1寻找最短路径

合集下载

人教版八年级数学上册1最短路径问题课件

人教版八年级数学上册1最短路径问题课件

在△AB′C′中,AB′< AC′+B′C′,
B′
∴AC+BC < AC′+B′C′,
即AC+BC最小.
归纳
B A
l
解决实 际问题
B
抽象为数学问题
A
C
l
轴对称
A C
用旧知解决新知
B
l
A
C
l
B′
B′
解决“两点一线”型最短路径问题的方法:
异侧: 连接两点,与直线的交点即为所求的点;
同侧: 作其中某一点关于直线的对称点,对称点与另
a P1
M .P
N
b
P2
解决“两线一点”型最短路径问题:
要作两次轴对称,从而构造出最短路径. a
P1
作法: 1.作点P关于直线a的对称 点P1; 2.作点P关于直线b的对称
M .P
点P2; 3.连接P1P2,分别交直线 a ,b于点M ,N ;
N
b
4.依次连接PM ,MN ,NP , 即所求最短路径。
A1
P
l1
.
A
Q
. B1
B
l2
再学习(4)造桥选址问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN.乔造在何处才能使从A到 B的路径AMNB最短?(假定河的两岸是平 行的直线,桥要与河垂直)
A
B
思维分析
A M
N B
如图假定任选位置造桥MN,连接AM和 BN,从A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短呢?
问题解决
如图,平移A到A1,使A
A
A1等于河宽,连接A1B

13.4《最短路径问题(1)》教案

13.4《最短路径问题(1)》教案

13.4《最短路径问题(1)》教案13.4 课题学习最短路径问题(第一课时)13.4.1 将军饮马问题一、教学目标(一) 学习目标1.会利用轴对称解决简单的最短路径问题;2.会利用轴对称解决简单的周长最小问题;3.体会轴对称变换在解决最值问题中的作用,感悟转化思想.(二)教学重点教学重点:利用轴对称知识将最短路径问题的实际问题转化为“两点之间,线段最短”和“垂线段最短”的问题.(三)教学难点教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题.二、教学过程(一)课前设计1.预习任务前面我们研究过一些关于“两点的所有连线中,”,“连接直线外一点与直线上各点的所有线段中,”等的问题,我们称它们为问题.【答案】线段最短,垂线段最短,最短路径2.预习自测⑴如图所示,从A地到B地有三条路可供选择,你会选走路最近.你的理由是.【设计意图】让学生回顾旧知“两点之间,线段最短”,为引入新课作准备. 【知识点】两点之间、线段最短【答案】②,两点之间,线段最短(或者三角形中两边之和大于第三边)⑵已知:如图,A,B在直线l的两侧,在l上求一点P,使得PA+PB最小. 【知识点】两点之间线段最短【思路点拨】依据“两点(直线异侧)一线型”,和“两点之间,线段最短”,则师:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:问题1. 如图,A为马厩,B为帐篷.某一天牧马人要从马厩A出发,牵出马到一条笔直的河边l 饮马,然后蹚水过河,回到对岸的帐篷B.牧马人到河边什么地方饮马,可使马所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用几何知识回答了这个问题.你能将这个问题抽象为数学问题吗?【知识点】两点之间线段最短【解题过程】连接AB,线段AB与直线l交于点C,到河边l的C处饮马可使马所走的路线全程最短.【思路点拨】将A,B两地抽象为两个点,将河l 抽象为一条直线,则AC+BC 的最小值为线段AB的值.此情况可简称为“两点(直线异侧)一线型” .【答案】如图,则点C就是所求点,即在河边l的C处饮马可使他所走的路线全程最短点:●活动②整合旧知,探究新知师:问题解决了,可是将军思考了片刻,又提出了一个新的问题:问题2.牧马人觉得蹚水过河很不方便,决定将帐篷B搬到河的另一侧即与马厩A 位于河的同侧.如图,牧马人从图中的A地出发,到一条笔直的河边l 饮马,然后回到B地.到河边什么地方饮马,可使马所走的路线全程最短?学者海伦认真思索,利用轴对称的知识回答了这个问题.这就是著名的“将军饮马问题”.你能将这个问题抽象为数学问题吗?l将问题2抽象为数学问题:如图,点A,B在直线l的同侧,能不能在直线l 上找到一点C,使AC与BC的和最小?【知识点】轴对称的知识、两点之间线段最短【思路点拨】将A,B两地抽象为两个点,将河l 抽象为一条直线. 则“所走的路线全程最短”转化为“在直线l上找到一点C,使AC+BC最小”的数学问题. 此情况可简称为“两点(直线同侧)一线型”.【设计意图】学生通过动手操作,在具体感知轴对称图形特征的基础上,抽象出轴对称图形的模型.学生将实际问题抽象为数学问题,即将最短路径问题抽象为“线段和最小问题”.3.尝试解决数学问题●活动③大胆猜想,建立模型【解题过程】(1)作点B关于直线l 的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.【答案】如图,则点C就是所求的点,即在河边l的C处饮马可使马所走的路线全程最短点.师生活动:学生独立思考,尝试画图,相互交流.学生若有困难,教师可作如下提示:⑴若点B与点A在直线异侧,如何在直线l上找到一点C,使AC 与BC的和最小;⑵现在点B与点A在直线同侧,能否将点B移到l 的另一侧点B′处,且满足直线l上的任意一点C,都能保持CB= CB′ ?⑶你能根据轴对称的知识,找到(2)中符合条件的点B′吗?【设计意图】一步一步引导学生,将同侧的两点转化为异侧的两点,为问题的解决提供思路. 通过搭建台阶,为学生探究问题提供“脚手架”,将“同侧”难于解决的问题转化为“异侧”容易解决的问题,渗透转化思想.4.证明AC +BC“最短”●活动④反思过程,验证新知证明“最短作图”的正确性:追问1 你能用所学的知识证明AC +BC最短吗?师生活动:学生独立思考,相互交流,师生共同完成证明过程.证明:如图,在直线l 上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC=B′C,BC′=B′C′,∴AC+BC=AC+C B′=AB′,AC′+ C′B= AC′+ C′B′.又在△AB′C′中,AB′﹤AC′+B′C′,∴AC+BC﹤AC′+BC′,即AC +BC 最短.●活动⑤集思广益,理解新知追问2:证明AC +BC最短时,为什么要在直线l上任取一点C′(与点C不重合)?师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC +BC,就说明AC +BC最小.【设计意图】让学生进一步体会作法的正确性,提高逻辑思维能力.追问3:回顾探究过程,我们是通过怎样的过程、借助什么来解决问题的?师生活动:学生回答,相互补充.【设计意图】让学生在反思的过程中,体会轴对称的“桥梁”作用,感悟转化思想,丰富数学活动经验.●活动⑥反思总结,归纳新知【方法归纳】1、“两点(直线同侧)一线型”在直线上求一点到两点和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点和另一点与直线的交点就是所求的点.2、求两条线段和最小,关键是运用轴对称的知识将不在同一条直线上的两条线段转化到同一条直线上.练习有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A→B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C 处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】(1)将树顶C,D抽象为两个点,将路径A→B抽象为一条直线;(2)如图,作D关于AB的对称点D′,连接CD′交AB于点E,则点E就是所求的点.【思路点拨】本题为“同侧两点一线型”,通过“作D关于AB的对称点D′”转化为“异侧两点一线型”,再根据“两点之间,线段最短”解决.【答案】如图,则点E就是所求的点.师:海伦善于观察与思考,一天他在旅游途中遇到了一个不同情景的“将军饮马问题”:探究二“一点两线型”的最短周长问题问题3. 如图,有一条河流和一块草地,马厩A 建在河流和草地所成的∠MON 内部.牧马人某一天要从A 牵出马,先到笔直的草地边牧马,再到笔直的河边饮马,然后回到马厩A . 请你帮他确定马这一天行走的最短路线. 【知识点】轴对称知识、两点之间线段最短 【数学思想】转化、类比【解题过程】分别作点A 关于OM 、ON 的对称点A ′、A ′′,连接A ′A ′′分别交OM 、ON 于E 、F ,此时△AEF 周长有最小值;【思路点拨】(1)将OM ,ON 抽象为两条相交的直线,将马厩A 抽象为一个点;(2)抽象为数学问题:如图,点A 在∠MON 内部,试在OM 、ON 上分别找出两点E 、F ,使△AEF 周长最短;(3)当AE 、EF 和AF 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小,类比“探究一”作图.求三角形周长最短,即求AE +EF +AF 的最小值为A ′A ′′的值,根据轴对称的性质得AE =A ′E ,AF =A ′′F ,再由“两点之间,线段最短”解决.此情况简称为“一点两线型”. 【答案】作图如图1, 则此时点E 、F 使△AEF 周长有最小值.图1E D CA''A'ONM A图2FED CA''A'O NM AE'F'师:能不能类比探究一,证明一下“周长最短作图”的正确性:【理由简要分析】如图2,在OM 上任取一个异于E 的点E′,在ON 上任取一个异于F 的点F′,连接A E′,A ′E′,E′F′,A ″F′,A F′,则A E′=A ′E′,A F′=A ″F′,且A ′E′+E′F′+F′A ″>A ′A ″=A ′E +EF +FA ″= AE +EF +FA ,所以△AEF 的周长最小,故E ,F 就是我们所求使△AEF 周长最短的点. 练习 如图所示,点P 为∠AOB 内一点,P 1、P 2分别是点P 关于OA 、OB 的对称点,P 1P 2交OA 于点E ,交OB 于点F .若P 1P 2=9,则△PEF 的周长是( ) A.7 B.8 C.9 D.10 【知识点】轴对称知识【解题过程】因为P 1、P 2分别是点P 关于OA 、OB 的对称点,根据轴对称的性F质得PE= P1E,PF=FP2,所以PE+EF+PF= P1E+EF+ P2F=P1 P2=9 .【思路点拨】根据轴对称知识,PE+EF+PF= P1E+EF+ P2F= P1 P2,故答案选C.【答案】C师:回到家的海伦继续思考:如果在草地和河流所成的区域里有马厩和帐篷,又怎样设计行走的最短路线呢?探究三“两点两线型”的最短路径问题问题4 如图,A为马厩,B为帐篷,牧马人某一天要从马厩A牵出马,先到草地边MN的某一处牧马,再到河边l饮马,然后回到帐篷B.请你帮他确定马这一天行走的最短路线.【知识点】轴对称知识、两点之间线段最短【解题过程】(1) 作点A关于MN的对称点A′,作B点关于l的对称点B′;(2)连接A′B′,分别交MN于点C、交l于点D,则沿A→C→D→B的路线行走,马一天行走的路程最短.【思路点拨】马一天行走的路程最短即求AC+CD+DB的最小值,AC+CD+DB 的最小值为A′B′的值,根据轴对称的性质得CA=CA′,DB=DB′,再由“两点之间,线段最短”即可解决.此情况简称为“两点两线型”.【答案】如图所示,牧马人沿A→C→D→B的路线行走,所行走的路线最短.练习某中学八(2)班举行文艺晚会,桌子摆成如图1所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再去拿糖果,然后到D处座位上,请你帮他设计一条行走路线,使其所走的总路程最短.(保留作图痕迹,不写作法)图1图2【知识点】轴对称知识、两点之间线段最短【解题过程】作法:(1)作点C关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA于P、交OB于Q,那么当小明沿C→P→Q→D 的路线行走时,所走的总路程最短.【思路点拨】“两点两线型”求路径最短,所求CP+PQ+QD的最小值为线段C1D1的值.【答案】作图如图2,小明沿C→P→Q→D的路线行走,所走的总路程最短. 【设计意图】考查学生解决“最短路径问题”的综合能力.【方法归纳】“一点两线型”求三角形周长最短问题,先作点分别关于两直线的对称点,再连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形. “两点两线型”,也可以为求四边形CPQD的周长最短问题,类比“一点两线型”即可解决.3. 课堂总结师:让我们共同回顾一下古希腊著名的学者海伦所遇到的“将军饮马问题”,总结一下他所解决“最短路径问题”的所用的原理与方法.知识梳理1、利用轴对称知识解决最短路径问题,主要依据“两点之间线段最短”和“垂线段最短”;2、运用轴对称的知识将“不在同一条直线上的两条线段”转化到“同一条直线上”,然后用“两点之间线段最短”解决问题.重难点归纳:最短路径问题的主要类型▲问题作法图形原理类型一lAB直线异侧有两点:在l上求一点P,使得PA+PB最小连接AB,线段AB与直线l的交点就是点P.lPABPA+PB的最小值为AB的值,两点之间,线段最短lBA⑴作点B关于直线l 的对称点B′;PA+PB的最类型二直线同侧有两点:在l上求一点P,使得PA+PB最小.⑵连接AB′,与直线l相交于点P.则点P即为所求.(同样可作点A的对称点)lPB'BA小值为AB′的值,PB=PB′,两点之间,线段最短类型三O BAP两条相交直线所成的角内有一点P:分别在边OA、OB上求一点E、F,使△EFP的周长最小.⑴分别作点P关于直线OA、OB 的对称点P′、P′′;⑵连接P′P′′,与直线OA、OB分别交于点E、F.则点E、F为所求的点.FEDCP''P'O BAPPE+EF+PF的最小值为P′P′′的值,PE=P′E,PF=FP′′,两点之间,线段最短.类型四PABOQ两条相交直线所成的角内有两点P、Q:分别在边OA、OB上求一点M、N,使得四边形MNPQ的周长最小.⑴作点P、Q分别关于直线OA、OB 的对称点P′、Q′;⑵连接P′Q′,与直线OA、OB分别交于点M、N.则点M、N为所求的点.NMQ'P'PABOQPM+MN+MQ的最小值为P′Q′的值,PM=P′M,NQ=NQ′,两点之间,线段最短.(三)课后作业基础型自主突破1.如图,若将河看作直线l,河的同侧有两个村庄P、Q.现要在l上的某处修建一个水泵站,分别向P、Q两个村庄供水,图中实线表示铺设的管道,下面的四种修建方案中,所需管道最短的是()【知识点】轴对称知识、两点之间线段最短【解题过程】(1)作点P关于直线l 的对称点P′;(2)连接QP′,与直线l相交于点M;则在l上的点M修建一个水泵站所需管道最短.【思路点拨】根据“两点一线型”的最短路径模型,故选D.【答案】D2.如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使得点P到点A、点B的距离之和最小,则点P的坐标是()A. (-2 ,0)B.(4 ,0)C. (2 ,0)D.(0 ,0)【知识点】轴对称知识、两点之间线段最短【解题过程】如图,作点B 关于x轴的对称点B′(4,-2),过点A作AC⊥x 轴,B′C⊥y轴于E,AC和B′C相交于点C,连接A B′ 交x轴于点P,交y轴于点D∵A(-2,4),B′(4,-2)∴C(-2,-2),E(0,-2),AC=B′C=6. 又∵AC⊥B′C,∴∠CA B′=∠A B′C=45°. ∵DE∥AC,∠DE B′=90°,∴∠ED B′ =∠DB′E=45°,∴DE =EB′=4,D(0,2).同理可得∠OD P =∠OP D =45°,OP=OD=2 ,∴P(2,0)【思路点拨】在直角坐标系中抽出“两点一线型”的最短路径模型:在直线x轴的同侧有点A和点B点,在直线x轴上找一点P,使PA+PB最小.作图如图,再由图可构造得等腰直角△AC B′,求出坐标.【答案】C3.如图,等边△ABC的边长为6,AD是边BC上的中线,E是AD边上的动点,F是AC边上的一点.若AF=3,当EF+EC取得最小值时,∠ECF的度数是()A.15°B.22.5°C.30°D.45°【知识点】等腰三角形的“三线合一”、轴对称知识、两点之间线段最短【解题过程】(1)因为等边△ABC的边长为6,又AF=3,所以点F为AC中点.取AB中点F′,则点F与点F′关于直线AD对称;(2)连接CF′,与直线AD相交于点E,此时EF+EC取得最小值.因为CF′是等边△ABC的边AB上的中线,所以CF′平分∠ACB,则∠ECF的度数是30°.(做题前应先忽略原图中的点E,如图1,再根据“两点一线型”的最短距离的模型作图,如图2:)【思路点拨】分离出点F、点C和直线AD,找出“两点一线型”的基本模型是解决本题的关键.连接CF′(或者连接BF)与直线AD交于点E,此时EF+EC取得最小值为CF′(或者BF),但题目要求∠ECF的度数,则只能连接CF′,根据等腰三角形“三线合一”的性质求解.【答案】C4.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,且BD⊥CD,∠ADB=∠C. 若P是BC边上的动点,则DP长的最小值为. 【知识点】等角的余角相等、角平分线的性质、垂线段最短【解题过程】过点D作DP⊥BC于P,∵∠A=90°,BD⊥CD,∴△BAD和△BDC都是直角三角形. 又∵∠ADB=∠C,∴∠ABD=∠DBC. ∴BD是∠ABC 的平分线,∴垂线段DP=DA=3.【思路点拨】由题意可得△BAD和△BDC都是直角三角形,又因为∠ADB=∠C,所以∠ABD=∠DBC,则BD是∠ABC的平分线,根据“垂线段最短”和“角平分线的性质”求出DP长的最小值为3.【答案】35.如图,要在河道l边上建立一个水泵站,分别向A、B两个村庄引水,水泵站建在河道的什么地方,才能使输水管道最短?(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】(1)将村庄A、B两地抽象为两个点,将河道l抽象为一条直线;(2)作点B关于直线l 的对称点B′,连接AB′,与直线l相交于点C.【思路点拨】“两点(直线同侧)一线型”,在直线l上找一点C,使AC+CB′最小,AC+CB′的最小值为线段AB′的值,再根据“两点之间,线段最短”解决.【答案】如图,点C即为水泵站建所在的位置:6.已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在∠AOB内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】分别作点P关于OA、OB的对称点P′、P′′,连接P′P′′交OA于E、交OB于F,此时△PEF周长有最小值,即乙站在E处、丙站在F处使球从甲到乙、乙到丙、最后丙到甲这一轮路程和最短,所用的时间也最少.【思路点拨】甲、乙、丙三人的传球速度相同,则当路程和最短时所用的时间最少,这样就转化为“一点两线型”求三角形周长最短问题.在OA、OB上分别找点E、点F,PE+EF+PF的最小值为P′P′′的值,根据轴对称的性质得PE=P′E,PF=FP′′,再由“两点之间,线段最短”解决.【答案】如图所示,因为乙站在OA上,丙站在OB上,所以当乙站在OA上的E处,丙站在OB上的F处时,才能使传球所用时间最少.能力型师生共研7.八年级(6)班同学做游戏,在活动区域边放了一些球(如图),则小明按怎样的线路跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】作“小明”关于小明关于活动区域边线OP的对称点A′,连接AA′交直线OP于点B,则按“小明”→B→A的线路跑,去捡B处的球,才能最快拿到球跑到目的地A.【思路点拨】“两点(直线同侧)一线型”,在直线l上找一点B,使AB+BA′最小,AB+BA′的最小值为线段AA′的值,再根据“两点之间,线段最短”解决.【答案】如图,小明行走的路线是:“小明”→B→A,即在B处捡球,才能最快拿到球跑到目的地A.8.如图,∠AOB=30°,点P为∠AOB内一点,OP=6cm,点M、N分别在OA、OB上,求△PMN周长的最小值.【知识点】轴对称知识、两点之间线段最短、等边三角形的判定【解题过程】分别作点P关于OA、OB的对称点P1、P2,连接P1P2交OA于点M,交OB于点N,此时△PMN周长有最小值= P1P2,∵根据轴对称的性质得∠1=∠2,∠3=∠4,OP1 = OP =O P2,∴∠P1OP2=∠1+∠2+∠3+∠4=2∠AOB= 2×30°=60°,∴△P1OP2为等边三角形,∴P1P2= OP1 =O P2 =6cm,即△PMN周长的最小值为6cm.【思路点拨】该题属于“一点两线型”求三角形周长最短问题,所求△PMN周长PM+MN+PN的最小值为P1P2的值;根据轴对称的性质可求得∠P1OP2=60°,OP1 = OP =O P2,△P1OP2为等边三角形,P1P2=6cm.【答案】6cm探究型多维突破9、如图,牧童在A处放牛,其家在B处,A,B到河岸CD的距离分别为AC,BD,且AC=BD,若A到河岸CD的中点的距离为500 m. (1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处;(保留作图痕迹,不写作法)(2)求出最短路程.【知识点】轴对称知识、两点之间线段最短、全等三角形的判定【解题过程】(1)作法:①如图作点A关于CD的对称点A′;②连接A′B交CD 于点M. (2)由(1)可得直线CD是点A与点A′的对称轴,M在CD上,∴AM=A′M,A′C=AC,又∵AC=BD,∠A′CM=∠BDM=90°,∠A′MC=∠BMD,∴△A′CM≌△BDM,∴CM=DM,A′M=BM,∴M为CD的中点,且A′B=2AM,∵AM=500 m,所以A′B=AM+BM=2AM=1 000 m.即最短路程1000 m. 【思路点拨】⑴该题为“两点(直线同侧)一线型”求最短路径问题,在直线l上找一点M,使A′M+MB最小,A′M+MB的最小值为线段A′B的值,再根据“两点之间,线段最短”解决;⑵由条件“AC=BD”可推出△A′CM ≌△BDM,从而得到最短距离A′B=2AM=1000m【答案】(1)如图,点M即为所求的点; (2) 最短路程为1000 m.10.如图,在五边形ABCDE中,①在BC,DE上分别找一点M,N,使得△AMN周长最小;(保留作图痕迹,不写作法)②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为________.【知识点】轴对称知识,两点之间线段最短,三角形的内角(外角)知识【解题过程】①取点A关于BC的对称点P、关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,如图1,PQ的长度即为△AMN的周长最小值,如图2;②如图3,∵∠BAE=125°,∴在△APQ中,∠P+∠Q=180°-125°=55°,∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°【思路点拨】①转化为“一点两线型”求三角形周长最短问题,所求△AMN周长AM+MN+AN的最小值为线段PQ的值. ②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的外角以及三角形内角和知识运用整体思想解决.【答案】①作图如图2,此时△AMN周长最小;②∠AMN+∠ANM=110°.自助餐1. 如图,在直角坐标系中,点A、B的坐标分别为(2,8)和(6,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,2)C.(0,4)D.(0,6)【知识点】轴对称知识、两点之间线段最短、等腰直角三角形的知识【解题过程】作B点关于y轴对称点B′点,连接AB′交y轴于点C′,当点C在C′处时△ABC的周长最小. 过点A作AE⊥x轴于点E,∵点A、B的坐标分别为(2,8)和(6,0),∴B′点坐标为(﹣6,0),E(2,0),AE=8,OE=2. ∴B′E=8,∴B′E =AE ,O B′=B′E-OE=6.又∵AE⊥B′B,∴∠A B′E=∠B′AE =45°,∵C′O∥AE,∠C′O B′=90°,∴∠C′B′O =∠B′C′O =45°,∴C′O = B′O =6,∴点C′的坐标是(0,6),当点C在C′处时△ABC的周长最小,故选D.【思路点拨】分离出“两点一线型”的最短路径模型:在y轴的同侧有点A和点B,点,在y轴上找一点C,使AC+CB最小.作图时应忽略图中的点C,再由图可构造等腰直角△AC B′,求出坐标.【答案】D2. 如图所示,点P为∠AOB内一点,OP=9,P1、P2分别是点P关于OA、OB 的对称点,P1P2交OA于点E,交OB于点F.当△PEF的周长是9时,∠AOB 的度数为()A.15°B.30°C.45°D.60°【知识点】轴对称知识、两点之间线段最短、等边三角形的知识、P2分别是点P关于OA、OB的对【解题过程】连接O P1,O P2. ∵OP=9 ,P1称点,∴根据轴对称知识O P1=O P2=OP=9,PE= P1E,PF=FP2 .∴PE+EF+PF= P1E+EF+ P2F=P1 P2=9,∴O P1=O P2= P1 P2,∴△OP1 P2是等边三角形.又∵由轴对称知识得∠P 1 OP 2=∠P 1 OP +∠POP 2=2(∠AOP +∠POB )=2∠AOB ,∴2∠AOB=60°,∴∠AOB=30°【思路点拨】根据轴对称知识,PE +EF +PF = P 1E +EF + P 2F = P 1 P 2,如图连接O P 1, O P 2易得证△OP 1 P 2是等边三角形,故答案选B【答案】B3.如图,小河边有两个村庄A 、B ,要在河边建一自来水厂向A 村与B 村供水.(1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂?(2)若要使厂部到A ,B 两村的水管最短,应建在什么地方?(保留作图痕迹,不写作法)【知识点】垂直平分线的知识,轴对称知识,两点之间线段最短【解题过程】(1)作线段AB 的垂直平分线,与EF 交于点P ,交点P 即为符合条件的点.如图1,取线段AB 的中点G ,过中点G 作AB 的垂线,交EF 于P ,则P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于21AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【思路点拨】 ⑴到A ,B 两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又在河边EF 上,所以作AB 的垂直平分线与EF 的交点即为符合条件的点.⑵要使厂部到A 村、B 村的距离之和最短,可联想到“两点之间线段最短”,结合 “两点一线型”的最短路径模型,作A (或B )点关于EF 的对称点,连接对称点与B 点 (或A ),与EF 的交点即为所求.【答案】(1)如图1,自来水厂部建在点P 处,到A ,B 村的距离相等.(2)如图2,自来水厂部建在点P 处,到A 、B 的距离和最短.4.公园内两条小河MO ,NO 在O 处汇合,两河形成的半岛上有一处景点P (如图所示).现计划在两条小河上各建一座小桥Q 和R ,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.【知识点】轴对称知识、两点之间线段最短【解题过程】分别作点P关于OA、OB的对称点P′、P′′,连接P′P′′分别交OM、ON于Q、R,此时△PQR周长有最小值,即此时使在半岛上修建的三段小路路程和最小,才能使修路费用最少.【思路点拨】要使修路费用最少,则应使三段路程和最小,这样就转化为“一点两线型”求三角形周长最小的问题.【答案】如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置,修路费用最少.理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,Q,R就是我们所求的小桥的位置.5.如图所示,P,Q为△ABC边上的两个定点,在BC上求作一点R,使△PQR 的周长最小.【知识点】轴对称知识、两点之间线段最短【解题过程】(1)作点P关于直线BC的对称点P′;(2)连接P′Q,交BC于点R,则点R就是所求作的点,如图所示.【思路点拨】P,Q为△ABC边上的两个定点,所以PQ长为定值,使△PQR的周长最小,只需要PR+QR最小.故分离出“一点两线型”的模型:在直线BC的同侧有点P和点Q,在直线BC上找一点R,使PR+QR最小.【答案】如图所示,点R就是所求作的点.6.如图,一艘游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上某处,再返回P 处,请画出游船航行的最短路径.【知识点】轴对称知识、两点之间线段最短【数学思想】转化思想【解题过程】如图1,作点P关于直线BC 的对称点P′,连接QP′,与直线BC 相交于点R. 则游船航行路线是:P→Q→R→P,即将游客送到河岸BC的R,游船航行的路径最短.(或作点Q关于直线BC 的对称点Q′同样得解,如图2). 【思路点拨】将河岸抽象为一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到一点R,使PR与QR 的和最小”.由于P、Q为。

最短路径问题

最短路径问题

最短路径问题的研究学生姓名:苏振国指导老师:王向东摘要最短路径问题是研究线状分布的地理事物中最常用的方法。

其中迪克斯查1959年提出的标号法在最短路径问题的研究中应用最为广泛,尤其在交通选址方面。

根据迪克斯查标号法的基本思想及应用现状,本文以其在城市消防站选址问题上的应用为例,详细介绍了迪克斯查标号法的应用、原理及其步骤。

展现了最短路径法的突出优点:不仅求出了起点和终点的最短路径及其长度,而且求出了起点到图中其他各点的最短路径及其长度。

关键词最短路径步骤原理应用分类1引言在实际中常提出这样的问题,比如说,在交通网中,问A,B两地是否有道路可通?如果有通路且不止一条的话,那么最短的是哪条?所谓最短,可理解为里程数最少,也可理解为旅差费最省,还可理解为道路的建造成本最低等等。

总之,这类问题都可归结为在一个有向图中求最短路径的问题。

本论文研究的主要目的就是为了详细介绍关于最短路径问题的标号法,及其在实际生活中如何应用。

下面我将展开论述。

2最短路径的现状分析及其研究发展方向2.1现状分析最短路径问题一直是计算机科学、运筹学、地理信息科学等学科的一个研究热点。

国内外大量专家学者对此问题进行了深入研究。

经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。

它们在空间复杂度、时间复杂度、易实现性及应用范围等方面各具特色。

针对串行计算机的最短路径算法,已经几乎到达理论上的时间复杂度极限。

现在的研究热点,一是针对实际网络特征优化运行结构,在统一时间复杂度的基础上尽可能地提高算法的运行效率;二是对网络特征进行限制,如要求网络中的边具有整数权值等,以便采用基数堆等数据结构设计算法的运行结构;三是采用有损算法,如限制范围搜索、限定方向搜索及限制几何层次递归搜索;四是采用拓扑层次编码路径视图,对最短路径进行部分实例化编码存储;五是采用并行算法,为并行计算服务。

2.2研究发展方向2.2.1最短路径算法的实时性目前,静态的最短路径算法已经十分完善。

1最短路径问题

1最短路径问题

一叶知秋,题海不是解决问题 的最好办法,如果能够深入研 究我们的典型题和一些基本数 学模型,相信所有的题目都万 变不离其宗。
谢 谢 聆 听
M
N
M
.. AB
N
变式训练
2.如图:E、F分别为两边OM、ON上一个动点,当点E、点F
在OM、ON的什么位置时,AE+EF的距离之和最短?
O
O
E
F
A'
.
A
.
A
M
N
M
做对称 再做垂
N
中考链接
1.(2018年新疆中考9,5分)如图,点P是边长为1的菱形ABCD 对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则 MP+PN的最小值是( )
O 如图A:EE、+F分EF别+为F两B边的OM距、O离N上之一个和动最点,短那?么,上述问题可转化为:当点E、点F在OM、ON的什么位置时, AE+EF+FB的距离之和最短?
.
.
M
A
BN
题目解析 O
.A .B
E
F
L
如图:E、F分别为两边OM、ON上一个动点,那么,上述问题可转化为:当点E、点F在OM、ON的什么位置时,
即:A'T+TP+PB'>A'E+EF+FB' ∴AE+EF+FB<AT+TP+BP, 即沿AE-EF-FB路线走是最短的路线.
变式训练
1.如图:E、F分别为两边OM、ON上一个动点,那么,上述
问题可转化为:当点E、点F在OM、ON的什么位置时,
AF+EF+EB的距离之和最短?

最短路径问题例题与讲解

最短路径问题例题与讲解

13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如下图,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如下图,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如下图:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不管题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)假设要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)假设要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如下图,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如下图,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。

《最短路径问题》PPT课件

《最短路径问题》PPT课件
13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,

最短路径与标号法

最短路径与标号法前面我们学习过动态规划的应用,图中没明显阶段求最短路径的问题属于无明显阶段的动态规划,通常用标号法求解,求最短路径问题是信息学奥赛中很重要的一类问题,许多问题都可转化为求图的最短路径来来解,图的最短路径在图论中有经典的算法,本章介绍求图的最短路径的dijkstra算法、Floyed算法,以及标号法。

一、最短路径的算法1、单源点最短路径(dijkstra算法)给定一个带权有向图G=(V,E),其中每条边的权是一个非负实数,另外,还给定V中的一个顶点,称为源点。

求从源点到所有其他各顶点的最短路径长度。

这个问题称为单源最短路径问题。

求单源最短路径可用dijkstra算法求解。

(dijkstra算法)算法思想:设源点为x0,dist[i]表示顶点i到源点x0的最短路径长度,map[i,j]表示图中顶点i到顶点j的长度,用数组mark对所有的顶点作标记,已求出源点到达该点J的最短路径的点J记为mark[j]=true,否则标记为false。

初始时,对源点作标记,然后从未作标记的点中找出到源点路径长度最短的顶点minj,对该顶点作标记,并对其它未作标记的点K作判断:if dist[minj]+map[minj,k]<dist[k] then dist[k]= dist[minj]+map[minj,k]。

重复处理,直到所有的顶点都已作标记,这时求出了源点到所有顶点的最短路径。

算法过程:const maxn=100;varmap: array[1..maxn,1..maxn] of integer;dist: array[1..maxn] of integer;mark: array[1..maxn] of Boolean;n,k: integer;procedure dijkstra;var I,j,min,minj,temp:integer;beginfillchar(mark,sizeof(mark),0);for I:=1 to n do dist[i]:=maxint;dist[k]:=0;for I:=1 to n-1 dobeginmin:=maxint;for j:=1 to n doif (not mark[j]) and (dist[j]<min) thenbeginmin:=dist[j]; minj:=j;end;mark[minj]:=true;for j:=1 to n doif (not mar[j]) and (map[minj,j]>0) thenbegintemp:=dist[minj]+map[minj,j];if temp<dist[j] then dist[j]:=temp;end;end;end;以上只是求出了从源点到其它所有点的最短路径长度,所经过的具体路径没有保存,如果要求出具体的路径来,那么在求最短路径的过程中要将经过的中间点记录下来。

二次函数压轴题专题一 最短路径问题

二次函数压轴题专题一最短路径问题——和最小知识梳理最短路径就是无论在立体图形还是平面图形中,两点间的最短距离,常涉及以下 两个方面:1、两点之间,线段最短;2、垂线段最短。

常用思考的方式:1、把立体转化为平面;2、通过轴对称寻找对称点。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

例题导航例1:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥。

证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。

例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。

作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。

证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD,··CDA BEa∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB所以抽水站应建在河边的点D 处,常见问题归纳“和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小.【方法归纳】①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求.②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求.③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点C ,D 即为所求.④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DElBAllllBAOBOB+EF +CF 最小,则点E ,F 即为所求.⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求.⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =14x 2)上的一点,点A (0,1)在y轴正半轴.点P 在什么位置时PA +PB 最小?过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA +PB 最小,则点P 即为所求.二次函数中最短路径例题例1.(13广东)已知二次函数y =x 2-2mx +m 2-1.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.BOB Oll练习1.(11菏泽)如图,抛物线y =12x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.练习2.(12滨州)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.例2.(14海南)如图,对称轴为直线x =2的抛物线经过A (-1,0),C (0,5)两点,与x 轴另一交点为B .已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a =1时,求四边形MEFP 的面积的最大值,并求此时点P 的坐标;(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.【思路点拨】 (1)由对称轴为直线x =2,可以得出顶点横坐标为2,设二次函数的解析式为y =a (x -2)2+k ,再把点A ,B 的代入即可求出抛物线的解析式;(2)求四边形MEFP 的面积的最大值,要先表示出四边形MEFP 面积.直接求不好求,可以考虑用割补法来求,过点P 作PN ⊥y 轴于点N ,由S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME 即可得出; (3)四边形PMEF 的四条边中,线段PM ,EF 长度固定,当ME +PF 取最小值时,四边形PMEF 的周长取得最小值.将点M 向右平移1个单位长度(EF 的长度),得到点M 1(1,1),作点M 1关于x 轴的对称点M 2(1,-1),连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小. 【解题过程】解:(1)∵对称轴为直线x =2,∴设抛物线解析式为y =a (x -2)2+k .将A (-1,0),C (0,5)代入得:⎩⎨⎧9a +k =04a +k =5,解得⎩⎨⎧a =-1k =9,∴y =-(x -2)2+9=-x 2+4x +5.(2)当a =1时,E (1,0),F (2,0),OE =1,OF =2.设P (x ,-x 2+4x +5),如答图2,过点P 作PN ⊥y 轴于点N ,则PN =x ,ON =-x 2+4x +5,∴MN =ON -OM =-x 2+4x +4.S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME =12(PN +OF )•ON -12PN•MN -12OM •OE =12(x +2)(-x 2+4x +5)-12x •(-x 2+4x +4)-12×1×1=-x 2+92x +92 =-(x -94)2+15316 ∴当x =94时,四边形MEFP 的面积有最大值为15316,此时点P 坐标为(94,15316). (3)∵M (0,1),C (0,5),△PCM 是以点P 为顶点的等腰三角形,∴点P 的纵坐标为3.令y =-x 2+4x +5=3,解得x =2±6.∵点P 在第一象限,∴P (2+6,3).四边形PMEF 的四条边中,PM 、EF 长度固定,因此只要ME +PF 最小,则PMEF 的周长将取得最小值. 如答图3,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1);作点M 1关于x 轴的对称点M 2,则M 2(1,-1);连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小.设直线PM 2的解析式为y =mx +n ,将P (2+6,3),M 2(1,-1)代入得:⎩⎨⎧(2+6)m +n =3m +n =-1,解得:m =46-45 ,n =46+45,∴y =46-45x -46+45.当y =0时,解得x =6+54.∴F (6+54,0).∵a +1=6+54,∴a =6+14. ∴a =6+14时,四边形PMEF 周长最小.图1 图2练习3.(11眉山)如图,在直角坐标系中,已知点A (0,1),B (﹣4,4),将点B 绕点A 顺时针方向90°得到点C ;顶点在坐标原点的拋物线经过点B . (1)求抛物线的解析式和点C 的坐标;(2)抛物线上一动点P ,设点P 到x 轴的距离为d 1,点P 到点A 的距离为d 2,试说明d 2=d 1+1;(3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.例4.(14福州)如图,抛物线y =12(x -3)2-1与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D 了. (1)求点A ,B ,D 的坐标; (2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD .求证:∠AEO =∠ADC ;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.【思路点拨】(1)由顶点式直接得出点D 的坐标,再令y =0,得12(x -3)2-1=0解出方程,即可得出点A ,B 的坐标;(2)设HD 与AE 相交于点F ,可以发现△HEF 与△ADF 组成一个“8字型”.对顶角∠HFE =∠AFD ,只要∠FHE =∠FAD 即可.因为∠EHF =90°,只需证明∠EAD =90°即可.由勾股定理的逆定理即可得出△ADE 为直角三角形,得∠FHE =∠FAD =90°即可得出结论;(3)先画出图形.因为PQ 为⊙E 的切线,所以△PEQ 为直角三角形,半径EQ 长度不变,当斜边PE 最小时,PQ 的长度最小.设出点P 的坐标,然后表示出PE ,求出PE 的最小值,得到点P 的坐标,再求出点Q 的坐标即可.【解题过程】解:(1)顶点D 的坐标为(3,-1).令y =0,得12 (x -3)2-1=0,解得x 1=3+2,x 2=3-2.∵点A 在点B 的左侧,∴A 点坐标(3-2,0),B 点坐标(3+2,0).(2)过D 作DG ⊥y 轴,垂足为G .则G (0,-1),GD =3.令x =0,则y =72,∴C 点坐标为(0,72).∴GC =72-(-1) = 92.设对称轴交x 轴于点M .∵OE ⊥CD ,∴∠GCD +∠COH =90︒.∵∠MOE +∠COH =90︒,∴∠MOE =∠GCD .又∵∠CGD =∠OMN =90︒,∴△DCG ∽△EOM . ∴CG OM =DGEM ,即923=3EM .∴EM =2,即点E 坐标为(3,2),ED =3. 由勾股定理,得AE 2=6,AD 2=3,∴AE 2+AD 2=6+3=9=ED 2. ∴△AED 是直角三角形,即∠DAE =90︒.设AE 交CD 于点F .∴∠ADC +∠AFD =90︒.又∵∠AEO +∠HFE =90︒, ∴∠AFD =∠HFE ,∴∠AEO =∠ADC .(3)由⊙E 的半径为1,根据勾股定理,得PQ 2=EP 2-1.要使切线长PQ 最小,只需EP 长最小,即EP 2最小.设P 坐标为(x ,y ),由勾股定理,得EP 2=(x -3)2+(y -2)2.∵y =12 (x -3)2-1,∴(x -3)2=2y +2.∴EP 2=2y +2+y 2-4y +4=(y -1)2+5.当y =1时,EP 2最小值为5.把y =1代入y =12(x -3)2-1,得12(x -3)21=1,解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上,∴x 1=1舍去.∴点P 坐标为(5,1).此时Q 点坐标为(3,1)或(195,135).例5.(14遂宁)已知:直线l :y =﹣2,抛物线y =ax 2+bx +c 的对称轴是y 轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P 是抛物线上任意一点,过点P 作直线l 的垂线,垂足为Q ,求证:PO =PQ .(3)请你参考(2)中结论解决下列问题:(i )如图②,过原点作任意直线AB ,交抛物线y =ax 2+bx +c 于点A 、B ,分别过A 、B 两点作直线l 的垂线,垂足分别是点M 、N ,连结ON 、OM ,求证:ON ⊥OM . (ii )已知:如图③,点D (1,1),试探究在该抛物线上是否存在点F ,使得FD +FO 取得最小值?若存在,求出点F 的坐标;若不存在,请说明理由.【解题过程】解:(1)由题意,得⎩⎨⎧-b 2a =0-1=c 0=4a +2b +c ,解得:⎩⎨⎧a =14b =0c =-1,∴抛物线的解析式为:y =14x 2-1; (2)如图①,设P (a ,14a 2﹣1),就有OE =a ,PE =14a 2﹣1,∵PQ ⊥l ,∴EQ =2,∴QP =14a 2+1.在Rt △POE 中,由勾股定理,得PO =a 2+(14a 2-1)2=14a 2+1,∴PO =PQ ; (3)(i )如图②,∵BN ⊥l ,AM ⊥l ,∴BN =BO ,AM =AO ,BN ∥AM ,∴∠BNO =∠BON ,∠AOM =∠AMO ,∠ABN +∠BAM =180°.∵∠BNO +∠BON +∠NBO =180°,∠AOM +∠AMO +∠OAM =180°,∴∠BNO +∠BON +∠NBO +∠AOM +∠AMO +∠OAM =360°,∴2∠BON +2∠AOM =180°, ∴∠BON +∠AOM =90°,∴∠MON =90°,∴ON ⊥OM ;(ii )如图③,作F ′H ⊥l 于H ,DF ⊥l 于G ,交抛物线与F ,作F ′E ⊥DG 于E ,∴∠EGH =∠GHF ′=∠F ′EG =90°,FO =FG ,F ′H =F ′O ,∴四边形GHF ′E 是矩形,FO +FD =FG +FD =DG ,F ′O +F ′D =F ′H +F ′D ,∴EG =F ′H ,∴DE <DF ′,∴DE +GE <HF ′+DF ′,∴DG <F ′O +DF ′,∴FO +FD <F ′O +DF ′,∴F 是所求作的点.∵D (1,1),∴F 的横坐标为1,∴F (1,54).l。

最短路径法计算步骤

最短路径法计算步骤嘿,朋友们!今天咱就来唠唠这个最短路径法计算步骤。

你说这最短路径法啊,就像是在一个迷宫里找最快捷的出路。

想象一下,你站在迷宫的入口,面前有好多条路,你得找到那条能最快带你走到终点的道儿。

第一步呢,就是先把那些节点和边都给整明白咯。

就好比你得清楚迷宫里有哪些岔路口和通道一样。

然后给每个边都标上一个数字,这数字就代表着通过这条边的代价或者距离啥的。

接着呢,咱就从起始点开始,就像你在迷宫里迈出第一步。

然后一点点往外扩散,计算到其他节点的最短距离。

这过程就好像你在探索迷宫,每走一步都要想想是不是离终点更近了。

第三步,不断更新那些距离。

要是发现有更短的路径出现了,那就赶紧把之前的给替换掉。

这就好比你在迷宫里突然发现了一条更近的路,那肯定得赶紧换道儿呀!第四步,一直重复这个过程,直到所有节点都被处理过。

这就像是你把整个迷宫都走遍了,确定了最短的那条路线。

说起来简单,做起来可得仔细咯!就跟你在迷宫里不能瞎走一样,得动脑子,算仔细。

这最短路径法在好多地方都用得着呢!比如你要规划送货路线,那肯定得找最短的路呀,不然多浪费时间和成本呀!你想想看,要是没有这个方法,那不是得瞎碰运气,说不定绕了一大圈才到目的地。

但有了它,咱就能快速准确地找到那条最佳路径。

咱生活中不也经常要找最短路径嘛!比如你每天上班,怎么走路或者坐车最快,这不就是个现实版的最短路径问题嘛!所以说呀,学会这个最短路径法计算步骤,用处可大着呢!总之啊,这最短路径法计算步骤就像是一把钥匙,能帮我们打开很多难题的大门。

大家可得好好掌握,让它为我们的生活和工作带来便利呀!怎么样,是不是觉得挺有意思的?赶紧去试试吧!。

小专题(一):利用勾股定律解决最短路径问题

小专题(一):利用勾股定律解决最短路径问题勾股定律是数学中的一个重要定理,它可以被广泛用于解决最短路径问题。

最短路径问题是在图论中常见的问题,指的是在一个加权有向图或无向图中找到从一个起点到一个终点的最短路径。

理论基础勾股定律可以用于计算两点之间的距离,它表述如下:在直角三角形中,直角边的平方等于另外两个边的平方和。

根据勾股定律,我们可以计算出两点之间的直线距离,然后利用这个距离来比较各条路径的长度,从而找到最短路径。

解决步骤解决最短路径问题可以按照以下步骤进行:1. 确定起点和终点:首先,我们需要确定问题的起点和终点,这两个点将决定我们要找到的最短路径。

2. 创建图并添加权重:根据实际情况,我们需要创建一个加权有向图或无向图,并为图中的边(路径)添加权重。

权重可以代表两点之间的距离、时间或其他衡量指标。

3. 计算距离:利用勾股定律计算两点之间的距离,将其作为边的权重。

4. 应用最短路径算法:根据图的类型和问题要求,选择合适的最短路径算法,如迪杰斯特拉算法或弗洛伊德算法。

5. 输出最短路径:根据算法计算结果,输出起点到终点的最短路径。

示例以下是一个简单的示例,展示如何利用勾股定律解决最短路径问题:假设我们有一个无向图,其中包含5个节点A、B、C、D和E,节点之间的边权重如下:- AB: 3- AC: 4- BD: 2- CE: 5- DE: 3现在我们想找到从节点A到节点E的最短路径。

根据勾股定律,我们可以计算出各路径的长度:- AB: 3- AC: 4- AD: 5- AE: √(3^2 + 4^2) = 5根据距离,我们可以得出最短路径为A -> B -> D -> E,路径长度为7。

结论利用勾股定律可以解决最短路径问题。

通过计算两点之间的距离,我们可以比较各条路径的长度,并找到起点到终点的最短路径。

在实际应用中,我们可以根据具体情况选择合适的最短路径算法来解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验寻找最佳路径问题
如何根据实际地形情况设计出比较合理的公路规划,是一个值得研究的问题。

?寻找最佳路径问题
1.目的
(1)熟悉ArcGIS栅格数据距离制图
(2)成本距离加权
(3)表面分析
(4)数据重分类
(5)最短路径等空间分析功能。

2、数据准备
(1) DEM(高程数据)
(2) startPot(路径源点数据)
(3) endPot(路径终点数据)
(4) River(小流域分布数据)
3、要求
1) 新建路径成本较少。

2) 新建路径为较短路径。

3) 新建路径的选择应该避开主干河流 , 以减少成本。

4) 新建路径的成本数据计算时 , 考虑到河流成本 (重分类数据reclass_river) 是路径成本中较
关键因素 , 先将坡度数据 (reclass-slope) 和起伏度数据 (reclass-QFD) 按照 0.6: 0.4 权重合并, 然后与河流成本作等权重的加和合并, 公式描述如下: cost=reclass_River+(reclass_slope*0.6+reclass_QFD*0.4)
5) 寻找最短路径的实现需要运用 ArcGIS 的空间分析 (Spatial Analyst) 中距离制图中的成本路径及最短路径、表面分析中的坡度计算及起伏度计算、重分类及栅格计算器等功能完成。

6) 提交寻找到的最短路径路线图。

1。

相关文档
最新文档