)),(()),(()),)(,((22112211b a f b a f b a b a f =,从而,f 是群21G G ⨯到群G 的同构.所以21G G G ⨯≅.9.设1G ,2G 是群,证明:1221G G G G ⨯≅⨯.证明 定义21G G ⨯到12G G ⨯的映射f 如下:),()),((a b b a f =,21),(G G b a ⨯∈∀.显然,f 是双射.其次,对于任意的212211),(),,(G G b a b a ⨯∈,我们有),()),(()),)(,((212121212211a a b b b b a a f b a b a f ==,)),(()),((),)(,(),(221122112121b a f b a f a b a b a a b b ===.所以f 是群21G G ⨯到群12G G ⨯的同构,从而,1221G G G G ⨯≅⨯.10.设q p ,是不同的素数,证明:q p pq Z Z Z ⊕≅.证明 对于任意的Z ∈i 和任意的N ∈n ,将以i 为代表元的模n 同余类记做n i ][.于是,对于任意的Z ∈j i ,,注意到q p ,是不同的素数,我们有q q p p pq pq j i j i j i q j i p j i pq j i ][][][][)(|)(|)(|][][==⇔--⇔-⇔=且且. 这样一来,我们可以定义pq Z 到q p Z Z ⊕的映射f 如下:)][,]([)]([q p pq i i i f =,pq pq i Z ∈∀][.考察映射f :设pq pq pq j i Z ∈][,][且)]([)]([pq pq j f i f =.则)][,]([)][,]([q p q p j j i i =,即p p j i ][][=且q q j i ][][=,从而,pq pq j i ][][=.因此f 是单射.其次,显然 ||||q p pq Z Z Z ⊕=.因此f 是双射.最后,对于任意的pq pq pq j i Z ][,][∈,我们有)][,]([)]([)][]([q p pq pq pq j i j i j i f j i f ++=+=+,)][,][()][,]([)][][,][]([q p q p q q p p j j i i j i j i +=++=)]([)]([pq pq j f i f +=.所以f 是群pq Z 到群q p Z Z ⊕的同构,从而,q p pq Z Z Z ⊕≅.§7 有限群1.设G 是群,H 是G 的正规子群,n H G =]:[,证明:对于任意的G a ∈都有H a n ∈.证明 由于n H G =]:[,因此n H G =|/|.根据推论7.2,对于任意的G a ∈,商群H G /中元素aH 的阶整除n .因此H aH H a n n ==)(,从而,H a n ∈.2.设G 和'G 分别是阶为m 和n 的有限循环群,证明:存在G 到'G 的满同态的充要条件是m n |.证明 假设f 是G 到'G 的满同态.根据群的同态基本定理,')(Ker /G f G ≅.根据Lagrange 定理,我们有|)(||)(Ker ||'||)(Ker |)](Ker :[f Ker n f G f f G m =⋅=⋅=,从而,m n |.假设m n |.令〉〈=a G ,〉〈=n a N .于是,N 是G 的正规子群,n m N =||,N G /是n 元循环群.显然,'/G N G ≅.设f 是N G /到'G 的同构,f 是G 到N G /的自然同态.则gf 是G 到'G 的满同态.3.设G 是有限群,p 为素数,1≥r .如果|||G p r ,证明:G 一定有阶为r p 的子群.注 我们介绍过Sylow 定理的如下形式:设G 是n 阶有限群,其中,m p n r =,p 是素数,r 是非负整数,m 是正整数,并且1),(=m p .那么,对于任意的},,1,0{r k ∈,G 有k p 阶子群.显而易见,这道题已经包含在Sylow 定理中.这是因为: 由|||G p r 知,存在正整数s 和m ,使得m p n s =,其中1),(=m p .于是,s r ≤.根据Sylow 定理,G 有r p 阶子群.下面我们采用证明Sylow 定理的方法给出这道题的直接证明.证明 假设|||G p r .则存在正整数s 和m ,使得m p n s =,其中1),(=m p .显然,s r ≤.根据Sylow 定理,存在G 的子群H 使s p H =||.现在只需证明H 一定有阶为r p 的子群.为此,对s 施行第二数学归纳法.当1=s 时,显然结论成立.假设t 是整数,并且当t s ≤时,对于任意的正整数s r ≤,H 有r p 阶子群.下面我们来阐明:当1+=t s 时,对于任意的正整数s r ≤,H 有r p 阶子群.事实上,由1||+=t p H 可知,对于H 的每个真子群'H ,都有]':[|H H p .由群G 的类方程∑∈+=C H a a N H C H \]:[||||(其中C 为群H 的中心)立即可知|||C p .由于C 是交换群,根据引理7.4,存在C c ∈,使得p c =||.由C c ∈可知,〉〈c 是H 的正规子群.令〉〈=c H H /'.则t p c H H =〉〈=|||||'|. 根据归纳假设,对于任意的正整数r ,'H 有1-r p 阶子群'K .根据命题5.13,存在H 的子群K ,使得K c ⊆〉〈且〉〈=c K H /',从而,r r p p p c K c H =⋅=〉〈⋅〉〈=-1|/||||'|.4.设G 是有限群,p 为素数,如果G 的每个元素的阶都是p 的方幂,则称G 是p -群.证明:G 是p -群||G ⇔是p 的一个幂.证明 显然,当||G 是p 的一个幂时,G 是p -群.现在假设||G 不是p 的一个幂.于是,存在素数p q ≠,使的m q G r =||,其中1),(=m q ,1≥r .根据Sylow 定理,G 有r q 阶子群H .所以G 不是p -群.5.证明:阶小于或等于5的群都是交换群.证明 显然1阶群是交换群.由推论7.2立即可知,2阶群、3阶群和5阶群都是循环群,因而都是交换群.设G G 中元素的阶只能是1,2或4.当G 中有4阶元素时,G 是循环群,因而是交换群.当G 中有4阶元素时,G 中的元素,除单位元外,都是2阶元素.不妨设},,,{c b a e G =.容易验证,G 就是Klein 四元群,因而是交换群.6.设G 是群,1G ,2G 是G 的有限子群,假设1|))||,(|21=G G ,证明:||||||2121G G G G =.证明 由于21G G 既1G 的子群,又是2G 的子群,根据推论7.2,||21G G 是||1G 与||2G 的公约数.因为1|))||,(|21=G G ,所以1||21=G G .这样一来,根据§6习题第5题,我们有||||||||||||21212121G G G G G G G G == .第二章 环 论§1 环的概念1.证明:命题1.3的(5)-(7).注 命题1.3的(5)-(7)的原文如下:(设R 是一个环,则)(5)j n i mj i m j j n i i b a b a ∑∑∑∑=====1111)()(;(6))()()(ab n nb a b na ==,其中n 为整数;(7)若R 是交换环,则k k n n k k n n b a C b a -=∑=+0)(, n n n b a ab =)(.显然,(5)中应加进“其中),,2,1(n i a i =和),,2,1(m j b j =为R 中的任意元素,m 和n 为任意正整数”;(6)中应加进“a 和b 为R 中的任意元素”;(7)中应加进“其中,a 和b 为R 中的任意元素,n 为任意正整数,并且约定b b a =0,a ab =0”.证明 首先,因为乘法对加法适合分配律,所以j n i mj i m j j n i i m j j n i i b a b a b a ∑∑∑∑∑∑========111111)()()(. 这就是说,命题1.3(5)成立.其次,当0=n 时,根据命题 1.3(1),我们有00)(==b b na ,00)(==a nb a ,0)(0=ab ,从而,)()()(ab n nb a b na ==.当n 是正整数时,令a a i =,b b i =,n i ,,2,1 =, 则因乘法对加法适合分配律,我们有)()()(2121ab n b a b a b a b a a a b na n n =+++=+++= ,)()()(2121ab n ab ab ab b b b b a nb a n n =+++=+++= ,从而,)()()(ab n nb a b na ==.当n 是负整数时,根据命题1.3(2)和刚才证明的结论,我们有nab ab n b a n b a n b na =--=--=--=))()(()))((()))((()(,)())()(())()(()))((()(ab n ab n b a n b n a nb a =--=--=--=,从而,)()()(ab n nb a b na ==.这就是说,命题1.3(6)成立.最后,假定R 是交换环.我们用数学归纳法来证明等式k k n n k k n n b a C b a -=∑=+0)((*)成立.事实上,当1=n 时,显然(*)式成立.假设当r n =r (为某个正整数)时,(*)式成立. 当1+=r n 时,我们有k k r rk k r r n b a C b a b a b a b a -=∑+=++=+0)())(()(k k r r k k r k k r r k k r b a C b b a C a -=-=∑∑+=001110)1(11++--=-+=++++=∑∑r k k r r k k r k k r r k k r r b b a C b a C a1)1(11)1(11+-+=--+=++++=∑∑r k k r r k k r k k r r k k r r b b a C b a C a1)1(111)(+-+=-++++=∑r k k r r k k r k r r b b a C C a1)1(111+-+=++++=∑r k k r r k k r r b b a C ak k r r k k r b a C -++=+∑=)1(101k k n n k k n b a C -=∑=0. 所以对于一切正整数n ,(*)式成立.此外,由于乘法适合结合律和交换律,由第一章的§1知,n n n b a ab =)(.2.令}Z ,|2{]2[Z ∈+=b a b a ,证明]2[Z 关于实数的加法和乘法构成一个环.证明 显然,)],2[Z (+是一个交换群;)],2[Z (⋅是一个半群(也就是说,乘法适合结合律);乘法对加法适合分配律.所以),],2[Z (⋅+是一个环.(验证过程从略.)3.设R 是闭区间],[b a 上的所有连续实函数构成的集合.对于任意的R g f ∈,,定义)()())((x g x f x g f +=+,)()())((x g x f x g f =⋅,],[b a x ∈∀.证明:R 关于这样定义的”“+和”“⋅构成一个环.证明 简单的数学分析知识告诉我们,),(+R 是一个交换群;),(⋅R 是一个半群(也就是说,乘法”“⋅适合结合律);乘法”“⋅对加法”“+适合分配律.所以),,(⋅+R 是一个环.4.设R 是有单位元1的环,n 是正整数.形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n a a a a a a a a a 2122221141211,其中R a ij ∈,n j i ,,2,1, =, 的表格称为环R 上的n n ⨯矩阵(或n 阶方阵).令)(R M n 是环R 上的所有n n ⨯矩阵构成的集合.完全类似于数域上矩阵,可以定义环上的矩阵的加法和乘法,证明:)(R M n 关于矩阵的加法和乘法构成一个环.记)(R M n 中单位矩阵为n I .对)(R M A n ∈,如果存在)(R M B n ∈,使得n I BA AB ==,则称A 是可逆的,称B 是A 的一个逆矩阵,证明:若A 可逆,则其逆是唯一的,记A 的逆矩阵为1-A .证明 完全类似于数域上矩阵,容易验证)(R M n 上的加法适合结合律和交换律(从略).令n O 表示所有元素都为R 的零元的n 阶方阵;对于任意的)(R M A n ∈,将A 中每个元素都代之以其负元而得到矩阵记做A -.显而易见,对于任意的)(R M A n ∈,有A O A n =+,n O A A =-+)(.所以)(R M n 关于矩阵加法交换群.完全类似于数域上矩阵,容易验证:)(R M n 上的乘法适合结合律,并且对)(R M n 上的加法适合分配律(从略).所以)(R M n 关于矩阵的加法和乘法构成一个环.假设)(R M A n ∈是任意一个可逆矩阵,并且矩阵B 和C 都是A 的逆矩阵.则矩阵n I AC AB ==,从而,C C I C BA AC B BI B n n =====)()(.这就表明A 的逆矩阵是唯一的.5.设R 是一个环,假设),(+R 是一个循环群,证明:R 是交换环.证明 设a 是循环群),(+R 的一个生成元.于是,对于任意的R y x ∈,,存在Z ,∈n m ,使得ma x =,na y =,从而,根据命题1.3(6),yx ma na ma n a a mn a na m a na ma xy ======))(())(()))(())(())((. 所以R 是交换环.6.设),,(⋅+R 是一个有单位元1的环,对于任意的R b a ∈,,令1-+=⊕b a b a ,a ⊙ab b a b -+=,证明:⊕和⊙是R 上的两个代数运算且关于加法⊕和乘法⊙也构成一个有单位元的环.注 到此为止,还要求证明⊕和⊙是R 上的代数运算已没有什么意义.因此这道题可改为:设),,(⋅+R 是一个有单位元1的环,定义R 上的代数运算加法⊕和乘法⊙如下:1-+=⊕b a b a ,a ⊙ab b a b -+=,R b a ∈∀,.证明:R 关于加法⊕和乘法⊙也构成一个有单位元的环.证明 (显而易见,⊕和⊙都是R 上的代数运算.)对于任意的R c b a ∈,,,有c b a c b a ⊕-+=⊕⊕)1()()(1)1(c b a c b a ⊕⊕=--++=;a b a b b a b a ⊕=-+=-+=⊕11;a a a =-+=⊕111;1111)11(=--++=-+⊕a a a a .由此可见,),(⊕R 是以1为零元的交换群.其次,对于任意的R c b a ∈,,,有a (⊙)b ⊙c )(ab b a -+=⊙c c ab b a c ab b a )()(-+-+-+=abc bc ac ab c b a +---++=)()(bc c b a bc c b a -+--++=a =⊙a bc cb =-+)(⊙b (⊙)c ;a ⊙a cb =⊕)(⊙)1(-+c b )1()1(-+--++=c b a c b a。

研究生抽象代数课件

抽象代数第一章 集合与映射1.1逻辑命题:能判断正误的一句话。

逻辑:研究命题之间的关系。

1.2 集合集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。

集合中元素的特性:(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的。

(2)互异性:集合中的元素一定是不同的。

(3)无序性:集合中的元素没有固定的顺序。

集合的表述方法:列举法,描述法。

元素与集合的关系(1)属于: 如果a 是集合A 的元素,就说a 属于A ,记作a∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作 要注意“∈”的方向,不能把a∈A 颠倒过来写。

集合与集合的关系:包含与不包含。

包含:如果集合B 的元素都是A 的元素,就称B 为A 的子集,或A 包含B,记为B ⊂A 。

例如,偶数全体包含于自然数全体。

集族:以集合为元素的集合。

以I 为指标集的一个集族,可以记作:{}是集合,i iA AI i ∈∀。

例如:},,,{321 A A A 是以自然数集为指标集的集族。

直积或笛卡尔积:设A 、B 是非空集合,定义A 、B 的直积或笛卡尔积},|),{(B b A a b a B A ∈∀∈∀=⨯。

问题:如何定义无限的集族的笛卡尔积?1.3 映射一、映射的相关定义映射:设A 、B 是非空集合,:f A B → 的对应关系。

如果B y A x ∈∃∈∀1, 使得 ()f x y =,则称f 是从集合A 到集合B 的映射。

判断映射的数学法则:原像相同则像也相同,即A x x ∈∀21,,如果 21x x =,那么 )()(21x f x f =。

单射:若映射满足原像不同则像也不同,即A x x ∈∀21,,如果 21x x ≠,那么)()(21x f x f ≠。

等价判断:如果)()(21x f x f =,那么21x x =。

满射:设:f A B → 的映射,如果对于B 中任意的元素都存在原像,那么称f 为满射;即A B y ∈∃∈∀x ,使得y )(=x f 。

抽象代数电子教案

《抽象代数》课程教案第一章 基本概念教学目的与教学要求:掌握集合元素、子集、真子集。

集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。

理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。

教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。

教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。

教学措施:黑板板书与口授教学法。

教学时数:12学时。

教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。

集合中的每个事物叫做这个集合的元素(简称元)。

定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。

(1)集合的要素:确定性、相异性、无序性。

(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。

若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,。

表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。

2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。

近世代数

子环的充分必要条件是,S关于R的减法与乘法封闭, 即任给 , 有a.b~s,有a-b~S,ab~S
§2.2 子环
• 定理2 设R是一个环,S是R的非空子集, 则S为R的
证明
证明
例3
§2.2 子环
由S关于R的减法封闭, 从而(S,+)是(R,+)的子环. 进一 步由定理条件知, 满足定理1的两个条件, 所以 为 的子环. 于是, 充分性得证, 而必要性是显然的.
近世代数
第二章 群、环、域
基本概念
在普通代数里,我们计算的对象是数, 计算的方法是加、减、乘、除,数学渐渐 进步,我们发现,可以对于若干不是数的 事物,用类似普通计算的方法来加以计算。 这种例子我们在高等代数里已经看到很多, 例如对于向量、矩阵、线性变换等就可 以进行运算。近世代数(或抽象代数)的 主要内容就是研究所谓代数系统,即带有 运算的集合。
定理8
设R是有单位元的交换环, 则R的每个极大理想都是素理想. • 证明 设I为R的极大理想. 设ab~I,a~]I. 令N=(a)+I,则N为R的理想,且 I(a),但I=!(a)+I. 因为I为R的极大理想, 所以N=R. 从而1R~I, 故存在 t~R,c~I,使得1R=at+c,所以,b=b*1R=abt+bc~I.这就证明了I为R的素 理想.
例7
试求Z的所有理想为dZ,d~Z且d>=0
§2.3 理想
定义3
设R为环,I1,I2为R的理想. 集合 I1+I2={a1+a2|a1~I1,a2~I2},I1#I2={a|a~I1,a~I2}分别称为理想 I1,I2的和与交. 定理3 环R的两个理想I1与I2的和I1+I2与交I1#I2都是R的理想. 类似地, 可以定义环R的任意有限多个理想的和与任意多个理想的交的 概念, 并且可以证明: 定理4 环R的任意有限多个理想的和还是理想.环R的任意多个理想的交 还是理想.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阿贝尔
加罗华
返回
(2)Hamilton四元数的发现 (2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法, 长期以来人们对于虚数的意义存在不同的看法,后来发 现可以把复数看成二元数(a,b)=a+bi,其中i 现可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按 (a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进 a,b) c,d)=(a c,b± a,b)(c,d)=(ad+bc,ac-bd) 行代数运算,二元数具有直观的几何意义; 行代数运算,二元数具有直观的几何意义;与平面上的点一 一对应。这是数学家高斯提出的复数几何理论。 一对应。这是数学家高斯提出的复数几何理论。二元数理论 产生的一个直接问题是:是否存在三元数?经过长时间探索, 产生的一个直接问题是:是否存在三元数?经过长时间探索, 力图寻求三元数的努力失败了。 力图寻求三元数的努力失败了。但是爱尔兰数学家 W.Hamilton(1805-1865)于1843年成功地发现了四元数 W.Hamilton(1805-1865)于1843年成功地发现了四元数。四 年成功地发现了四元数。 元数系与实数系、复数系一样可以作加减乘除四则运算, 元数系与实数系、复数系一样可以作加减乘除四则运算,但 与以前的数系相比,四元数是一个乘法不交换的数系。 与以前的数系相比,四元数是一个乘法不交换的数系。从这 点来说四元数的发现使人们对于数系的代数性质的认识提高 了一大步。四元数代数也成为抽象代数研究的一个新的起点, 了一大步。四元数代数也成为抽象代数研究的一个新的起点, 它是近世代数的另一个重要理论来源。 它是近世代数的另一个重要理论来源。
Kummer方法的前提是形如 Kummer方法的前提是形如a+bη的复整数也象 方法的前提是形如 的复整数也象 整数一样具有唯一的素因子分解,其中a与 是通 整数一样具有唯一的素因子分解,其中 与b是通 常整数。并不是对于每个整数n,复整数a+bη都具 常整数。并不是对于每个整数 ,复整数 都具 有唯一分解性,Kummer把这种复整数的因子分解 有唯一分解性,Kummer把这种复整数的因子分解 称为理想数的分解。 称为理想数的分解。 Kummer证明了 证明了n≤100时费马大定 用这种方法 Kummer证明了n≤100时费马大定 理成立,理想数的方法不但能用于费马问题研, 理成立,理想数的方法不但能用于费马问题研,实 际上是代数数论的重要研究内容, 际上是代数数论的重要研究内容,其后德国数学 R.Dedekind(1831-1916)把理想数的概念推广为 家R.Dedekind(1831-1916)把理想数的概念推广为 一般的理想论, 一般的理想论,使它成为近世代数的一个重要的 研究领域。 研究领域。
序:课 程 说 明
近世代数不仅在数学中占有及其重要的 地位,而且在其它学科中也有广泛的应用, 地位,而且在其它学科中也有广泛的应用, 如理论物理、计算机学科等.其研究的方法和 如理论物理、计算机学科等. 观点,对其他学科产生了越来越大的影响。 观点,对其他学科产生了越来越大的影响。 模是本课程的基本内容. 群、环、域、模是本课程的基本内容.
理想数的诞生
德国人 1845 至 1847 年间,提出了 「理想数」的概念。 又提出「正规质数」的概 念,并证明当 n 为正规质 数时,「费尔马最后定理」 成立。
库麦尔 Ernst Edward Kummer (1810 − 1893)
返回
近世代数是在19世纪末至 世纪初发展起来的 近世代数是在 世纪末至20世纪初发展起来的 世纪末至 数学分支。 数学分支。 1930年荷兰数学家范德瓦尔登(B.Lvan der 年荷兰数学家范德瓦尔登( 年荷兰数学家范德瓦尔登 Wearden 1930-1996) 根据该学科领域几位创始 ) 人的演讲报告,综合了当时近世代数的研究成果 综合了当时近世代数的研究成果, 人的演讲报告 综合了当时近世代数的研究成果 编 著了《近世代数学》 著了《近世代数学》(Moderne Algebra)一书 这 )一书,这 是该学科领域第一本学术专著, 是该学科领域第一本学术专著,也是第一本近世代 数的教科书。 数的教科书。
近世代数是一门十分活跃又发展 迅速的学科,它的概念众多、内容丰富, 迅速的学科,它的概念众多、内容丰富, 作为一门基础课,又限于教学时数, 作为一门基础课,又限于教学时数,教 学时只能择其最基础的概念和基本的内 因此,有的课本就名曰《 容。因此,有的课本就名曰《近世代数 基础》 基础》。
高度的抽象是近世代数的显著特点,它的基 高度的抽象是近世代数的显著特点, 本概念: 对初学者也是很抽象的概念, 本概念:群、环、域,对初学者也是很抽象的概念, 因此,在本课程的学习中,大家要多注意实例, 因此,在本课程的学习中,大家要多注意实例,以加 深对概念的正确理解。 深对概念的正确理解。 近世代数的习题,因抽象也都有一定的难度, 近世代数的习题,因抽象也都有一定的难度, 但习题也是巩固和加深理解不可缺少的环节,因此, 但习题也是巩固和加深理解不可缺少的环节,因此, 应适当做一些习题,为克服做习题的困难, 应适当做一些习题,为克服做习题的困难,应注意 教材内容和方法以及习题课内容。 教材内容和方法以及习题课内容。
返回
(3)Kummer理想数的发现 Kummer理想数的发现 17世纪初法国数学家费马 17世纪初法国数学家费马(P.Fermat 1601-1665) 世纪初法国数学家费马(P.Fermat 1601-1665) 研究整数方程时发现当 ≥3时 研究整数方程时发现当n≥3时,方程 xn+yn=zn 没有正整数解,费马认为他能够证明这个 没有正整数解, 定理, 定理,但是其后的三百多年中人们研究发现这是一 个非常困难的问题, 个非常困难的问题,这一问题被后来的研究者称为 费马问题或费马大定理,此定理直到1995 1995年才被英 费马问题或费马大定理,此定理直到1995年才被英 国数学家A.Wiles证明。 A.Wiles证明 国数学家A.Wiles证明。对费马问题的研究在三个 半世纪内从未间断过,欧拉、 半世纪内从未间断过,欧拉、高斯等著名数学家都 对此作出过重要贡献。 对此作出过重要贡献。但最重大的一个进展是由 E.Kummer作出的 作出的。 E.Kummer作出的。
Kummer的想法是: Kummer的想法是:如果上面的方程有 的想法是 正整数解,假定η是一个n次本原单位根, 正整数解,假定η是一个n次本原单位根,那 么 xn+yn=zn 的等式两边可以作因子分解 zn=(x+y)(x+ηy)…(x+ηn-1y),象整数中的因子分 x+y)(x+ηy) 解一样,如果等式右边的n个因子两两互素, 解一样,如果等式右边的n个因子两两互素, 那么每个因子都应是另外一个“复整数” 那么每个因子都应是另外一个“复整数”的n 次方幂, 次方幂,进行适当的变换之后有可能得到更小 的整数x 成立, 的整数x1,y1,z1使 xn+yn=zn 成立,从而导致矛 如果上面等式右边的n个因子有公因式, 盾。如果上面等式右边的n个因子有公因式, 那么同除这个公因式再进行上面同样的讨论。 那么同除这个公因式再进行上面同样的讨论。
直到1824 直到1824年一位年青的挪威数学家 N.Abel 1824年一位年青的挪威数学家 (1802(1802-1829) 才证明五次和五次以上的一般代数方 程没有求根公式。 程没有求根公式。但是人们仍然不知道什么条件之 下一个已知的多项式能借助加、 下一个已知的多项式能借助加、减、乘、除有理运 算以及开方的方法求出它的所有根, 算以及开方的方法求出它的所有根,什么条件之下 不能求根。 不能求根。 最终解决这一问题的是一位法国年青数学家 E.Galois(1811—1832),Galois引入了扩域以及群 E.Galois(1811—1832),Galois引入了扩域以及群 的概念, 的概念,并采用了一种全新的理论方法发现了高次 代数方程可解的法则。 Galois之后群与域的理论 代数方程可解的法则。在Galois之后群与域的理论 逐渐成为现代化数学研究的重要领域,这是近世代 逐渐成为现代化数学研究的重要领域, 数产生的一个最重要的来源。 数产生的一个最重要的来源。
5.《近世代数》 吴品山,人民教育出版社,1979。 5.《近世代数》,吴品山,人民教育出版社,1979。 6.《抽象代数学》 谢邦杰,上海科学技术出版社, 6.《抽象代数学》,谢邦杰,上海科学技术出版社, 1982。 1982。 7.《抽象代数基础》,刘云英,北京师范大学出版 抽象代数基础》 刘云英, 抽象代数基础 社,1990年。 年 8. <<近世代数 杨子胥 高等教育出版社 近世代数>>,杨子胥 高等教育出版社,2003年. 近世代数 杨子胥,高等教育出版社 年
近 世 代 数
在学习《近世代数》这门课之前, 在学习《近世代数》这门课之前, 有必要了解一下有关近世代数的由来, 有必要了解一下有关近世代数的由来, 这有利于这门课程的学习。 这有利于这门课程的学习。
<< << >> >> 概 述
1. 近世代数理论的三个来源 (1) 代数方程的解 Hamilton四元数的发现 (2) Hamilton四元数的发现 Kummer理想数的发现 (3) Kummer理想数的发现
集合论初步与高等代数(线性代数)是学 集合论初步与高等代数(线性代数) 习本课程的准备知识。本课程学习以后可以继 习本课程的准备知识。 续研读:群论、环论、模论、李群、李代数、 续研读:群论、环论、模论、李群、李代数、 计算机科学等。 计算机科学等。
《近世代数》课程的讲授为一个学期 ,共72 近世代数》 学时,内容包括第1章到第4章的内容。 学时,内容包括第1章到第4章的内容。 《近世代数》是理论性较强的课程,由于教学 近世代数》是理论性较强的课程, 时数所限,本课程的理论推证体例较少, 时数所限,本课程的理论推证体例较少,因此必须 通过做练习题来加深对概念的理解和掌握, 通过做练习题来加深对概念的理解和掌握,熟悉各 种公式和定理的运用,从而达到消化、 种公式和定理的运用,从而达到消化、掌握所学知 近世代数》 的目的.由此可知, 识、体会《近世代数》的思想和方法的目的.由此可知, 独立完成作业是学好本课程的重要手段. 独立完成Abstract Algebra 教材1:<<近世代数基础>>,张 教材 : 禾瑞 ,高等教育出版,1978年 修订本。 教材2 教材2:<<近世代数>>,徐德余、唐
相关文档
最新文档