对数及对数函数复习卷
高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析1.函数(其中且)的图像恒过定点,若点在直线上,其中,则的最小值为 .【答案】2【解析】由y=log(x+3)-1经过的定点为(-2,-1)a于是-2m-n+4=0,得2m+n=4,且mn>0,于是m>0,n>0所以=2当且仅当m=1,n=2时等号成立,即的最小值为2.【考点】函数图象过定点,基本不等式(2x-1)的定义域为________________.2.函数f(x)=log2【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.计算的结果是()A.B.2C.D.3【答案】B【解析】,选B【考点】对数基本运算.4.若的最小值是A.B.C.D.【答案】D【解析】由题意,且,所以又,所以,,所以,所以,当且仅当,即,时,等号成立.故选D.【考点】1、对数的运算;2、基本不等式.5.若,则=.【答案】【解析】∵,,∴.【考点】分段函数的函数值、三角函数值的计算、对数式的计算.6.设a=lg e,b=(lg e)2,c=lg,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a【答案】B【解析】∵1<e<3,则1<<e<e2<10.∴0<lg e<1.则lg=lg e<lg e,即c<a.又0<lg e<1,∴(lg e)2<lg e,即b<a.同时c-b=lg e-(lg e)2=lg e(1-2 lg e)=lg e·lg>0.∴c>b.故应选B.7.函数y=(x2-6x+17)的值域是________.【答案】(-∞,-3]【解析】令t=x2-6x+17=(x-3)2+8≥8,y=为减函数,所以有≤=-3.8.已知f(x)=logax(a>0且a≠1),如果对于任意的x∈都有|f(x)|≤1成立,试求a的取值范围.【解析】解:当a>1时,f(x)=logax在上单调递增,要使x∈都有|f(x)|≤1成立,则有解得a≥3.∴此时a的取值范围是a≥3.当0<a<1时,f(x)=logax在上单调递减,要使x∈都有|f(x)|≤1成立,则有,解得0<a≤.∴此时,a的取值范围是0<a≤.综上可知,a的取值范围是∪[3,+∞).9.(5分)(2011•重庆)设a=,b=,c=log3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【答案】B【解析】可先由对数的运算法则,将a和c化为同底的对数,利用对数函数的单调性比较大小;再比较b和c的大小,用对数的换底公式化为同底的对数找关系,结合排除法选出答案即可.解:由对数的运算法则,a=log32>c;排除A和C.因为b=log23﹣1,c=log34﹣1=,因为(log23)2>2,所以log23>,所以b>c,排除D故选B.点评:本题考查对数值的大小比较,考查对数的运算法则和对数的换底公式,考查运算能力.10.函数的值域为 .【答案】【解析】由得 ,所以函数的定义域是:设点=所以,,所以答案填:【考点】1、对数函数的性质;2、数形结合的思想.11.函数的定义域是A.[1,2]B.C.D.【答案】C【解析】根据函数定义域的要求得:.【考点】(1)函数的定义域;(1)对数函数的性质.12.对任意实数a,b定义运算如下,则函数的值域为( )A.B.C.D.【答案】B【解析】因为,对任意实数a,b定义运算如下,所以,==,故,选B.【考点】分段函数,对数函数的性质,新定义.13.已知函数f(x)=log2x-2log2(x+c),其中c>0,若对任意x∈(0,+∞),都有f(x)≤1,则c的取值范围是________.【答案】c≥【解析】由题意,在x∈(0,+∞)上恒成立,所以c≥14. 若函数f(x)=log 2|ax -1|(a >0),当x≠时,有f(x)=f(1-x),则a =________. 【答案】2【解析】由f(x)=f(1-x),知函数f(x)的图象关于x =对称, 而f(x)=log 2+log 2|a|,从而=,所以a =2.15. 已知两条直线l 1:y =m 和l 2:y =,l 1与函数y =|log 2x|的图象从左至右相交于点A 、B ,l 2与函数y =|log 2x|的图象从左至右相交于点C 、D.记线段AC 和BD 在x 轴上的投影长度分别为a 、b.当m 变化时,求的最小值. 【答案】8【解析】由题意得x A =m,x B =2m ,x C =,x D =,所以a =|x A -x C |=,b =|x B -x D |=,即==·2m =2+m.因为+m = (2m +1)+-≥2-=,当且仅当 (2m +1)=,即m =时取等号.所以,的最小值为=8.16. 设则a ,b ,c 的大小关系为 A .a <c <b B .b <a <c C .a <b <c D .b <c <a【答案】B 【解析】因为所以显然,所以的值最大.故排除A,D 选项.又因为,所以.即.综上.故选B.本小题关键是进行对数的运算.【考点】1.对数的运算.2.数的大小比较的方法.17. 函数y=log a (x-1)+2(a>0,且a≠1)的图象恒过定点 . 【答案】(2,2)【解析】∵log a 1=0,∴x-1=1,即x=2,此时y=2,因此函数恒过定点(2,2).18. 已知函数f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,若a =40.2f (40.2),b =(log 43)f (log 43),c =f,则a ,b ,c 的大小关系是________.【答案】c >a >b【解析】由f (x )+xf ′(x )>0得(xf (x ))′>0,令g (x )=xf (x ),则g (x )在(0,+∞)递增,且为偶函数,且a =g (40.2),b =g (log 43),c =g =g (-2)=g (2),因为0<log 43<1<40.2<2,所以c >a>b .19. 在ABC 中,若,则A=( )A .B .C .D .【答案】C【解析】由,整理得,又,选C.【考点】对数及其运算,余弦定理的应用.20.已知函数(1)若x=2为的极值点,求实数a的值;(2)若在上为增函数,求实数a的取值范围.【答案】(1);(2)【解析】(1)通过求导可得.又因为x=2是极值点.即可求得.(2)通过对对数的定义域可得符合题意的不等式.在上恒成立.所以转化为研究二次函数的最值问题.通过对称轴研究函数的单调性即可得到结论.本题的的关键是对含参的函数的最值的讨论.以二次的形式为背景紧扣对称轴这个知识点.试题解析:(1)因为.因为x=2为f(x)的极值点.所以即.解得.又当时.从而x=2为f(x)的极值点成立. (2)因为f(x)在区间上为增函数.所以.在区间上恒成立. ①当时. 在上恒成立.所以f(x)在上为增函数.故符合题意.②当时.由函数f(x)的定义域可知,必须有时恒成立.故只能.所以在区间上恒成立.令g(x)= .其对称轴为.因为.所以<1.从而g(x) 在上恒成立.只需要g(3) 即可.由g(3)= .解得:.因为.所以.综上所述. 的取值范围为.【考点】1.对数函数的知识点.2.最值问题.3.含参的讨论.21.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为 .【答案】【解析】的两根x1,x2满足0<x1<1<x2,则x1+x2=-m,x1x2=,(x1-1)(x2-1)=x1x2-(x1+x2)+1=+m+1<0,即∴-m<n<-3m-2,为平面区域D,∴m<-1,n>1,因为的图像上存在区域D内的点,所以,,因为,所以,所以解得.【考点】1.函数的导数;2.对数的性质.22.设是定义在上的偶函数,对任意的,都有,且当时,,若关于的方程在区间内恰有三个不同实根,则实数的取值范围是 .【答案】【解析】∵对于任意的x∈R,都有f(2-x)=f(x+2),∴函数f(x)的图象关于直线x=2对称,又∵当x∈[-2,0]时,f(x)=-1,且函数f(x)是定义在R上的偶函数,若在区间(-2,6)内关于x的方程f(x)-loga (x+2)=0恰有3个不同的实数解,则函数y=f(x)与y=loga(x+2)在区间(-2,6)上有三个不同的交点,如下图所示:又f(-2)=f(2)=3,则有 loga (2+2)<3,且loga(6+2)≥3,解得.【考点】1.指数函数与对数函数的图象与性质;2.函数的零点与方程根的关系23.对于以下结论:①.对于是奇函数,则;②.已知:事件是对立事件;:事件是互斥事件;则是的必要但不充分条件;③.若,,则在上的投影为;④.(为自然对数的底);⑤.函数的图像可以由函数图像先左移2个单位,再向下平移1个单位而来.其中,正确结论的序号为__________________.【答案】③④⑤【解析】对①,不一定有意义,所以不正确;对②,是的充分但不必要条件;所以不正确;对③,易得在上的投影为;所以正确;对④,构造函数,则.由此可得在上单调递减,故成立;所以正确;对⑤,原函数可变为:,所以将函数图像先左移2个单位,再向下平移1个单位可得函数的图像.正确.【考点】1、函数的性质;2、随机事件及二项分布;3、向量的投影;4、充分必要条件.24.设,,,则( )A.c>b>a B.b>c>a C.a>c>b D.a>b>c【答案】D【解析】,,,又,,,,所以,所以.【考点】对数与对数运算25.函数f(x)=lnx的图象与函数g(x)=x2-4x+4的图象的交点个数为()A.0B.1C.2D.3【答案】C【解析】将题中所给的函数画出如下:,根据图像,易知有2个交点.【考点】1.函数的零点;2.函数的图像画法.26.不等式的解集为_____________.【答案】【解析】原不等式等价于,解得.【考点】对数函数的定义与性质27.已知函数f(x)=|lg(x-1)|若a≠b,f(a)=f(b),则a+2b的取值范围是.【答案】【解析】由得,且,由对数函数的特征得,所以,故.【考点】对数函数性质、基本不等式.28.已知函数.(1) 当时,函数恒有意义,求实数a的取值范围;(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.【答案】(1);(2)存在,.【解析】(1)首先根据对数函数的底数,得到为减函数,最小值是,再根据对数函数的真数大于0,得到恒成立,在范围内解不等式即可;(2)先看真数部分是减函数,由已知“在区间上为增函数”可得,为减函数,此时得到;根据“的最大值为1”,结合对数函数的真数大于0,可知,解出,再判断它是不是在的范围内,在这个范围内,那么得到的的值满足题目要求,不在这个范围内就说明满足题目要求的是不存在的.试题解析:(1)∵,设,则为减函数,时,t最小值为, 2分当,恒有意义,即时,恒成立.即;4分又,∴ 6分(2)令,则;∵,∴函数为减函数,又∵在区间上为增函数,∴为减函数,∴,8分所以时,最小值为,此时最大值为;9分又的最大值为1,所以, 10分∴,即,所以,故这样的实数a存在. 12分【考点】1.对数函数的定义及定义域;2.对数函数的单调性及其应用;3.对数函数的值域与最值;4.简单复合函数的单调性;5.解不等式29.若函数(其中为常数且),满足,则的解集是 .【答案】【解析】函数定义域为,由,知函数为单调递减函数,所以.由知,满足:,解得.【考点】1.不等式求解;2.对数的单调性;3.函数的定义域.30.已知函数(为常数,为自然对数的底)(1)当时,求的单调区间;(2)若函数在上无零点,求的最小值;(3)若对任意的,在上存在两个不同的使得成立,求的取值范围.【答案】(1)的减区间为,增区间为;(2)的最小值为;(3)的取值范围是.【解析】(1)将代入函数的解析式,利用导数求出的单调递增区间和递减区间;(2)将函数在上无零点的问题转化为直线与曲线在区间上无交点,利用导数确定函数在区间上的图象,进而求出参数的取值范围,从而确定的最小值;(3)先研究函数在上的单调性,然后再将题干中的条件进行适当转化,利用两个函数的最值或端点值进行分析,列出相应的不等式,从而求出的取值范围.试题解析:(1)时,由得得故的减区间为增区间为 3分(2)因为在上恒成立不可能故要使在上无零点,只要对任意的,恒成立即时, 5分令则再令于是在上为减函数故在上恒成立在上为增函数在上恒成立又故要使恒成立,只要若函数在上无零点,的最小值为 8分(3)当时,,为增函数当时,,为减函数函数在上的值域为 9分当时,不合题意当时,故① 10分此时,当变化时,,的变化情况如下时,,任意定的,在区间上存在两个不同的使得成立,当且仅当满足下列条件即②即③ 11分令令得当时,函数为增函数当时,函数为减函数所以在任取时有即②式对恒成立 13分由③解得④由①④当时对任意,在上存在两个不同的使成立【考点】1.函数的单调区间;2.函数的零点;3.函数的存在性问题31.设函数,若对任意实数,函数的定义域为,则的取值范围为____________.【答案】【解析】函数的定义域为,则满足,即对任意实数恒成立,只要比的最大值大即可,而的最大值为,即.【考点】函数的定义域恒成立问题,学生的基本运算能力与逻辑推理能力.32.设,,则 ( )A.B.C.D.【答案】D.【解析】是上的增函数,又.【考点】对数值大小的比较.33.,,,则与的大小关系为()A.B.C.D.不确定【答案】C【解析】因为,,即,所以,故选C.【考点】对数的运算34.函数的定义域为()A.B.C.D.【答案】D【解析】要使函数解析式有意义需满足:解得且,即选D.【考点】1.对数函数;2.一元二次不等式.35.若,则()A.<<B.<<C.<<D.<<【答案】C【解析】因为所以,而,故,又,而,故,综上,,选C.【考点】对数函数.36.设,,,则()A.B.C.D.【答案】D【解析】一般地,只要涉及3个及以上的数比较大小,应找一中间量来比较,比如0、1.由对数的性质知:,,。
高三一轮复习精题组对数与对数函数(有详细答案)

§2.6 对数与对数函数1.对数的概念如果a x=N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中__a __叫做对数的底数,__N __叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n=n mlog a M . (2)对数的性质①a log a N =__N __;②log a a N=__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b(a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质4.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线__y=x__对称.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)若log2(log3x)=log3(log2y)=0,则x+y=5. ( √)(2)2log510+log50.25=5. ( ×)(3)已知函数f(x)=lg x,若f(ab)=1,则f(a2)+f(b2)=2. ( √)(4)log2x2=2log2x. ( ×)(5)当x>1时,log a x>0. ( ×)(6)当x>1时,若log a x>log b x,则a<b. ( ×) 2.(2013·课标全国Ⅱ)设a=log36,b=log510,c=log714,则( ) A.c>b>a B.b>c>aC.a>c>b D.a>b>c答案 D解析a=log36=1+log32=1+1log23,b=log510=1+log52=1+1log25,c=log714=1+log72=1+1log27,显然a>b>c.3.(2013·浙江)已知x,y为正实数,则( )A .2lg x +lg y =2lg x+2lg yB .2lg(x +y )=2lg x·2lg yC .2lg x ·lg y=2lg x+2lg yD .2lg(xy )=2lg x ·2lg y答案 D 解析 2lg x·2lg y=2lg x +lg y=2lg(xy ).故选D.4.函数f (x )=log 5(2x +1)的单调增区间是________.答案 (-12,+∞)解析 函数f (x )的定义域为(-12,+∞),令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在(-12,+∞)上为增函数,所以函数y =log 5(2x +1)的单调增区间是(-12,+∞).5.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝ ⎛⎭⎪⎫13=0,则不等式f (log 18x )>0的解集为________________.答案 ⎝ ⎛⎭⎪⎫0,12∪(2,+∞)解析 ∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称. ∵f (x )在[0,+∞)上为增函数, ∴f (x )在(-∞,0]上为减函数,由f ⎝ ⎛⎭⎪⎫13=0,得f ⎝ ⎛⎭⎪⎫-13=0. ∴f (log 18x )>0⇒log 18x <-13或log 18x >13⇒x >2或0<x <12,∴x ∈⎝ ⎛⎭⎪⎫0,12∪(2,+∞).题型一 对数式的运算例1 (1)若x =log 43,则(2x-2-x )2等于( )A.94B.54C.103D.43(2)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f (log 312)的值是( )A .5B .3C .-1D.72思维启迪 (1)利用对数的定义将x =log 43化成4x=3; (2)利用分段函数的意义先求f (1),再求f (f (1));f (log 312)可利用对数恒等式进行计算.答案 (1)D (2)A解析 (1)由x =log 43,得4x=3,即2x=3,2-x =33,所以(2x -2-x )2=(233)2=43.(2)因为f (1)=log 21=0,所以f (f (1))=f (0)=2. 因为log 312<0,所以f (log 312)=3-log 312+1=3log 32+1=2+1=3.所以f (f (1))+f (log 312)=2+3=5.思维升华 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.已知函数f (x )=⎩⎪⎨⎪⎧(12)x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为________.答案124解析 因为2+log 23<4, 所以f (2+log 23)=f (3+log 23), 而3+log 23>4,所以f (3+log 23)=(12)3+log 23=18×(12)log 23=18×13=124. 题型二 对数函数的图象和性质例2 (1)函数y =2log 4(1-x )的图象大致是( )(2)已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 213),c =f (0.2-0.6),则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .b <c <aD .a <b <c思维启迪 (1)结合函数的定义域、单调性、特殊点可判断函数图象;(2)比较函数值的大小可先看几个对数值的大小,利用函数的单调性或中间值可达到目的. 答案 (1)C (2)B解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ; 又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C. (2)log 213=-log 23=-log 49,b =f (log 213)=f (-log 49)=f (log 49),log 47<log 49,0.2-0.6=⎝ ⎛⎭⎪⎫15-35=5125>532=2>log 49, 又f (x )是定义在(-∞,+∞)上的偶函数, 且在(-∞,0]上是增函数,故f (x )在[0,+∞)上是单调递减的,∴f (0.2-0.6)<f (log 213)<f (log 47),即c <b <a .思维升华 (1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等;(2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想.(1)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a(2)已知函数f (x )=log a (x +b ) (a >0且a ≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________. 答案 (1)A (2)2 2解析 (1)b =⎝ ⎛⎭⎪⎫12-0.8=20.8<21.2=a ,c =2log 52=log 522<log 55=1<20.8=b ,故c <b <a .(2)f (x )的图象过两点(-1,0)和(0,1).则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1, ∴⎩⎪⎨⎪⎧b -1=1b =a,即⎩⎪⎨⎪⎧b =2a =2.题型三 对数函数的应用例3 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.思维启迪 f (x )恒有意义转化为“恒成立”问题,分离参数a 来解决;探究a 是否存在,可从单调性入手.解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数, ∵f (x )在区间[1,2]上为减函数, ∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0log a (3-a )=1,即⎩⎪⎨⎪⎧a <32a =32,故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 思维升华 解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质 (1)要分清函数的底数是a ∈(0,1),还是a ∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行;(3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.已知f (x )=log 4(4x-1).(1)求f (x )的定义域;(2)讨论f (x )的单调性;(3)求f (x )在区间[12,2]上的值域.解 (1)由4x-1>0,解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f (x 1)<f (x 2), 故f (x )在(0,+∞)上递增.(3)f (x )在区间[12,2]上递增,又f (12)=0,f (2)=log 415,因此f (x )在[12,2]上的值域为[0,log 415].利用函数性质比较幂、对数的大小典例:(15分)(1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A .a >b >c B .a <b <c C .b <a <cD .a <c <bA .a >b >cB .b >a >cC .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b思维启迪 (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 30.3=log 3103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解.解析 (1)根据幂函数y =x 0.5的单调性,可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .方法一 在同一坐标系中分别作出函数y =log2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.(3)因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数. 因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2, 所以0<log π3<20.2<log 39, 所以b >a >c ,选A. 答案 (1)C (2)C (3)A温馨提醒 (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.方法与技巧1.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.2.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 3.多个对数函数图象比较底数大小的问题,可通过图象与直线y =1交点的横坐标进行判定. 失误与防范1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N +,且α为偶数).2.指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值A 组 专项基础训练一、选择题 1.函数y =2-xlg x的定义域是( )A .{x |0<x <2}B .{x |0<x <1或1<x <2}C .{x |0<x ≤2}D .{x |0<x <1或1<x ≤2}答案 D解析 要使函数有意义只需要⎩⎪⎨⎪⎧2-x ≥0x >0lg x ≠0,解得0<x <1或1<x ≤2,∴定义域为{x |0<x <1或1<x ≤2}. 2.函数y =lg|x -1|的图象是( )答案 A解析 ∵y =lg|x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1lg (1-x ),x <1.∴A 项符合题意.3.已知x =ln π,y =log 52,z =e 21-,则 ( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x答案 D解析 ∵x =ln π>ln e ,∴x >1.∵y =log 52<log 55,∴0<y <12.∵z =e21-=1e >14=12,∴12<z <1.综上可得,y <z <x .4.A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)答案 C⇒a >1或-1<a <0.5.函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是 ( )A .(1,+∞)B .(0,1) C.⎝ ⎛⎭⎪⎫0,13D .(3,+∞)答案 D解析 由于a >0,且a ≠1,∴u =ax -3为增函数, ∴若函数f (x )为增函数,则f (x )=log a u 必为增函数, 因此a >1.又y =ax -3在[1,3]上恒为正, ∴a -3>0,即a >3,故选D. 二、填空题 6.7.已知函数f (x )=⎩⎪⎨⎪⎧ 3x +1,x ≤0,log 2x ,x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是________________.答案 {x |-1<x ≤0或x >2}解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,∴x >2.综上所述,x 的取值范围为-1<x ≤0或x >2.8.若log 2a 1+a 21+a<0,则a 的取值范围是____________. 答案 ⎝ ⎛⎭⎪⎫12,1 解析 当2a >1时,∵log 2a 1+a 21+a<0=log 2a 1, ∴1+a 21+a<1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1. 当0<2a <1时,∵log 2a 1+a 21+a<0=log 2a 1, ∴1+a 21+a>1.∵1+a >0,∴1+a 2>1+a , ∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1. 三、解答题9.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.解 (1)要使函数f (x )有意义.则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为{x |-1<x <1}.(2)由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1. 所以使f (x )>0的x 的解集是{x |0<x <1}.10.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18.当f (x )取最小值-18时,log a x =-32.又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13,=2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f (x )取得最小值时,x =(12)-32=22∈[2,8],符合题意,∴a =12.B 组 专项能力提升1.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是 () A .(-1,0) B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)答案 A解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x <1,∴-1<x <0.2.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有()A .f (13)<f (2)<f (12) B .f (12)<f (2)<f (13) C .f (12)<f (13)<f (2) D .f (2)<f (12)<f (13) 答案 C解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2). 3.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 015)=8,则f (x 21)+f (x 22)+…+f (x 22 015)=________.答案 16解析 f (x 1x 2…x 2 015)=log a (x 1x 2…x 2 015)=8,f (x 21)+f (x 22)+…+f (x 22 015) =log a x 21+log a x 22+…+log a x 22 015=log a (x 1x 2…x 2 015)2=2log a (x 1x 2…x 2 015)=16.4.设f (x )=|lg x |,a ,b 为实数,且0<a <b .(1)求方程f (x )=1的解;(2)若a ,b 满足f (a )=f (b ),求证:a ·b =1,a +b 2>1. (3)在(2)的条件下,求证:由关系式f (b )=2f (a +b 2)所得到的关于b 的方程g (b )=0,存在b 0∈(3,4),使g (b 0)=0.(1)解 由f (x )=1得,lg x =±1,所以x =10或110. (2)证明 结合函数图象,由f (a )=f (b )可判断a ∈(0,1),b ∈(1,+∞),从而-lg a =lg b ,从而ab =1.又a +b 2=1b +b 2>21b ·b 2=1(因1b≠b ). (3)证明 由已知可得b =(a +b 2)2,得4b =a 2+b 2+2ab ,得1b 2+b 2+2-4b =0, g (b )=1b 2+b 2+2-4b , 因为g (3)<0,g (4)>0,根据零点存在性定理可知,函数g (b )在(3,4)内一定存在零点,即存在b 0∈(3,4),使g (b 0)=0.5.已知函数y =log 21 (x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 21 (x 2-ax +a )是由函数y =log 21t 和t =x 2-ax +a 复合而成.因为函数y =log 21t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减, 故函数y =log 21 (x 2-ax +a )在区间(-∞,a 2]上单调递增. 又因为函数y =log 21 (x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎨⎧ a ≥22,2-2a +a ≥0,即22≤a ≤2(2+1).。
(完整版)对数和对数函数经典练习题

对数和对数函数练习题1 求下列各式中的x 的值:(1)313x =;(2)6414x =;(3)92x =; (4)1255x 2=;(5)171x 2=-.2 有下列5个等式,其中a 〉0且a ≠1,x 〉0 , y>0①y log x log )y x (log a a a +=+,②y log x log )y x (log a a a ⋅=+, ③y log x log 21y x log a a a -=,④)y x (log y log x log a a a ⋅=⋅, ⑤)y log x (log 2)y x (log a a 22a -=-,将其中正确等式的代号写在横线上_____________.3 化简下列各式:(1)51lg 5lg 32lg 4-+; (2)536lg 27lg 321240lg 9lg 211+--+;(3)3lg 70lg 73lg -+; (4)120lg 5lg 2lg 2-+.4 利用对数恒等式N a N loga =,求下列各式的值: (1)5log 4log 3log354)31()51()41(-+ (2)2log 2log 4log 7101.0317103-+(3)6lg 3log 2log100492575-+ (4)31log 27log 12log 2594532+-5 化简下列各式:(1))2log 2(log )3log 3(log 9384+⋅+; (2)6log ]18log 2log )3log 1[(46626⋅⋅+-6 已知a 5log 3=,75b =,用a 、b 的代数式表示105log 63=________.7 (1))1x (log y 3-= 的定义域为_________值域为____________。
(2)22x log y = 的定义域为__________值域为_____________.8 求下列函数的定义域:(1))2x 3(log x 25y a 2--=;(2))8x 6x (log y 2)1x 2(+-=-;(3))x (log log y 212=.9 (1)已知3log d 30log c 3b 30a 303303....====,,,,将a 、b 、c 、d 四数从小到大排列为_____________________.(2)若02log 2log m n >>时,则m 与n 的关系是( )A .m>n>1B .n 〉m>1C .1>m>n>0D .1〉n>m>010 (1)若a>0且a ≠1,且143log a<,则实数a 的取值范围是( ) A .0〈a 〈1 B .43a 0<< C .43a 043a <<>或 D .43a 0<<或a 〉1 (2)若1<x 〈d ,令)x (log log c x log b )x (log a d d 2d 2d ===,,,则( )A .a<b 〈cB .a 〈c 〈bC .c<b 〈aD .c 〈a<b11 已知函数)x 35(log y )4x 2(log y 3231-=+=,.(1)分别求这两个函数的定义域;(2)求使21y y =的x 的值;(3)求使21y y >的x 值的集合.12 已知函数)x 1x lg()x (f 2-+=(1)求函数的定义域;(2)证明f(x)是减函数.【同步达纲练习】一、选择题1.3log 9log 28的值是( ) A .32 B .1 C .23 D .2 2.函数)1x 2x (log )x (f 22+-=的定义域是( )A .RB .(-∞,1)∪(1,+∞)C .(0,1)D .[1,+∞]3.若函数x 2)x (f =,它的反函数是)x (f 1-,)(f c )4(f b )3(f a 111π===---,,,则下面关系式中正确的是( )A .a<b 〈cB .a 〈c< bC .b 〈c<aD .b 〈a<c4.4log 33的值是( ) A .16 B .4 C .3 D .25.)2x 2x (log )x (f 25+-=,使f(x)是单调增函数的x 值的区间是( )A .RB .(-∞,1)C .[1,+∞]D .(-∞,1)∪(1,+∞) 6.2log 3log 3log 2log )3log 2(log 3223223--+的值是( ) A .6log 2 B .6log 3 C .2 D .17.命题甲:a 〉1且x>y>0 命题乙:y log x log a a >那么甲是乙的( )A .充分而非必要条件B .必要而非充分条件C .充分必要条件D .既不充分也不必要条件8.如果0<a<1,那么下列不等式中正确的是( )A .2131)a 1()a 1(-<- B .1)a 1(a 1>-+C .0)a 1(log )a 1(>+-D .0)a 1(log )a 1(<-+9.5log 222的值是( ) A .5 B .25 C .125 D .62510.函数)x 2(log )x (f 3-=在定义域区间上是( )A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调性11.x log )x (f 2=,若142)a (f 1=--,则实数a 的值是( )A .4B .3C .2D .112.在区间(0,+∞)上是增函数的函数是( )A .1x )32()x (f +=B .)1x (log )x (f 232+=C .)x x lg()x (f 2+=D .x 110)x (f -= 13.3log 15log 15log 5log 52333--的值是( ) A .0 B .1 C .5log 3 D .3log 514.函数2x log y 5+=(x ≥1)的值域是( )A .RB .[2,+∞]C .[3,+∞]D .(-∞,2)15.如果)x 2(log )x (f a -=是增函数,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(0,1)D .(0,2)16.函数)3x 2x (log y 23--=是单调增函数的区间是( )A .(1,+∞)B .(3,+∞)C .(-∞,1)D .(-∞,-1)17.如果02log 2log b a >>,那么下面不等关系式中正确的是( )A .0〈a<b 〈1B .0〈b 〈a 〈1C .a 〉b>1D .b>a>1二、填空题1.函数f(x)的定义域是[-1,2],则函数)x (log f 的定义域是_____________.2.若412x log 3=,则x =_____________.3.若)1x (log )x (f 3-=使f(a)=2,那么a =_____________.4.函数)a ax x (log )x (f 23-+=的定义域是R(即(-∞,+∞)),则实数a 的取值范围是_____________.5.函数x )31(y =的图象与函数x log y 3-=的图象关于直线_____________对称. 6.函数)1x (log )x (f 24-=,若f(a)〉2,则实数a 的取值范围是_____________.7.已知1313)x (f x x +-=,则)21(f 1-=_____________. 8.x log )x (f 21=,当]a a [x 2,∈时,函数的最大值比最小值大3,则实数a =_____________.9.])2(log )41)[(log 2(lg 15121--+=_____________.三、解答题1.试比较22x lg )x (lg 与的大小.2.已知)1a (log )x (f x a -=(a>1)(1) 求f (x)的定义域; (2)求使)x (f )x 2(f 1-=的x 的值.3.实数x 满足方程5)312(log x x 2=-+,求x 值的集合.4.已知b 5log a 7log 1414==,,求28log 35(用a 、b 表示).。
2025高考一轮复习专练9 对数与对数函数【含答案】

2025高考一轮复习专练9对数与对数函数(原卷版)[基础强化]一、选择题1.lg 52+2lg 2-(12)-1=()A .1B .-1C .3D .-32.函数y =log 12(3x -2)的定义域是()A .[1,+∞)B .(23,+∞)C .23,1D .(23,1]3.函数f (x )=log 12(x 2-2x )的单调递增区间是()A .(-∞,0)B .(1,+∞)C .(2,+∞)D .(-∞,1)4.若函数f (x )=(m -2)x a 是幂函数,则函数g (x )=log a (x +m )(a >0且a ≠1)的图像过点()A .(-2,0)B .(2,0)C .(-3,0)D .(3,0)5.[2024·江西省高三联考]设a =log 0.222022,b =sin (sin 2022),c =20220.22则a ,b ,c 的大小关系为()A .a <b <cB .b <a <cC .b <c <aD .c <b <a 6.[2024·河北省高三二模]已知x =(43)54,y =log 45,z =log 34,则x 、y 、z 的大小关系为()A .y >x >zB .x >y >zC .z >x >yD .x >z >y7.已知函数f (x )=ln x +ln (2-x ),则()A .f (x )在(0,2)上单调递增B .f (x )在(0,2)上单调递减C .y =f (x )的图像关于直线x =1对称D .y =f (x )的图像关于点(1,0)对称8.若函数y =log a x (a >0且a ≠1)的图像如图所示,则下列函数图像正确的是()9.[2024·重庆市高三质量检测]若函数f (x )=log a (-3x 2+4ax -1)有最小值,则实数a 的取值范围是()A .(32,1)B .(1,3)C .(0,32)D .(3,+∞)二、填空题10.已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________.11.函数f (x )x-log 2(x +4)在区间[-2,2]上的最大值为________.12.函数f (x )=log 2(-x 2+22)的值域为________.[能力提升]13.[2024·江西省九江市二模]牛顿冷却定律,即温度高于周围环境的物体向周围媒质传递热量逐渐冷却时所遵循的规律.如果物体的初始温度为T 0,则经过一定时间t 分钟后的温度T 满足T -T c =(12)t h (T 0-T c ),其中T c 是环境温度,h 为常数.现有一个105℃的物体,放在室温15℃的环境中,该物体温度降至75℃大约用时1分钟,那么再经过m 分钟后,该物体的温度降至30℃,则m 的值约为(参考数据:lg 2≈0.3010,lg 3≈0.4771)()A .2.9B .3.4C .3.9D .4.414.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lg V.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)()A.1.5B.1.2C.0.8D.0.615.[2024·江西省高三一模]纳皮尔在他的《奇妙的对数表》一书中说过:没有什么比大数的运算更让数学工作者头痛,更阻碍了天文学的发展.许凯和斯蒂菲尔这两个数学家都想到了构造了如下一个双数列模型的方法处理大数运算.0123451248163267891011641282565121024204812 (19202122)4096 (524288104857620971524194304)232425…83886081677721633554432…如512×1024,我们发现512是9个2相乘,1024是10个2相乘.这两者的积,其实就是2的个数做一个加法.所以只需要计算9+10=19.那么接下来找到19对应的数524288,这就是结果了.若x=log4(20211226×1314520),则x落在区间()A.(15,16)B.(22,23)C.(42,44)D.(44,46)16.已知函数f(x)=log a(-x+1)(a>0且a≠1)在[-2,0]上的值域是[-1,0],若函数g(x)=a x+m-3的图像不经过第一象限,则m的取值范围为________2025高考一轮复习专练9对数与对数函数(解析版)1.B原式=lg 52+lg 4-2=lg -2=1-2=-1.2.D 由题意得log 12(3x -2)≥0,即0<3x -2≤1.∴23<x ≤1.3.A 函数f (x )=log 12(x 2-2x )的定义域为(-∞,0)∪(2,+∞),由复合函数的单调性可知,函数f (x )=log 12(x 2-2x )的单调增区间为(-∞,0).4.A ∵f (x )=(m -2)x a 为幂函数,∴m -2=1,m =3,∴g (x )=log a (x +3),又g (-2)=0,∴g (x )的图像过(-2,0).5.A 因为a =log 0.222022<log 0.2210.22=-1,-1<b =sin (sin 2022)<1,c =20220.22>20220=1,所以a <b <c .故选A.6.D ∵y =log 45>1,z =log 34>1,∴y z =log 45log 34=log 45·log 43≤(log 45+log 432)2=(log 4152)2=(log 415)2<(log 44)2=1,即z >y ,∵43=log 3343,而(343)3=34=81>43=64,∴43=log 3343>log 34,又43=(43)1<(43)54,∴x >z ,综上,x >z >y .7.C f (x )的定义域为(0,2),f (x )=ln x +ln (2-x )=ln [x (2-x )]=ln (-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln (-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减.∴选项A 、B 错误;∵f (x )=ln x +ln (2-x )=f (2-x ),∴f (x )的图像关于直线x =1对称,∴选项C 正确;∵f (2-x )+f (x )=[ln (2-x )+ln x ]+[ln x +ln (2-x )]=2[ln x +ln (2-x )],不恒为0,∴f (x )的图像不关于点(1,0)对称,∴选项D 错误.8.B 由y =log a x 的图像可知1,所以a =3.对于选项A :y =3-x x为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误;对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误.故选B.9.A 依题意a ∈(0,1)∪(1,+∞)且-3x 2+4ax -1>0,所以Δ=16a 2-12>0,解得a >32或a <-32,综上可得a ∈(32,1)∪(1,+∞),令-3x 2+4ax -1=0的根为x 1、x 2且x 1<x 2,u (x )=-3x 2+4ax -1,y =log a u ,若a ∈(1,+∞),则y =log a u 在定义域上单调递增,u (x )=-3x 2+4ax -1在(x 1,2a 3)上单调递增,在(2a 3,x 2)上单调递减,根据复合函数的单调性可知,f (x )=log a (-3x 2+4ax -1)在(x 1,2a 3)上单调递增,在(2a 3,x 2)上单调递减,函数不存在最小值,故舍去;若a ∈(32,1),则y =log a u 在定义域上单调递减,u (x )=-3x 2+4ax -1在(x 1,2a 3)上单调递增,在(2a 3,x 2)上单调递减,根据复合函数的单调性可知,f (x )=log a (-3x 2+4ax -1)在(x 1,2a 3)上单调递减,在(2a 3,x 2)上单调递增,所以函数在x =2a 3取得最小值,所以a ∈(32,1).10.-7解析:∵f (3)=log 2(9+a )=1,∴9+a =2,a =-7.11.8解析:因为函数y x,y =-log 2(x +4)在区间[-2,2]上都单调递减,f (x )x -log 2(x +4)在区间[-2,2]上单调递减,所以函数f (x )的最大值为f (-2)-2-24)=9-1=8.-∞,32解析:∵0<-x 2+22≤22,∴log 2(-x 2+22)≤log 222=32.13.B 由75-15=(12)1h (105-15),有(12)1h =23,又30-15=(12)m h (75-15),有(12)m h =14,即(23)m =14,则m lg 23=lg 14,解得m =-lg 4lg 2-lg 3=2lg 2lg 3-lg 2≈3.4.14.C 4.9=5+lg V ⇒lg V =-0.1⇒V =10-110=11010≈11.259≈0.8,所以该同学视力的小数记录法的数据约为0.8.15.B x =log 4(20211226×1314520)=12log 2(20211226×1314520),设20211226=2m ,1314520=2n ,由表格得知:220=1048576,221=2097152,224=16777216,225=33554432,所以24<m <25,则20<n <21,所以m +n ∈(44,46),log 2(20211226×1314520)∈(44,46),则x =12log 2(20211226×1314520)∈(22,23).16.[-1,+∞)解析:∵函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0],而f (0)=0,∴f(-2)=log a3=-1,∴a=13,∴g(x)x+m-3,令g(x)=0,得x=-m-1,则-m-1≤0,求得m≥-1,故m的取值范围为[-1,+∞).。
对数计算练习题

对数计算练习题一、基础题1. 计算下列对数的值:(1) log₂8(2) log₅25(3) log₃1/27(4) log₁₀1002. 将下列指数式转换为对数式:(1) 2³ = 8(2) 5² = 25(3) 3⁻³ = 1/27(4) 10² = 1003. 将下列对数式转换为指数式:(1) log₂8 = 3(2) log₅25 = 2(3) log₃1/27 = 3(4) log₁₀100 = 2二、进阶题1. 计算下列对数的值:(1) log₂16 log₂2(2) log₅125 + log₅5(3) log₃9 / log₃3(4) log₁₀1000 ÷ log₁₀102. 化简下列对数表达式:(1) log₂(8×2)(2) log₅(25÷5)(3) log₃(27×1/3)(4) log₁₀(1000÷100)3. 计算下列对数的值:(1) log₂(1/16)(2) log₅(1/125)(3) log₃(1/81)(4) log₁₀(1/10000)三、综合题1. 已知log₂x = 3,求x的值。
2. 已知log₅x = 2,求x的值。
3. 已知log₃x = 2,求x的值。
4. 已知log₁₀x = 4,求x的值。
5. 已知log₂(x1) = 2,求x的值。
6. 已知log₅(x+3) = 1,求x的值。
7. 已知log₃(x/2) = 0,求x的值。
8. 已知log₁₀(x²) = 3,求x的值。
四、应用题1. 如果10的某个对数等于5,那么这个对数是多少?2. 某城市的人口每20年增长一倍,如果现在的人口是P,那么多少年前人口是P/4?3. 一种放射性物质的半衰期是5年,经过15年后,剩余的这种物质占原来总量的多少?4. 一个细菌群体每半小时增长一倍,经过2小时后,细菌的数量是初始数量的多少倍?五、难题1. 已知log₂(x+1) log₂(x1) = 3,求x的值。
高中数学对数试题及答案

高中数学对数试题及答案一、选择题1. 对数函数y=log_a x的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)2. 如果log_a b = c,那么a的值为:A. b^cB. c^bC. b^(1/c)D. b^c3. 对于任意正数a和b,下列哪个等式是正确的?A. log_a a = 1B. log_a b = log_b aC. log_a b^2 = 2log_a bD. log_a b = log_b a二、填空题4. 根据换底公式,我们可以将log_10 100转换为以e为底的对数,其结果为 _______。
5. 如果log_5 25 = x,那么x的值为 _______。
三、解答题6. 解对数方程:log_3 x + log_3 (x - 1) = 1。
7. 已知log_2 8 = y,求以2为底的对数3的值。
四、证明题8. 证明:对于任意正数a(a≠1),log_a a = 1。
答案一、选择题1. 答案:A. (0, +∞) 对数函数的定义域是正实数。
2. 答案:C. b^(1/c) 根据对数的定义,log_a b = c 意味着 a^c = b。
3. 答案:C. log_a b^2 = 2log_a b 根据对数的幂运算法则。
二、填空题4. 答案:2 因为换底公式 log_a b = log_c b / log_c a,将log_10 100转换为以e为底的对数,即log_e 100 = log_10 100 / log_10 e = 2 / log_10 e = 2。
5. 答案:2 因为25是5的平方,所以log_5 25 = 2。
三、解答题6. 解:由题意得 log_3 x + log_3 (x - 1) = log_3 (x(x - 1)) = 1,根据对数的乘积法则,我们得到 x(x - 1) = 3^1,即 x^2 - x - 3 = 0。
高三数学对数与对数函数试题答案及解析
高三数学对数与对数函数试题答案及解析1.已知函数f(x)=x-1-(e-1)lnx,其中e为自然对数的底,则满足f(e x)<0的x的取值范围为.【答案】(0,1)【解析】因为由得:,又,所以由f(e x)<0得:【考点】利用导数解不等式2.函数f(x)=log2(2x-1)的定义域为________________.【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.函数y=(-x2+6x)的值域()A.(0,6)B.(-∞,-2]C.[-2,0)D.[-2,+∞)【答案】D【解析】∵-x2+6x=-(x-3)2+9,∴0<-x2+6x≤9,∴y≥9=-2,故选D.4.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a 【答案】A【解析】∵a=log3π>log33=1,b=log2<log22=1,∴a>b,又==(log23)2>1,∴b>c,故a>b>c.5.将函数的图象向左平移1个单位长度,那么所得图象的函数解析式为()A.B.C.D.【答案】C【解析】因为,所以将其图象向左平移1个单位长度所得函数解析式为.故C正确.【考点】1对数函数的运算;2函数图像的平移.6.设a=log36,b=log510,c=log714,则a,b,c的大小关系为________.【答案】a>b>c【解析】a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,则只要比较log32,log52,log72的大小即可,在同一坐标系中作出函数y=log3x,y=log5x,y=log7x的图像,由三个图像的相对位置关系,可知a>b>c.7. [2014·湛江模拟]已知函数y=loga(2-ax)在区间[0,1]上是关于x的减函数,则a的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)【答案】B【解析】由题意可知,a>0,故内函数y=2-ax必是减函数,又复合函数是减函数,所以a>1,同时在[0,1]上2-ax>0,故2-a>0,即a<2,综上可知,a∈(1,2).8.已知上的增函数,那么的取值范围是A.B.C.D.【答案】C【解析】由题设,故选C.【考点】1、分段函数;2、对数函数的性质;3、不等式组的解法.9. 2log510+log50.25=()A.0B.1C.2D.4【答案】C【解析】∵2log510+log50.25=log5100+log50.25=log525=2故选C.10.下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是()A.(﹣∞,1]B.C.D.(1,2)【答案】D【解析】∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D11.方程的解是.【答案】1【解析】原方程可变为,即,∴,解得或,又,∴.【考点】解对数方程.12.(1)设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差是,则a=________;(2)若a=log0.40.3,b=log54,c=log20.8,用小于号“<”将a、b、c连结起来________;(3)设f(x)=lg是奇函数,则使f(x)<0的x的取值范围是________;(4)已知函数f(x)=|log2x|,正实数m、n满足m<n且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m、n的值分别为________.【答案】(1)4(2)c<b<a(3)-1<x<0(4),2【解析】解析:(1)∵a>1,∴函数f(x)=loga x在区间[a,2a]上是增函数,∴loga2a-logaa=,∴a=4.(2)由于a>1,0<b<1,c<0,所以c<b<a.(3)由f(-x)+f(x)=0,得a=-1,则由lg<0,得解得-1<x<0.(4)结合函数f(x)=|log2x|的图象,易知0<m<1,n>1,且mn=1,所以f(m2)=|log2m2|=2,解得m=,所以n=2.13.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.【答案】(1)k=-.(2){-3}∪(1,+∞).【解析】(1)由函数f(x)是偶函数,可知f(x)=f(-x),∴log4(4x+1)+kx=log4(4-x+1)-kx.log4=-2kx,即x=-2kx对一切x∈R恒成立,∴k=-.(2)函数f(x)与g(x)的图象有且只有一个公共点,即方程log4(4x+1)-x=log4有且只有一个实根,化简得方程2x+=a·2x-a有且只有一个实根.令t=2x>0,则方程(a-1)t2-at-1=0有且只有一个正根.①a=1t=-,不合题意;②a≠1时,Δ=0a=或-3.若a=t=-2,不合题意,若a =-3t=;③a≠1时,Δ>0,一个正根与一个负根,即<0a>1.综上,实数a的取值范围是{-3}∪(1,+∞).14.已知实数a、b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中所有不可能成立的关系式为________.(填序号)【答案】③④【解析】条件中的等式Û2a=3bÛa lg2=b lg3.若a≠0,则∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.15. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a+log a+…+log a=log a m +log a n ,求m 、n 的值.【答案】【解析】左边=log a m +log a+log a+…+log a=log a=log a (m +n),∴已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1. ∵m 、n 为正整数,∴解得16. 若|log a |=log a ,|log b a|=-log b a,则a,b 满足的条件是( ) A .a>1,b>1 B .0<a<1,b>1 C .a>1,0<b<1 D .0<a<1,0<b<1【答案】B【解析】先利用|m|=m,则m≥0,|m|=-m,则m≤0,将条件进行化简,然后利用对数函数的单调性即可求出a 和b 的范围. ∵|log a |=log a ,∴log a ≥0=log a 1,根据对数函数的单调性可知0<a<1. ∵|log b a|=-log b a,∴log b a≤0=log b 1,但b≠1,所以根据对数函数的单调性可知b>1.17. 已知a>0,且a≠1,log a 3<1,则实数a 的取值范围是( ) A .(0,1) B .(0,1)∪(3,+∞) C .(3,+∞) D .(1,2)∪(3,+∞)【答案】B【解析】由已知得log a 3<log a a.当a>1时,3<a ,所以a>3;当0<a<1时,3>a ,因此0<a<1.综合选B.18. 已知A={x|,x ∈R },B={x||x-i|<,i 为虚数单位,x>0},则A B=( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】C 【解析】,即。
对数函数练习题及答案
对数函数练习题及答案一、选择题:1. 函数y=log_{2}x的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)2. 若log_{3}9=2,则log_{3}3的值为:A. 1B. 2C. 3D. 93. 函数y=log_{10}x的值域是:A. (-∞, 0)B. (-∞, 1]C. (0, +∞)D. R4. 以下哪个等式是正确的?A. log_{a}a=1B. log_{a}1=0C. log_{a}a^2=2D. 所有选项都正确5. 若log_{5}25=b,则b的值为:A. 2B. 5C. 25D. 125二、填空题:1. 函数y=log_{x}e的值域为______。
2. 若log_{2}8=3,则2^{3}=______。
3. 对于函数y=log_{a}x,当a>1时,函数在(0,+∞)上是______的。
4. 根据对数的定义,log_{10}100=______。
5. 若log_{4}16=2,则4^{2}=______。
三、解答题:1. 求函数y=log_{4}x的反函数,并证明其正确性。
2. 已知log_{3}27=3,求log_{9}3。
3. 证明:对于任意正数a>1,log_{a}1=0。
4. 已知log_{2}32=5,求2^{5}的值。
5. 已知函数f(x)=log_{a}x,求f(a)的值,并讨论a的取值范围。
四、应用题:1. 某工厂的产量每年以相同的比率增长,如果第一年的产量是100吨,第二年的产量是121吨,求第三年的产量。
2. 某药物的半衰期是4小时,如果初始剂量是100毫克,4小时后剩余多少?3. 某城市的人口增长率是每年2%,如果当前人口是100万,求5年后的人口。
答案:一、选择题:1. A2. A3. D4. D5. A二、填空题:1. (0, +∞)2. 83. 增4. 25. 16三、解答题:1. 反函数为x=4^y,证明略。
对数与对数函数习题及答案
对数和对数函数习题一、选择题1.若3a =2,则log 38-2log 36用a 的代数式可表示为( ) (A )a-2 (B )3a-(1+a)2 (C )5a-2 (D )3a-a 2 2.2log a (M-2N)=log a M+log a N,则NM的值为( ) (A )41(B )4 (C )1 (D )4或1 3.已知x 2+y 2=1,x>0,y>0,且log a (1+x)=m,logaya n xlog ,11则=-等于( ) (A )m+n (B )m-n (C )21(m+n) (D )21(m-n)4.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是( ) (A )lg5·lg7 (B )lg35 (C )35 (D )351 5.已知log 7[log 3(log 2x)]=0,那么x 21-等于( )(A )31(B )321 (C )221 (D )331 6.函数y=lg (112-+x)的图像关于( ) (A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )直线y=x 对称 7.函数y=log 2x-123-x 的定义域是( )(A )(32,1)⋃(1,+∞) (B )(21,1)⋃(1,+∞) (C )(32,+∞) (D )(21,+∞)8.函数y=log 21(x 2-6x+17)的值域是( )(A )R (B )[8,+∞] (C )(-∞,-3) (D )[3,+∞] 9.函数y=log 21(2x 2-3x+1)的递减区间为( )(A )(1,+∞) (B )(-∞,43] (C )(21,+∞) (D )(-∞,21] 10.函数y=(21)2x +1+2,(x<0)的反函数为( ) (A )y=-)2(1log )2(21>--x x (B ))2(1log )2(21>--x x(C )y=-)252(1log )2(21<<--x x (D )y=-)252(1log )2(21<<--x x11.若log m 9<log n 9<0,那么m,n 满足的条件是( )(A )m>n>1 (B )n>m>1 (C )0<n<m<1 (D )0<m<n<112.log a132<,则a 的取值范围是( ) (A )(0,32)⋃(1,+∞) (B )(32,+∞)(C )(1,32) (D )(0,32)⋃(32,+∞)14.下列函数中,在(0,2)上为增函数的是( )(A )y=log 21(x+1) (B )y=log 212-x (C )y=log 2x 1(D )y=log 21(x 2-4x+5) 15.下列函数中,同时满足:有反函数,是奇函数,定义域和值域相同的函数是( )(A )y=2x x e e -+ (B )y=lg xx+-11 (C )y=-x 3 (D )y=x16.已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( ) (A )(0,1) (B )(1,2) (C )(0,2) (D )[2,+∞) 17.已知g(x)=log a 1+x (a>0且a ≠1)在(-1,0)上有g(x)>0,则f(x)=a1+x 是( )(A )在(-∞,0)上的增函数 (B )在(-∞,0)上的减函数 (C )在(-∞,-1)上的增函数 (D )在(-∞,-1)上的减函数 18.若0<a<1,b>1,则M=a b ,N=log b a,p=b a 的大小是( )(A )M<N<P (B )N<M<P (C )P<M<N (D )P<N<M 二、填空题1.若log a 2=m,log a 3=n,a 2m+n = 。
专题09 对数与对数函数(重难点突破)原卷版附答案.pdf
ab 2b
2
.
11
(2). 求下列函数的定义域: 1
(1)f(x)=lg(x-2)+x-3;(2)f(x)=log(x+1)(16-4x). 【解析】 (1)要使函数有意义,需满足Error!解得 x>2 且 x≠3, 所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足Error!解得-1<x<0 或 0<x<4, 所以函数定义域为(-1,0)∪(0,4).
底数,N 叫做真数.
重难点二 对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且 a≠1). (2)对数的运算法则
如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;
M ②loga N =logaM-logaN;
B. y ln(2 x) C. y ln(1 x)
D.
3
y ln(2 x)
(3).函数 f(x)=ax-b 的图象如图所示,其中 a,b 为常数,则下列结论正确的是( )
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(4).当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图象为( )
例 2 求下列函数的定义域:
1
1
(1)f(x)=
;(2)f(x)= +ln(x+1);
1
2-x
log x+1
2
1
1
【解析】(1)要使函数 f(x)有意义,则 log x+1>0,即 log x>-1,解得 0<x<2,即函数 f(x)的定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数及对数函数复习卷1.log 5b =2,化为指数式是 ( )A .5b =2B .b 5=2C .52=bD .b 2=52.在b =log (a -2)(5-a )中,实数a 的取值范围是 ( )A .a >5或a <2B .2<a <3或3<a <5C .2<a <5D .3<a <43.下列结论正确的是 ( ) ①lg(lg10)=0 ②lg(lne)=0 ③若10=lg x 则x =10 ④若e =ln x ,则x =e 2A .①③B .②④C .①②D .③④4.若log 31-2x 9=0,则x =________.5.若a >0,a 2=49,则log 23a =________.6.已知log x 8=3,则x 的值为( ) A.12 B .2 C .3 D .47.方程2log 3x =14的解是( ) A .9 B.33 C. 3 D.198.若log x 7y =z 则( ) A .y 7=x z B .y =x 7z C .y =7x D .y =z 7x9.log 5[log 3(log 2x )]=0,则x 12-等于( ) A.36 B.39 C.24 D.2310.log 6[log 4(log 381)]=________. 11.log 23278=_______12.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1-x ,x >1,若f (x )=2,则x =________ 13.若log a 2=m ,log a 3=n ,则a 2m +n =________.14.求x . (1)log 2x =-23; (2)log 5(log 2x )=0.15.已知二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值为3,求a 的值.16.若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是( ) ①log a x 2=2log a x ; ②log a x 2=2log a |x |;③log a (xy )=log a x +log a y ;④log a (xy )=log a |x |+log a |y |.A .②④B .①③C .①④D .②③17.算log 916·log 881的值为 ( )A .18 B.118 C.83 D.3818.已知lg2=a ,lg3=b ,则log 36= ( )A.a +b aB.a +b bC.aa +b D.ba +b19.已知log 23=a,3b =7,则log 1256=________.20.若lg x -lg y =a ,则lg(x 2)3-lg(y 2)3=________.21.求值.(1)log 2748+log 212-12log 242; (2)log 225·log 34·log 59.22.lg8+3lg5的值为( ) A .-3 B .-1 C .1 D .323.若log 34·log 8m =log 416,则m 等于( ) A .3 B .9 C .18 D .2724.已知a =log 32,用a 来表示log 38-2log 36( ) A .a -2 B .5a -2 C .3a -(1+a )2 D .3a -a 2-125.已知方程x 2+x log 26+log 23=0的两根为α、β,则(14)α·(14)β=( ) A.136 B .36 C .-6 D .626.2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1=________.27.设g (x )=⎩⎪⎨⎪⎧ e x ,x ≤0ln x ,x >0,则g (g (12))=________ .28.方程log 3(x -1)=log 9(x +5)的解是________ .29.已知x 3=3,则3log 3x -log x 23=________.30.求值(1)log 34log 98; (2)lg2+lg50+31-log 92;.(3)221log 4+(169)12-+lg20-lg2-(log 32)·(log 23)+(2-1)lg1.31.设3x =4y =36,求2x +1y 的值. =1.32.函数f (x )=3x 21-2x +lg(2x +1)的定义域是A .(-12,+∞) B .(-12,1) C .(-12,12) D .(-∞,-1233.函数y =log a x 的图像如图所示,则实数a 的可能取值是( )A .5 B.15 C.1e D .1234.设a =log 123,b =(13)0.3,c =213,则a ,b ,c 的大小关系是 A .a <b <c B .c <b <a C .c <a <b D .b <a <c35.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________. 36.已知log 0.6(x +2)>log 0.6(1-x ),则实数x 的取值范围是________.37.已知函数y =loga (x +b )的图像如图所示,求实数a 与b 的值.38.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于 ( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅39.函数f (x )=log 2(3x +3-x )是 ( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .不是奇函数又不是偶函数40.如图是三个对数函数的图像,则a 、b 、c 的大小关系是 ( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b41.已知函数f (x )=|lg x |.若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是 ( )A .(1,+∞)B .[1,+∞)C .(2,+∞)D .[2,+∞)42.对数函数的图像过点(16,4),则此函数的解析式为________.43.已知函数y =3+log a (2x +3)(a >0且a ≠1)的图像必经过定点P ,则P 点坐标________.44.方程x 2=log 12x 解的个数是________45.若实数a 满足log a 2>1,则a 的取值范围为________46.(1)已知函数y =lg(x 2+2x +a )的定义域为R ,求实数a 的取值范围;(2)已知函数f (x )=lg[(a 2-1)x 2+(2a +1)x +1],若f (x )的定义域为R ,求实数a 的取值47.已知函数f (x )=log a x +1x -1(a >0,且a ≠1). (1)求f (x )的定义域:(2)判断函数的奇偶性.48.(2011·天津高考)设a =log 54,b =(log 53)2,c =log 45,则 ( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c49.函数y =log 3x -3的定义域是A .(9,+∞)B .[9,+∞)C .[27,+∞)D .(27,+∞)50.若log m 8.1<log n 8.1<0,那么m ,n 满足的条件是 ( )A .m >n >1B .n >m >1C .0<n <m <1D .0<m <n <151.不等式log 13 (5+x )<log 13(1-x )的解集为________.52.y =(log 12a )x 在R 上为减函数,则a 的取值范围是________53.已知函数f (x )=log a (3-ax ),当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值54.与函数y =(14)x 的图像关于直线y =x 对称的函数是 ( ) A .y =4x B .y =4-x C .y =log 14x D .y =log 4x 55.函数y =2+log 2x (x ≥1)的值域为 ( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞)56.若log a (a 2+1)<log a 2a <0,则a 的取值范围是 ( )A .(0,1)B .(12,1)C .(0,12)D .(1,+∞)57.已知函数y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为 ( )A .(0,1)B .(1,2)C .(0,2)D .(2,+∞)58.函数f (x )=⎩⎪⎨⎪⎧ax +b (x ≤0)log c (x +19)(x >0)的图像如图所示,则a +b +c =________. 59.已知集合A ={x |log 2x ≤2},B =(-∞,a )若A ⊆B ,则a 的取值范围是(c ,+∞),其中c =________.60.函数f (x )=log a x (a >0且a ≠1)在[2,3]上的最大值为1,则a =________61.关于函数f (x )=lg x x 2+1有下列结论:①函数f (x )的定义域是(0,+∞);②函数f (x )是奇函数;③函数f (x )的最小值为-lg2;④当0<x <1时,函数f (x )是增函数;当x >1时,函数f (x )是减函数.其中正确结论的序号是________.62.对a ,b ∈R 定义运算“*”为a *b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ), 若f (x )=[log 12 (3x -2)]*(log 2x ),试求f (x )的值域.。