最新《指数函数和对数函数》单元测试测试题(含参考答案)
最新版精选《指数函数和对数函数》单元测试完整版考核题(含答案)

2019年高中数学单元测试试题 指数函数和对数函数(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.若点(),a b 在lg y x =图象上,1a ≠,则下列点也在此图象上的是( )(A )1,b a ⎛⎫⎪⎝⎭(B )()10,1a b - (C )10,1b a ⎛⎫+ ⎪⎝⎭ (D ))2,(2b a (2011安徽文5)2.(2010天津文6)设554a log 4b log c log ===25,(3),,则( ) A .a<c<b B .b<c<a C . a<b<c D .b<a<c3.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有 )()1()1(x f x x xf +=+,则)25(f 的值是 A. 0 B. 21 C. 1 D. 254.利用计算器,列出自变量和函数值的对应值如下表:那么方程22xx =有一个根位于下列区间的A .( 1.6, 1.2)--B .( 1.2,0.8)--C .(0.8,0.6)--D .(0.6,0.2)--5.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,(2008全国1理)D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题6.当(1,)x ∈+∞时,函数y x α=的图像恒在直线y x =的下方,则α的取值范围是_________7.设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为______{|}2a a ≥_____ 8.求函数)352(log 21.0--=x x y 的递减区间.9.求函数211()()4()522xx f x =-++的单调区间和值域.10.函数x a y =在]1,0[上的最大值与最小值的和为3,求a 值.11.若3()3log 2x f x x =++,则1(30)f -= .12.已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是 . 13.方程22xx =有 个实数根.14.某种商品在近30天内每件的销售价P (元)与时间t (天)的函数关系近似满足),3025(,100),241(,20{N t t t N t t t P ∈≤≤+-∈≤≤+=,商品的日销售量Q (件)与时间t (天)的函数关系近似满足),301(40N t t t Q ∈≤≤+-=,求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中第几天?15.已知函数])9,1[(2log )(3∈+=x x x f ,求函数2)]([x f y =的最大值.16.某厂生产某种零件,每个零件的成本为40元,出厂的单价定为60元,该厂为鼓励销售订购,决定当一次订购超过100件时,每多订购一件,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元(1) 当一次订购量为多少个时,零件的实际出厂单价恰好降为51元;(2) 设一次订购量为x 个时,零件的实际出厂单价为P 元,写出函数()P f x =的表达式;(3) 当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少呢?17.若方程1n 2100x x +-=的解为0x ,则大于0x 的最小 整数是 .18.已知函数()sin cos f x x x =+,给出以下四个命题:①函数()f x 的图像可由y x = 的图像向右平移4π个单位而得到;②直线4x π=是函数()f x 图像的一条对称轴;③在区间5,44ππ⎡⎤⎢⎥⎣⎦上,函数()f x 是减函数;④函数()()sin g x f x x =⋅的最小正周期是π.其中所有正确的命题的序号是 .19.已知()f x ,()g x 都是奇函数,()0f x >的解集是22(,)(2)a b b a >,()0g x >的解集是2(,)22a b,则()()0f x g x ⋅>的解集是 .20.函数()23123x x f x x =+++的零点的个数是 .21.若函数21()54x f x x ax +=++的定义域为R ,则实数a 的取值范围是 ▲ .22.若指数函数()f x 与幂函数()g x 的图象相交于一点(2,4),则()f x =,()g x = .2.2x ;x 223.已知幂函数的图象过点(3,3),则幂函数的表达式是()f x = .24. 如果一辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2200 km ,如果它每天行驶的路程比原来少12 km ,那么它行驶同样的路程得花9天多的时间,这辆汽车原来每天行驶的路程(km)范围是 .25.稳定房价是我国今年实施宏观调控的重点,国家最近出台的一系列政策已对各地的房地产市场产生了影响,温州市某房地产介绍所对本市一楼群在今年的房价作了统计与预测:发现每个季度的平均单价y (每平方面积的价格,单位为元)与第x 季度之间近似满足:500sin()9500(0)y ωx ω=+ϕ+>,已知第一、二季度平均单价如右表所示:则此楼群在第三季度的平均单价大约是 元.26. 用二分法求函数()34x f x x =--的一个零点,其参考数据如下:据此数据,可得()34x f x x =--一个零点的近似值(精确到0.01)为 ▲ .27.已知偶函数()f x 在(0,)π上是增函数,且2(),(),(2)32f f f ππ---的大小关系为________(用“< ”连接) 28.幂函数253(1)m y m m x --=--,当(0,)x ∈+∞时为减函数,则实数m 的值为________;29.若函数y =|log 2x |在区间(0,a ]上单调递减,则实数a 的取值范围是_______.30.求下列函数的定义域、单调区间、值域(1)112x y -= (2)|1|2x y -= (3)1(2y =221()2x xy -=31.函数f(x)=2x ,对x 1,x 2∈R +,x 1≠x 2,1λαλ+=+12x x ,1λβλ+=+21x x (1λ>),比较大小:f(α)+f(β)______________f(x 1)+f(x 2).32.已知函数f (x )=234201112342011x x x x x +-+-+⋯+,则f (x )在()()1,k k k Z -∈上有零点, 则k = 033.方程lg(42)lg 2lg3xx+=+的解集为 .34. 幂函数()y f x =的图像经过点1(2,)8--,则满足()f x =27的x 的值是 .35.函数22(0,1)x y a a a +=->≠的图象恒过定点A (其坐标与a 无关),则A 的坐标为___ .36.函数2()ln(1)f x x x=+-的零点所在的区间是(n ,n +1),则正整数n =______.37.已知0.450.45log (2)log (1)x x +<-,则实数x 的取值范围是_____ _38.求值:︒︒+︒+︒80cos 20sin 380cos 20sin 2239.有一座灯塔A ,观察到海上有两艘轮船,甲船位于灯塔A 的正东方向的D 处向北航行;乙船位于灯塔A 的北偏西30方向的B 处向北偏东60方向航行,甲船行驶5海里,乙船行驶8海里后在点C 处相遇,则点C 处距灯塔A 为___________海里.三、解答题40.如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,已知|AB|=3米,|AD|=2米, (Ⅰ)设AN 的长为x 米,用x 表示矩形AMPN 的面积,并写出其定义域? (Ⅱ)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内?41.某公司有价值a 万元的一条生产流水线,要提高该生产流水线的生产能力,就要对其进行技术改造,改造就需要投入资金,相应就要提高生产产品的售价。
指数函数与对数运算测试题(附答案)

指数函数与对数运算测试题 班级 姓名 得分1、21-⎡⎤⎢⎥⎣⎦等于( )A 、2B 、1C 、D 、122、设全集为R ,且{|0}A x =≤,22{|1010}x xB x -==,则()R A B= ð( )A 、{2}B 、{—1}C 、{x|x ≤2}D 、∅3、函数()f x = )A 、(,0]-∞B 、[0,)+∞C 、(,0)-∞D 、(,)-∞+∞4、已知对不同的a 值,函数1()2(01)x f x a a a -=+>≠,且的图象恒过定点P ,则P 点的坐标是( ) A 、()0,3 B 、()0,2 C 、()1,3 D 、()1,25、函数1()2y = )A 、1[1,]2- B 、(,1]-∞- C 、[2,)+∞ D 、1[,2]26、已知lg 2,lg 3a b ==,则lg 12lg 15等于( )A 、21a b a b+++ B 、21a b a b+++ C 、21a b a b+-+ D 、21a b a b+-+7、已知2lg(2)lg lg x y x y -=+,则xy的值为 ( ) A 、1 B 、4 C 、1或4 D 、4或—18、函数xy a =(a >1)的图象是( b )9、若221333111(),(),()522a b c ===,则a ,b ,c 的大小关系是 ( )A 、a>b>cB 、c>b>aC 、a>c>bD 、b>a>c10、已知函数()f x 的定义域是(0,1),那么(2)xf 的定义域是( ) A.(0,1) B.(21,1) C.(-∞,0) D.(0,+∞)11、若集合A ={y | y=2x , x ∈R } , B = {y | y=x 2 , x ∈R } , 则( )A B B.A A 、2a B C 、二、填空题(4⨯5‘)1、点(2,1)与(1,2)在函数()2ax b f x +=的图象上,则()f x 的解析式为 22x -+2、求函数11(),[0,2]3x y x -=∈的值域是 [1/3,3]3、已知()f x 是奇函数,且当x>0时,()10x f x =,则x<0时,()f x = 10x --4、若集合{}{},,lg()0,,x xy xy x y =,则228log ()x y += 1/3三、解答题(7⨯10‘)1、计算(1)122(11)]-+- ; (2)4912log 3log 2log ⋅-。
指数函数与对数函数专项训练(解析版)

指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪C .()5,0,3∞∞⎛⎫-⋃+ ⎪D .5,3⎛⎫+∞ ⎪【答案】C【详解】由题意知,2350x x ->,即(35)0x x ->,所以0x <或53x >.故选:C.2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪D .()2,3【答案】B【详解】∵3x y =和27y x =-均在R 上单调递增,∴()327x f x x =+-在R 上单调递增;又()12f =-,327402f ⎛⎫=-> ⎪⎝⎭,∴()f x 在31,2⎛⎫ ⎪⎝⎭上有唯一的零点,故选:B.3.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理【答案】B【详解】对于A ,由于模型23 1.65x y -=⨯呈指数增长,故A 错误;对于B ,当8x =时,8220.63 1.605326.y -⨯==⨯≈,故B 正确;对于C ,因为鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,所以“以鱼控藻”模式对水华面积占比减少起到作用,故C 错误;对于D ,由两函数模型放在同期进行比较的图象可知,7月后滇池藻类水华并不会因“以鱼控藻”模式得到彻底治理,故D 错误.故选:B.4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .4【答案】D【详解】()()1log 14a f x x =-+,令11x -=,得2x =,()124f =,则()()1log 14a f x x =-+(0a >且1a ≠)恒过定点12,4M ⎛⎫⎪⎝⎭,设()g x x α=,则124α=,即2α=-,即()2g x x -=,∴142g ⎛⎫= ⎪⎝⎭,故选:D.5.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a <<B .<<b c aC .<<c a bD .a b c<<【答案】A【详解】因为2log y x =在(0,)+∞上单调递增,且234<<,所以222log 2log 3log 4<<,所以21log 32<<,即12a <<,因为2x y =在R 上递增,且0.30-<,所以0.300221-<<=,即01b <<,因为0.3log y x =在(0,)+∞上单调递减,且12<,所以0.30.3log 1log 2>,所以0.3log 20<,即0c <,所以c b a <<.故选:A6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b >>B .b c a >>C .a b c >>D .a c b>>【答案】D【详解】由题意知()(),00,x ∈-∞⋃+∞,由()()()21ln 1f x x f x x⎡⎤-=-+-=⎣⎦-,所以()f x 为偶函数,图象关于y 轴对称,当0x >时,由复合函数的单调性法则知()f x 随x 的增大而增大,即()0,x ∈+∞,()21()ln 1||f x x x =+-单调递增,因为()()33a f f =-=,()0.3(ln2),2b f c f ==,且00.3112222=<<=,0ln2lne 1<<=,所以0.3ln 223<<,所以()()()0.3ln223f f f <<-,即b c a <<,也就是a c b >>.故选:D7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞【答案】B【详解】方程2[()](2)()20f x a f x a -++=化为[()2][()]0f x f x a --=,解得()2f x =或()f x a =,函数()f x 在(,0]-∞上单调递增,函数值的集合为(2,3],在(0,1]上单调递减,函数值的集合为[0,)+∞,在[1,)+∞上单调递增,函数值的集合为[0,)+∞,在同一坐标系内作出直线2,y y a ==与函数()y f x =的图象,显然直线2y =与函数()y f x =的图象有两个交点,由关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则直线y a =与函数()y f x =的图象有3个交点,此时23a <≤,所以实数a 的取值范围是(2,3].故选:B8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【详解】对于()22:log 11log 2p a -<=,则012a <-<,解得13a <<;对于1:39a q -<,则12a -<,解得3a <;因为{}|13a a <<是{}|3a a <的真子集,所以p 是q 的充分不必要条件.故选:A.二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-【答案】BC【详解】对于A ,当1x =时,2210x x -=-<,此时()()2ln 2f x x x =-无意义,故A 错误;对于B ,由于()22y g x x x ==-的值域为[)1,-+∞,满足()[)0,1,+∞⊆-+∞,所以函数()f x 的值域是R ,故B 正确;对于C ,由题意()()()22ln 2ln 11f x x x x ⎡⎤=-=--⎣⎦,且定义域为()(),02,-∞+∞ ,它满足()()()21ln 11f x x f x+=-=-,即函数()f x 的图象关于1x =对称,故C 正确;对于D ,由于()f x 的定义域为()(),02,-∞+∞ ,故D 错误.故选:BC.10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭【答案】BC【详解】作出函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩的图像如图.对于选项A,根据二次函数的对称性知,12()224x x +=⨯=--,故A 项错误;对于选项B ,因120x x <<,由上述分析知124x x +=-,则21212120()()()42x x x x x x --<=-⋅-≤=,因12x x ≠,故有1204x x <<,即B 项正确;对于选项C ,如图,因0x ≤时,2211()2(2)2222f x x x x =--=-++≤,0x >时,2()|log |f x x =,依题意须使20|log |2x <<,由2|log |0x >得1x ≠,由2|log |2x <解得:144x <<,故有3411,144x x <<<<,即C项正确;对于选项D ,由图知2324log log x x -=,可得341x x =,故431x x =,则343322x x x x ++=,3114x <<,不妨设21,(,1)4y x x x =+∈,显然函数2y x x =+在(1,14)上单调递减,故23334x x <+<,即342x x +的取值范围是(333,4),故D 项错误.故选:BC.11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()1212f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪【答案】AC【详解】A 选项,由于1y x =在R 上单调递增,2ln y x =在()0,∞+上单调递增,故()ln f x x x =+在定义域()0,∞+上单调递增,又()11ln 30,11033f f ⎛⎫=-<=> ⎪⎝⎭,故由零点存在性定理可得,方程()0f x =有唯一的实数解c ,且(0,1)c ∈,A 正确;B 选项,()ln f xy xy xy =+,()()ln ln ln f x f y x x y y x y xy +=+++=++,显然,0x y ∀>,由于xy 与x y +不一定相等,故()()f x f y +与()f xy 不一定相等,B 错误;C 选项,由A 选项可知,()ln f x x x =+在定义域()0,∞+上单调递增,对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-,C 正确;D 选项,12,0x x ∀>,均有121212ln 222x xx x x x f +++⎛⎫=+ ⎪⎝⎭,()()12112212121212ln ln ln ln 22222f x f x x x x x x x x x x x x x ++++++==+=+,由于12122x x x x +≥,当且仅当12x x =时,等号成立,故1212ln ln 2x x x x +≥,即()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,D 错误.故选:AC 三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.【答案】[]2,5【详解】因为在R 递增,则112129a a a a a⎧⎪⎪≥⎨⎪-++-≤⎪⎩>,解得:25a ≤≤,故答案为:[]2,513.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.【答案】(0,)+∞【详解】当0x ≥时,()ln(1),f x x =+当0x <时()ln(1),f x x =-+函数图象示意图为则2()g x x a =-+与()ln (1)f x x =+有两个零点知a 的取值范围是(0,)+∞.故答案为:(0,).+∞14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)【答案】8或9【详解】依题意可得910101010M ≤<,两边取常用对数可得91010lg10lg lg10M ≤<,即910lg 10M ≤<,所以0.9lg 1M ≤<,即0.91010M ≤<,又M 为正整数,所以8M =或9M =.故答案为:8或9四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.【答案】(1)10(,)3+∞(2)2a =或12a =【详解】(1)由(12)3f =可得log (123)13a -+=,解得3a =,即3()log (3)1,(3)f x x x =-+>,则()0f x >,即3log (3)10x -+>,即310,1333x x x >⎧⎪∴>⎨->⎪⎩,故不等式()0f x >的解集为10(,)3+∞;(2)由于()f x 在[4,5]上的最大值与最小值之差为1,故log 11(log 21)1a a +-+=,即log 21,2a a =∴=或12a =,即a 的值为2a =或12a =.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.【答案】(1)8(2)9【详解】(1)()13103420.027π4160.49--++()()()1313423420.3120.7⎡⎤⎡⎤⎡⎤=-++⎣⎦⎣⎦⎣⎦0.3180.78=-++=;(2)ln22311lg125lg4lg 0.1e log 9log 1632-++++⨯3211112lg34lg2lg5lg23222lg2lg3=+-++⨯lg 5lg28=++9=.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)1m =,证明见解析(2)3k <-【详解】(1)因为()f x 是奇函数,函数的定义域为R ,所以(0)0f =,所以1033m-=+,所以1m =,经检验满足()()f x f x -=-易知()11312133331x x x f x +-⎛⎫==-+ ⎪++⎝⎭设12x x <,则2112122(33)()()3(31)(31)x x x x f x f x --=++因为3x y =在实数集上是增函数,故12()()0f x f x ->.所以()f x 在R 上是单调减函数(2)由(1)知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,所以()()22620f t t f t k -+-<等价于()()2262f t t f k t-<-,因为()f x 为减函数,由上式可得:2262t t k t ->-.即对一切t R ∈有:2360t t k -->,从而判别式361203k k ∆=+<⇒<-.所以k 的取值范围是3k <-.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.【答案】(1)答案见解析(2)(ⅰ)(](],10,1-∞-⋃;(ⅱ)2t =-或2t =【详解】(1)若1a >,则1()()x xf x a a=-在R 上单调递增;若01a <<,则1()()x xf x a a=-在R 上单调递减.(2)(ⅰ)3()2≤f x x ,即132()022xx x --≤,设13()2()22xx g x x=--,则(1)0g =,()()g x g x -=-,所以()g x 为奇函数,当0x >时,()g x 单调递增,由()(1)g x g ≤,解得01x <≤,根据奇函数的性质,当0x <时,()(1)g x g ≤的解为1x ≤-,综上所述,3()2≤f x x的解集为(](],10,1-∞-⋃.(ⅱ)2122()2(2)2()222(22)x x x x x g x f x tf x t +--=-+=++-,令22x x m --=,因为[]1,1x ∈-,则33,22m ⎡⎤∈-⎢⎥⎣⎦,所以2()()22g x h m m tm ==++,其图象为开口向上,对称轴为m t=-的抛物线,①当32t -≤-,即32t ≥时,min 39177()()3232444h m h t t =-=-+=-=-,解得2t =.②当3322t -<-<,即3322t -<<时,222min 7()()2224h m h t t t t =-=-+=-+=-,解得1152t =,2152t =-矛盾.③当32t -≥,即32t ≤-时,min 39177()()3232444h m h t t ==++=+=-,解得2t =-.综上所述,2t =-或2t =.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.【答案】(1)1(1)e f m --=+,(0)1f =,()f x 在定义域R 上单调递增,证明见解析,(2)整数k 的最大值为1-【详解】(1)1(1)e f m --=+,(0)1f =,判断()f x 在定义域R 上单调递增,证明如下:在R 上任取1x ,2x ,且12x x <,则1212121212()()e (e )(e e )()x x x x f x f x mx mx m x x -=---=---,因为12x x <,0m <,所以12e e x x <,120x x -<,0m ->,所以12e e 0x x -<,12()0m x x --<,所以1212(e e )()0x x m x x ---<,即12())0(f x f x -<,所以12()()f x f x <,所以()f x 在定义域R 上单调递增.(2)由题意得0()0f x =,即00e 0x mx -=,1em <-,则10e m +<,即0(1)0()f f x -<=,由()f x 是R 上的增函数,所以01x -<,又0(0)10()f f x =>=,所以010x -<<,0200(2)e 2x f x mx =-002e 2e x x =-,令01e (ext =∈,1),则22()2(1)1g t t t t =-=--,所以()g t 在1(e ,1)上单调递减,所以()()11g t g >=-,即0(2)1f x >-,当1em <-时,0(2)f x k >,所以1k ≤-,所以整数k 的最大值为1-.。
最新精选单元测试《指数函数和对数函数》考核题完整版(含参考答案)

2019年高中数学单元测试试题 指数函数和对数函数(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是( )(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞)(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)(2010天津理8)2.设25abm ==,且112a b+=,则m =( ) A .10 C .20 D .100(2010辽宁文10)3.函数22log (2||)y x x =-的单调递增区间是-------------------------------------------------------------------( )(A)(,2)-∞- (B)(0,1) (C)(0,2) (D)(2,)+∞第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4.若关于x 的方程052)3(4=+++xx a 至少有一个实根在区间]2,1[内,则实数a 的取值范围为____▲]523,433[---_______ 5.某同学在研究函数 f (x ) = x1 + | x | (x R ∈) 时,分别给出下面几个结论: ①等式()()0f x f x -+=在x R ∈时恒成立; ②函数 f (x ) 的值域为 (-1,1);③若x 1≠x 2,则一定有f (x 1)≠f (x 2);④函数()()g x f x x =-在R 上有三个零点.其中正确结论的序号有 ▲ .(请将你认为正确的结论的序号都填上)6.已知函数()sin cos f x x x =+,给出以下四个命题:①函数()f x 的图像可由y x = 的图像向右平移4π个单位而得到;②直线4x π=是函数()f x 图像的一条对称轴;③在区间5,44ππ⎡⎤⎢⎥⎣⎦上,函数()f x 是减函数;④函数()()sin g x f x x =⋅的最小正周期是π.其中所有正确的命题的序号是 .7.设方程2ln 72x x =-的解为0x ,则关于x 的不等式02x x -<的最大整数解为 ▲ 。
(完整版)指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b )得f (x )=1⊗2x=⎩⎨⎧2x(x ≤0),1 (x >0).答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x≥2x≥1,∴f (3x)≥f (2x).若x <0,则3x<2x<1,∴f (3x)>f (2x).∴f (3x)≥f (2x).答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x-2x>1且a >2,由A ⊆B 知a x-2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎨⎧a >13-a >0a 8-6>(3-a )×7-3,解得2<a <3.答案:C6. 解析:f (x)<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+的值域为[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x-4x,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立. 由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一. (2)此时g (x )=λ·2x-4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x-ln4·4x=ln2[-2·(2x )2+λ·2x ]≤0成立.设2x=u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立.因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
中职数学第4章《指数函数与对数函数》单元检测试题及答案【基础模块上册】

A、3.232<3.222D、0.232<0.2222020届中职数学第四章单元检测《指数函数与对数函数》(满分100分,时间:90分钟)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.81的四次方根是()A、3B、4C、±3D、±42.已知10lg3=()A.-3B.lg3C.3D.103.函数y=2x的图像是()y yyyo x o xo xo xA B C D4.下列各式中正确的是()11B、0.22-1<0.23-1C、2.1-1>2.2-1115.函数f(x)=a x-2+1(a>0,a≠1)的图像恒过定点()A.(0,1)B.(0,2)C.(2,1)D.(2,2)6.下列函数在区间(0,+∞)上是减函数的是()A、y=x12B、y=x13C、y=x-2D、y=x27.设函数f(x)=log x(a>0且a≠1),f(4)=2,则f(8)=()a11A.2B.2C.3D.38.若幂函数y=x a的图像过点P(1,64),则a等于()4A.y=x314.(8)-3+814=_________________A、-3B、3C、-4D、169.下列是幂函数且定义域为R的函数是()1 B.y=2x2 C.y=x-2 D.y=(-1)x310.2⋅38464=()A、4B、2158C、272D、8二、填空题(共8小题,每题4分,共32分)11.lg25+lg40=______12.log2256-(sin1)0=______13.(a3)2÷(-a)2=____________132715.函数y=lg(-x2+5x+6)的定义域是________________16.设53x-3<1,则x的取值范围为__________________17.用不等号连接:(1)log5log6,(2)0.530.632218.若4x=3,log4=y,则x+y=;43三、解答题(共38分)19.解不等式(3-x)<1(6分)0.320.解不等式log(2-x)>1(8分)1222.函数 f ( x ) = x n ,且它的图像经过点 (3, ) ,求 f(4)的值。
《指数函数和对数函数》测试题和答案解析

指数函数与对数函数单元测试〔含答案一、选择题:1、已知(10)x f x =,则(5)f =〔A 、510B 、105C 、lg10D 、lg 52、对于0,1a a >≠,下列说法中,正确的是〔①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则M N =;④若M N =则22log log a a M N =。
A 、①②③④B 、①③C 、②④D 、②3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 〔A 、∅B 、TC 、SD 、有限集4、函数22log (1)y x x =+≥的值域为〔A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞ 5、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则〔A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>6、在(2)log (5)a b a -=-中,实数a 的取值范围是〔A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<7、计算()()22lg 2lg52lg 2lg5++⋅等于〔A 、0B 、1C 、2D 、38、已知3log 2a =,那么33log 82log 6-用a 表示是〔A 、52a -B 、2a -C 、23(1)a a -+D 、231a a --9、若21025x=,则10x -等于〔A 、15B 、15-C 、150D 、162510、若函数2(55)xy a a a =-+⋅是指数函数,则有〔A 、1a =或4a =B 、1a =C 、4a =D 、0a >,且1a ≠11、当1a >时,在同一坐标系中, 函数x y a -=与log x a y =的图象是图中的〔 12、已知1x ≠,则与x 3log 1+x 4log 1+x5log 1相等的式子是〔 A 、x60log 1B 、3451log log log x x x ⋅⋅C 、60log 1x D 、34512log log log x x x ⋅⋅ 13、若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为〔A、4B、2C 、14D 、1214、下图是指数函数〔1x y a =,〔2x y b =,〔3x y c =x ,〔4x y d=x 的图象,则 a 、b 、c 、d 与1的大小关系是〔A 、1a b c d <<<<B 、1b a d c <<<<C 、1a b c d <<<<D 、1a b d c <<<< 15、若函数m y x +=-|1|)21(的图象与x 轴有公共点, 则m 的取值范围是〔A 、1m ≤-B 、10m -≤<C 、1m ≥D 、01m <≤ 二、填空题:16、指数式4532-b a 化为根式是 。
人教版高中数学必修第一册第4章指数函数与对数函数综合检测基础卷(含详细解析)

第4章指数函数与对数函数(原卷版)本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知75x =,则x 的值为ABC .D .2.函数f (x )=2x 与g (x )=-2-x 的图象关于A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称3.已知32log log (0)x =,那么x =A .1B .2C .3D .44.设0m >,下列计算中正确的是A .330m m -=B .4334m m m ÷=C .2323m m m ⋅=D .251542()m m--=5.设a ,1b >,且满足1log 2>a b ,则A .a b <B .a b >C .2a b <D .2a b >6.若lg 2,lg 3a b ==,则12log 5=A .12a a b -+B .2a b a b++C .12a a b-+D .2a b a b++7.如果0a b >>,那么下列不等式一定成立的是A .22log log a b<B .1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .11a b<D .22a b <8.已知函数21,2()5,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若关于x 的方程()0f x m -=恰有两个不同的实数解,则实数m 的取值范围是A .(0,1)B .[1,3)C .(1,3){0}⋃D .[1,3){0}⋃二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.设0a >,则下列运算中正确的是A .4334a a a ⋅=B .5233a a a÷=C .55330a a-⋅=D .5335a a ⎛⎫= ⎪⎝⎭10.若10a =4,10b =25,则A .a +b =2B .b ﹣a =1C .ab >8lg 22D .b ﹣a >lg611.在同一坐标系中,()f x kx b =+与()log b g x x =的图象如图,则下列关系不正确的是A .0k <,01b <<B .0k >,1b >C .()100f x x ⎛⎫>> ⎪⎝⎭,()()00g x x >>D .1x >时,()()0f xg x ->12.已知函数()f x 是定义在R 上的减函数,实数a ,b ,()c a b c <<满足()()()0f a f b f c <,若0x 是函数()f x 的一个零点,则下列结论中可能成立的是A .0x a <B .0a x b <<C .0b x c<<D .0x c>三、填空题:本题共4小题,每小题5分,共20分.13112220.160.363-⎛⎫-+⨯= ⎪⎝⎭____________.14.已知函数()2120log 0x x f x x x ⎧⎪=⎨>⎪⎩,, ,则()()2f f -=____________.15.已知1log ,log 32aa m n ==,求2m n a +的值____________.16.函数()2()445f x xx =--的单调递减区间为____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)120.5037(27)0.1(2)39π--++-;(2)2115113366221()(3)()3a b a b a b ⋅-÷.18.(12分)计算求值:(1)()11.530.0014-+(2)(42log 923lg 2lg 250082log 9log 4⨯+⨯++⋅.19.(12分)已知函数()154262xx f x +=-⋅-,其中[]0,3x ∈.(1)求()f x 的最大值和最小值;(2)若实数a 满足()0f x a +≥恒成立,求实数a 的取值范围.20.(12分)已知函数()log (1)log (1)a a f x x x =+--,其中0a >且1a ≠.(1)判断()f x 的奇偶性,并说明理由;(2)若3()25f =,求使()0f x >成立的x 的集合.21.(12分)每年3月3日是国际爱耳日,2020年的主题是“保护听力,终生受益”.声强级是表示声强度相对大小,其值为y (单位dB ),定义0lgIy I =10,其中I 为声场中某点的声强度,其单位为/W m 2(瓦/平方米)12010I -=/W m 2为基准值.(1)如果一辆小轿车内声音是50dB ,求相应的声强度;(2)如果飞机起飞时的声音是120dB ,两人正常交谈的声音是60dB ,那么前者的声强度是后者的声强度的多少倍?22.(12分)已知函数()12(log 94343)x x f x +=-⨯+,函数()222log 7g x x mx =-+.(1)求不等式()4f x ≤的解集;(2)若[][]121,2,1,2x x ∀∈∃∈,使()()12f x g x ≥,求实数m 的取值范围.第4章指数函数与对数函数(解析版)本卷满分150分,考试时间120分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高中数学单元测试试题 指数函数和对数函数(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是( )(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞)(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)(2010天津理8)2.若点(),a b 在lg y x =图象上,1a ≠,则下列点也在此图象上的是( )(A )1,b a ⎛⎫⎪⎝⎭(B )()10,1a b - (C )10,1b a ⎛⎫+ ⎪⎝⎭ (D ))2,(2b a (2011安徽文5)3.对实数a 与b ,定义新运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )(2011年高考天津卷理科8) A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D.4.已知0,a a >≠,则laa 等于( ) A .2 B .12C .D .与a 的具体数值有关 5.若函数()|21|xf x =-,当a b c <<时,有()()()f a f c f b >>,则下列各式中正确的是( )A.22ac> B.22ab> C.222ac+< D.22ac -<第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题6.方程lg(42)lg 2lg3x x+=+的解x = .7.函数x y a log =和)1,0(log 1≠>=a a x y a的图象关于 对称.8.3)72.0(-与3)75.0(-的大小关系为_____________ 9.比较下列各组值的大小;(1)3.022,3.0; (2)5252529.1,8.3,1.4-.10.函数)0(121)(≠+-=x a x f x 是奇函数,则a = . 311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭11.函数()l n 25f x x x =+-的零点一定位于区间(相邻两个整数为端点)是 . 5.(2,3) 12.若函数21()54x f x x ax +=++的定义域为R ,则实数a 的取值范围是 ▲ .13.一个幂函数()y f x =的图像过点),另一个幂函数()y g x =的图像过点(8,2)--, ⑴求这两个幂函数的解析式;⑵判断这两个幂函数的奇偶性.11. ⑴34()f x x =,13()g x x =;⑵()y f x =无奇偶性;()y g x =是奇函数.14.设函数2,0(),0x x f x x x -≤⎧=⎨>⎩,若()4f a =,则实数a = .15.对于定义在实数集R 上的函数f (x ). 如果存在实数x 0使f (x 0)= x 0,则称x 0叫做函数f (x )的一个“不动点”.若函数f (x )= x 2+ax +1不存在“不动点”,则a 的取值范围是16.)23(log 221+-=x x y 的定义域是_______ .17.已知,,a b c 为正整数,方程20ax bx c ++=的两实根为1212,()x x x x ≠,且12||1,||1x x <<,则a b c ++的最小值为________________.18.设)(x f 是定义在R 上的奇函数,且当0≥x 时,2)(x x f =,若对任意的]2,[+∈a a x ,不等式)(2)(x f a x f ≥+恒成立,则实数a 的取值范围是 .19. 已知幂函数()f x k x α=⋅的图象过点1,2⎛ ⎝⎭,则k α+= ▲ .20.已知幂函数y=(m 2-5m-5)x 2m+1在(0,+∞)上位减函数,则实数m= 。
21.已知函数2122(),[1,)x x f x x x++=∈+∞,⑴试判断()f x 的单调性,并加以证明;⑵试求()f x 的最小值. 【例1】⑴增函数;⑵72. 22.已知函数y =a x +2-2(a >0,a ≠1)的图象恒过定点A ,则定点A 的坐标为 . 23.通常表明地震能量大小的尺度是里氏震级,其计算公式是0lg lg A A M -=,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅,M 为震级.则7级地震的最大振幅是5级地震最大振幅的 ▲ 倍.24.已知函数xa x f -=)((0>a 且)1≠a ,且)3()2(->-f f ,则a 的取值范围是▲ .25.函数()110,1x y a a a -=+>≠过定点 .26.函数12+-=x x y 的值域为27.已知f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内,g (x )=f (x )-mx -m 有两个零点,则实数m 的取值范围是 ▲ . 关键字:零点;数形结合28. 幂函数()y f x =的图象经过点1(2,)8--,则满足()f x =27的x 的值是 ▲ .29.求函数)23(log 221x x y -+=的单调区间和值域.30. 幂函数()x f 的图象过点()2,2,则()41-f 的值______________.31.函数y =32.若方程2log 2x x =-+的解为0x ,且0(,1),x k k k N ∈+∈,则k = ▲ ;33.函数ln(2)y x =-)的定义域是 ▲ 。
34. 设{}2,1,0,1,2α∈--,则使幂函数y x α=的定义域为R 且为偶函数的α的值为 ▲35.cos174cos156sin174sin156-的值为__ _36.若2log 2,log 3,m na a m n a+=== 。
37. 已知函数22()log (2)f x x x a =-+的值域为[0,)+∞,则正实数a 等于 2 38.函数()ln 2f x x x =-+的零点的个数为 ▲ . 三、解答题39.经市场调查,某超市的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间t (天)的函数,且日销售量近似满足t t g 280)(-=(件),价格近似满足102120)(--=t t f (元). (Ⅰ)试写出该种商品的日销售额y 与时间)200(≤≤t t 的函数表达式; (Ⅱ)求该种商品的日销售额y 的最大值与最小值.40.某市近郊有一块大约500m ×500m 的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为 2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米。
(1)分别用x 表示y 和S 的函数关系式,并给出定义域;(2)怎样设计能使S 取得最大值,并求出最大值。
41. (本小题满分16分)如图,有一块四边形ABCD 绿化区域,其中90A C ∠=∠=,BA BC ==1AD CD ==,现准备经过BC 上一点P 和AD 上一点Q 铺设水管PQ ,且PQ 将四边形ABCD 分成面积相等的两部分,设CP x =,DQ y =.⑴求x 、y 的关系式;⑵求水管PQ 的长的最小值.42.某企业接到生产3000台某产品的A ,B ,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k (k 为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间; (2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案. 【2012高考真题湖南理20】(本小题满分13分)43.某公司有价值a 万元的一条生产流水线,要提高该生产流水线的生产能力,就要对其进行技术改造,改造就需要投入资金,相应就要提高生产产品的售价。
假设售价y 万元 技术改造投入x 万元之间的关系满足:①y 与x a -和x 的乘积成正比; ②时2ax =2a y =; ③.)(20t x a x≤-≤其中t 为常数,且]1,0[∈t 。
(1)设)(x f y =,试求出)(x f 的表达式,并求出)(x f y =的定义域;(2)求出售价y 的最大值,并求出此时的技术改造投入的x 的值.44.如图一块长方形区域ABCD ,2,1AD AB ==。
在边AD 的中点O 处,有一个可转动的探照灯,其照射角EOF ∠始终为4π,设AOE α∠=,探照灯照射在长方形ABCD 内部区域的面积为S . (1) 当02πα≤<时,写出S 关于α的函数表达式 (2) 当04πα≤<时,求S 的最大值。
(3) 若探照灯每9分钟旋转“一个来回”(OE 自OA 转到OC ,再回到OA ,称“一个来回”,忽略OE 在OA 及OC 处所用的时间),且转动的角速度大小一定。
设AB 边上有一点G ,且6AOG π∠=,求点G 在“一个来回”中被照到的时间。
45.已知函数,3)(x x f =且x ax x g a 43)(,218log 3-=+=的定义域为[1,1-].)1(求)(x g 的解析式并判断其单调性;)2(若方程m x g =)(有解,求m 的取值范围.46.若函数)3(log 22a ax x y +-=在[2,+∞)是增函数,求实数a 的范围47.已知4()log (41)xf x kx =++()k R ∈是偶函数.(1)求k 的值;(2)证明:对任意实数b ,函数()y f x =的图象与直线b x y +=21最多只有一个交点; (3)设⎪⎭⎫⎝⎛-⋅=a a x g x342log )(4,若函数()f x 与()g x 的图象有且只有一个公共点,求实数a 的取值范围.48.已知函数),()(2R b bx x x f ∈+=),()(R a x a x x g ∈+=⎩⎨⎧<≥=).()()),((),()()),(()(x g x f x f g x g x f x g f x H (1) 当1==b a 时,求);(x H(2)当1=a 时,在[2,)x ∈+∞上)),(()(x g f x H =求b 的取值范围;(3) 当0>a 时,方程,0))((=+c x g f 在),0(∞+上有且只有一个实根,求证:c b 、中至少有一个负数.49.设函数()214f x x x =+--. (I )解不等式()2f x >;(II )若关于x 的不等63)(2--≥a a x f 在[]5,0恒成立,试求a 的取值范围.50.已知函数()),0(2R a x x ax x f ∈≠+=(1)判断函数()x f 的奇偶性;(2)若()x f 在区间[)+∞,2是增函数,求实数a 的取值范围。