集合单元测试题(含答案)word版本
(完整)集合章节测试卷

集合章节测试卷 班级 姓名 座位号一、选择题(每小题5分,共计60分)1.下列表述正确的有 ( )①空集没有子集 ②任何集合都有至少两个子集③空集是任何集合的真子集 ④若Ø ⊂≠A,则A≠ØA .0个B .1个C .2个D .3个2.若集合{}|15A x N x =∈≤≤,则( )A.5A ∉ B 。
5A ⊆ C.A ⊇5 D 。
5A ∈3.已知 2{1,2}{1,46}{1,2,3}x x x +-+=,则x =( )(A ) 2 (B) 1 (C)2或 1 (D )1或34.设集合{|101},{|5}A x Z x B x Z x =∈--=∈≤≤≤,则A B 中元素的个数是( )A 、11B 、10C 、16D 、155.若非空集合{}{}|2135,|322A x a x a B x x =+≤≤-=≤≤,则使⊆A (A ∩B)成立的所有a 的值的集合是() A .{}/19a a ≤≤ B.{/69}a a ≤≤ C .{}/9a a ≤ D .φ6.下列指定的对象,不能构成集合的是A 。
一年中有31天的月份B.平面上到点O 的距离等于1的点C.满足方程0322=--x x 的xD 。
某校高一(1)班性格开朗的女生7.若集合A 、B 、C ,满足,A B A B C C ==,则A 与C 之间的关系为( )A . A CB .C A C .A C ⊆D .C A ⊆8.集合P=},2|{Z k k x x ∈=,若P b a ∈∀,都有P b a ∈*。
则*运算不可能是( )A 、加法B 、减法C 、乘法D 、除法9.设全集U ={1,2,3,4,5,6,7,8},集合A ={1,2,3,5},B ={2,4,6},则下图中的的为A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}11..集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =,则a 的值为 ( )A.0 B 。
集合测试题及答案

集合测试题及答案一、选择题1. 集合A={1,2,3},集合B={2,3,4},求A∩B。
A. {1}B. {2,3}C. {4}D. {1,2,3}2. 集合A={1,2,3},集合B={2,3,4},求A∪B。
A. {1,2,3}B. {2,3,4}C. {1,2,3,4}D. {2,3}二、填空题1. 集合A={x|x是小于10的正整数},那么A的元素个数是_________。
2. 集合A={x|x是偶数},集合B={x|x是奇数},那么A∪B表示的数集是_________。
三、简答题1. 解释什么是子集,并给出一个例子。
2. 描述如何使用韦恩图表示两个集合的并集和交集。
四、计算题1. 给定集合A={1,2,3,4,5},集合B={3,4,5,6,7},求A∩B和A∪B。
2. 给定集合A={x|x是小于20的质数},集合B={x|x是小于20的合数},求A∪B。
五、证明题1. 证明:对于任意集合A和B,(A∪B)∩C = (A∩C)∪(B∩C)。
2. 证明:对于任意集合A,A∩A = A。
六、应用题1. 如果一个班级有30名学生,其中15名学生学习数学,12名学生学习物理,8名学生同时学习数学和物理。
求只学习数学的学生数量。
2. 如果一个图书馆有100本书籍,其中50本是小说,30本是科幻小说,15本同时属于小说和科幻小说。
求只属于科幻小说的书籍数量。
答案:一、选择题1. B2. C二、填空题1. 92. 所有整数三、简答题1. 子集是指一个集合中的所有元素都是另一个集合的元素。
例如,集合{1,2}是集合{1,2,3}的子集。
2. 韦恩图是一个用来表示集合的图形工具,其中两个圆圈重叠的部分表示交集,两个圆圈的总面积表示并集。
四、计算题1. A∩B={3,4,5},A∪B={1,2,3,4,5,6,7}。
2. A∪B={2,3,5,7,11,13,17,19}。
五、证明题1. 证明略。
2. 证明略。
中职数学基础模块上册第一单元集合word练习题1

高一《集合》单元测试试题(1)一、选择题:(5×10=50′)★1.设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。
则U (A ∩B)=( ) A .(-∞,1)∪(2,+∞) B .(-∞,1)∪[2,+∞) C .(-∞,1]∪[2,+∞) D .(-∞,1]∪(2,+∞) ★2、已知A={1,a },则下列不正确的是( )A:a ∈A B:1∈A C:(1、a )∈A D:1≠a★3、集合{}Z k k x x M ∈-==,23,{}Z n n y y P ∈+==,13,{}Z m m z z S ∈+==,16 之间的关系是( )(A )M P S ⊂⊂ (B )M P S ⊂= (C )M P S =⊂ (D)M P S =⊃ ★4、如图,阴影部分所表示的集合为( ) A 、A ∩(B ∩C ) B 、(C S A )∩(B ∩C ) C 、(C S A )∪(B ∩C ) D 、(C S A )∪(B ∪C )★5、设I 为全集,S 1、S 2、S 3是I 上的三个非空子集,且S 1∪S 2∪S 3=I ,则下列 论断正确的是( )A 、 C I S 1∩(S 2∪S 3)=∅B 、 S 1⊆(C I S 2∩C I S 3) C 、 C I S 1∩C I S 2∩C I S 3=∅D 、 S 1⊆(C I S 2∪C I S 3)★6、设关于x 的式子 1ax 2+ax+a+1当x ∈R 时恒有意义,则实数a 的取值范围是( ) A 、a ≥0 B 、a<0 C 、a<-43 D 、 a ≥0或a<-43★7、设集合S={a,b,c,d,e },则包含{a,b }的S 的子集共有( )个A 2B 3C 5D 8 ★8、设集合M={x|x=k 2 +14,k ∈Z },N={x|x=k 4 +12,k ∈Z },则( )A 、 M=NB 、 M NC 、 M ND 、 M ∩N=∅ ★9、设⊕是R 上的一个运算,A 是R 上的非空子集,若对任意的a 、b ∈A ,有a ⊕b ∈A ,则称A 对运算⊕封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是( ) A 自然数集B 整数集C 有理数集D 无理数集 ★10、设P 、Q为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( )A .9B .8C .7D .6二、 填空题(5×5=25′)★11、已知集合{}1≤-=a x x A ,{}0452≥+-=x x x B ,若φ=B A ,则实数a 的取值范围是 .★12、A={a²,a+1,-3},B={a-3,2a-1,a²+1},若A∩B={-3},那么a=_______.★13、设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则(C I A)∩(C I B)=__________.★14、已知不等式5-x>7|x+1|与不等式ax2+bx-2>0的解集相同,则a=____;b=_____★15、设非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A⊆A∩B成立的a值的集合为__________。
集合基础知识和单元测试卷(含答案)

集合基础知识和单元测试卷(含答案)集合单元测试卷重点:集合的概念及其表示法;理解集合间的包含与相等的含义;交集与并集,全集与补集的理解。
难点:选择恰当的方法表示简单的集合;理解空集的含义;理解交集与并集的概念及其区别联系。
基础知识:一、理解集合中的有关概念1)集合中元素的特征:确定性,互异性,无序性。
集合元素的互异性:例如下列经典例题中的例2.2)常用数集的符号表示:自然数集N;正整数集Z+、N+;整数集Z;有理数集Q;实数集R。
3)集合的表示法:列举法,描述法,区间法,集合构造法。
注意:区分集合中元素的形式及意义,例如:2A={x|y=x^2+2x+1};B={y|y=x^2+2x+1};C={(x,y)|y=x+2x+1};D={x|x=x^2+2x+1};E={(x,y)|y=x^2+2x+1,x∈Z,y∈Z};4)空集是指不含任何元素的集合。
({}、∅和{∅}的区别;与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为A⊆B,在讨论的时候不要遗忘了A=∅的情况。
二、集合间的关系及其运算1)元素与集合之间关系用符号“∈”来表示。
集合与集合之间关系用符号“⊆”来表示。
A;A ⊆ A;并集A∪B={x|x∈A或x∈B};交集A∩B={x|x∈A且x∈B};补集CA={x|x∉A};2)对于任意集合A,B,则:①A∩B=B∩A;A∪B=B∪A;A∩B=A∪B②A∩CA=∅;A∪CA=U③(C∪A)∩(C∪B)=C∪(A∩B);(C∩A)∪(C∩B)=C∩(A∪B)④A∩B=A⇔A⊆B;A∪B=A⇔B⊆A三、集合中元素的个数的计算:1)若集合A中有n个元素,则集合A的所有不同的子集个数为2^n,所有真子集的个数是2^n-1,所有非空真子集的个数是2^n-1.2) A∪B中元素的个数为A和B中元素个数之和减去A∩B中元素的个数。
已知集合A为自然数集合中所有满足6-x是8的正约数的数,求A的所有子集。
集合单元测试题(含答案)精编版

高一数学集合测试题 总分150分第一卷一、选择题(共10题,每题5分) 1.下列集合的表示法正确的是( ) A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈; C .集合{}1,2,2,5,7; D .不等式14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( ) A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( ) A .5个 B .6个 C .7个 D.8个 4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则PQ =( )A .{}1,2B .{}3,4C .{}1D .{}2,1,0,1,2--5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆ ④0;∈∅⑤0⋂∅.=∅其中错误..写法的个数为 ( ) A .1 B .2 C .3 D .46.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( ) A .AB B .A BC .()()U U C A C BD .()()U U C A C B8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅,则实数m 的取值范围是( )A .1m ≥-B .1m >-C .1m ≤-D .1m <-9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( ) A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,1010.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( )A .1-B .0或1C .0D . 2第二卷 总分150分二、填空题:(共4题,每题5分) 11.满足{}{}1,21,2,3B =的所有集合B 的集合为 。
高中数学(苏教版)分层精练-必修1 -第1章 集合 单元测试 Word版含解析

(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.下列六个关系式:①{a ,b }⊆{b ,a };②{a ,b }={b ,a };③{0}=∅;④0∈{0};⑤∅∈{0};⑥∅⊆{0}.其中正确的个数为________.解析:①②④⑥是正确的.答案:42.下列各对象可以组成集合的是________.①与1非常接近的全体实数;②某校2013~2014学年度第一学期全体高一学生;③高一年级视力比较好的同学;④与无理数π相差很小的全体实数.解析:据集合的概念判断,只有②可以组成集合.答案:②3.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________. 解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}4.集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为________. 解析:∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,6},∴{a ,a 2}={4,16},∴a =4.答案:45.设集合A ={-1,4,8},B ={-1,a +2,a 2+4},若A =B ,则实数a 的值为________. 解析:∵A =B ,∴①⎩⎨⎧a +2=4a 2+4=8或②⎩⎨⎧a +2=8a 2+4=4, 由①得a =2,此时B ={-1,4,8}满足题意,②无解,∴a =2.答案:26.已知集合A ={3,m 2},B ={-1,3,2m -1},若A ⊆B ,则实数m 的值为________. 解析:∵A ⊆B ,∴A 中元素都是B 的元素,即m 2=2m -1,解得m =1.答案:17.若集合A ={x |x ≥3},B ={x |x <m }满足A ∪B =R ,A ∩B =∅,则实数m =________. 解析:结合数轴知,当且仅当m =3时满足A ∪B =R ,A ∩B =∅.答案:38.设集合A ={1,4,x },B ={1,x 2},且A ∪B ={1,4,x },则满足条件的实数x 的个数是________.解析:由题意知x 2=4或x 2=x ,所以x =0,1,2,-2,经检验知x =0,2,-2符合题意,x =1不符合题意,故有3个.答案:39.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有________个. 解析:M 可以为∅,{4},{4,7},{8},{8,7},{7}.答案:610.已知集合A ={x |y = 1-x 2,x ∈Z },B ={y |y =x 2+1,x ∈A },则A ∩B 为________. 解析:由1-x 2≥0得,-1≤x ≤1,∵x ∈Z ,∴A ={-1,0,1}.当x ∈A 时,y =x 2+1∈{2,1},即B ={1,2},∴A ∩B ={1}.答案:{1}11.集合P ={(x ,y )|x +y =0},Q ={(x ,y )|x -y =2},则P ∩Q =________.解析:P ∩Q ={(x ,y )|⎩⎨⎧x +y =0,x -y =2,}={(x ,y )|⎩⎨⎧x =1,y =-1,}={(1,-1)}. 答案:{(1,-1)}12.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q},若P ={1,2,3,4},Q ={x | x +12<2,x ∈R },则P -Q =________. 解析:由定义P -Q ={x |x ∈P ,且x ∉Q},求P -Q 可检验P ={1,2,3,4}中的元素在不在Q ={x | x +12<2,x ∈R }中,所有在P 中不在Q 中的元素即为P -Q 中的元素,故P -Q ={4}.答案:{4}13.设P 、Q 为两个非空实数集合,定义集合P*Q ={z |z =ab ,a ∈P ,b ∈Q},若P ={-1,0,1},Q ={-2,2},则集合P*Q 中元素的个数是________.解析:按P*Q 的定义,P*Q 中元素为2,-2,0,共3个.答案:314.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么k 是A 的一个“孤立元”,给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:不含“孤立元”的集合就是在集合中有与k 相邻的元素,故符合题意的集合有:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.答案:6二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知全集U =R ,A ={x |2≤x <5},集合B ={x |3<x <9}.求(1)∁U (A ∪B );(2)A ∩∁U B .解:(1)∵A ∪B ={x |2≤x <9},∴∁U (A ∪B )={x |x <2或x ≥9}.(2)∵∁U B ={x |x ≤3或x ≥9},∴A ∩∁U B ={x |2≤x ≤3}.16.(本小题满分14分)设全集U ={2,4,-(a -3)2},集合A ={2,a 2-a +2},若∁U A={-1},求实数a 的值.解:由∁U A ={-1},可得⎩⎨⎧-1∈U ,-1∉A ,所以⎩⎨⎧-(a -3)2=-1,a 2-a +2≠-1,解得a =4或a =2. 当a =2时,A ={2,4},满足A ⊆U ,符合题意;当a =4时,A ={2,14},不满足A ⊆U ,故舍去.综上,a 的值为2.17.(本小题满分14分)已知集合A ={x |x 2-3x -10≤0},集合B ={x |p +1≤x ≤2p -1}.若B ⊆A ,求实数p 的取值范围.解:由x 2-3x -10≤0得-2≤x ≤5,故A ={x |-2≤x ≤5}.①当B ≠∅时,即p +1≤2p -1⇒p ≥2.由B ⊆A 得:-2≤p +1且2p -1≤5,解得-3≤p ≤3.∴2≤p ≤3.②当B =∅时,即p +1>2p -1⇒p <2.由①②得p 的取值范围是p ≤3.18.(本小题满分16分)已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值;(3)若A 中至多只有一个元素,求a 的取值范围.解:(1)若A 是空集,则方程ax 2-3x +2=0没有根,则a ≠0且Δ=9-8a <0,即a >98.(2)若A 中只有一个元素,则方程ax 2-3x +2=0有一个根,①当a ≠0且Δ=9-8a =0时,则a =98; ②当a =0时,方程为-3x +2=0,只有一个根.综上,a =0或98. (3)若A 中至多只有一个元素,则A 是空集或A 只有一个元素,故a =0或a ≥98. 19.(本小题满分16分)某班50名学生中,会讲英语的有36人,会讲日语的有20人,既会讲英语又会讲日语的有14人,问既不会讲英语又不会讲日语的有多少人?解:设全集U ={某班50名学生},A ={会讲英语的学生},B ={会讲日语的学生},A ∩B ={既会讲英语又会讲日语的学生},则由韦恩图知,既不会英语又不会日语的学生有:50-22-14-6=8(人).20.(本小题满分16分)已知集合A ={x |x 2-2x -8=0},B ={x |x 2+ax +a 2-12=0},若A ∪B ≠A ,求实数a 的取值范围.解:若B ∪A =A ,则B ⊆A ,又A ={x |x 2-2x -8=0}={-2,4},所以集合B 有以下三种情况:①当B =∅,有Δ=a 2-4(a 2-12)<0⇒a 2>16⇒a <-4或a >4;②当B 是单元素集合时,有Δ=0⇒a 2=16⇒a =-4或a =4.若a =-4,则B ={2}⊄A ,若a =4,则B ={-2}⊆A ;③当B ={-2,4}时,有-2,4是关于x 的方程x 2+ax +a 2-12=0的两根⇒⎩⎨⎧-2+4=-a (-2)×4=a 2-12⇒a =-2. 此时,B ={x |x 2-2x -8=0}={-2,4}⊆A .综上可知,B ∪A =A 时,实数a 的取值范围是a <-4或a ≥4或a =-2. 所以B ∪A ≠A 时,实数a 的取值范围为-4≤a <4,且a ≠-2.。
集合单元测试题含答案

集合单元测试题含答案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】高一数学集合测试题 总分150分第一卷一、选择题(共10题,每题5分)1.下列集合的表示法正确的是( )A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( )A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( )A .5个B .6个C .7个 D.8个4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则P Q =( )A .{}1,2B .{}3,4C .{}1D .{}2,1,0,1,2--5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆ ④0;∈∅⑤0⋂∅.=∅其中错误..写法的个数为 ( )A .1B .2C .3D .46.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( )A .AB B .A BC .()()U U C A C BD .()()U U C A C B8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若MP =∅,则实数m 的取值范围是( )A .1m ≥-B .1m >-C .1m ≤-D .1m <-9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( )A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,1010.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( )A .1-B .0或1C .0D . 2第二卷 总分150分11.满足{}{}1,21,2,3B =的所有集合B 的集合为 。
高中数学集合整章检测试卷(含解析)

高中数学集合整章检测试卷(含解析)新人教A版必修1集合整章检测试卷(含答案)一、选择题1.若集合A={x||x|1,xR},B={y|y=x2,xR},则AB等于()A.{x|-11} B.{x|x0}C.{x|01} D.2.已知函数f(x)=ax2+(a3-a)x+1在(-,-1]上递增,则a的取值范畴是()A.a B.-33C.03 D.-303.若f(x)=ax2-2(a>0),且f(2)=2,则a等于()A.1+22 B.1-22C.0 D.24.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是()A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-45.已知M,N为集合I的非空真子集,且M,N不相等,若N(IM)=,则MN等于()A.M B.N C.I D.6.已知函数f:AB(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()A.M=A,N=B B.MA,N=BC.M=A,NB D.MA,NB7.下列函数中,既是奇函数又是增函数的为()A.y=x +1 B.y=-x3C.y=1x D.y=x|x|8.已知函数f(x)=1x在区间[1,2]上的最大值为A,最小值为B,则A -B等于()A.12 B.-12 C.1 D.-19.设f(x)=x+3x10ffx+5 x10,则f(5)的值是()A.24 B.2 1 C.18 D.1610.f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(2,5)上是()A.增函数B.减函数C.有增有减D.增减性不确定11.若f(x)和g(x)差不多上奇函数,且F(x)=f(x)+g(x)+2在(0,+)上有最大值8,则在(-,0)上F(x)有()A.最小值-8 B.最大值-8C.最小值-6 D.最小值-412. 在函数y=|x|(x[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系的图象可表示为()二、填空题13.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=______.14.已知函数f(x)=4x2-mx+5在区间[-2,+)上是增函数,则f(1)的取值范畴是________.15.若定义运算a⊙b=b,aba,a<b,则函数f(x)=x⊙(2-x)的值域为________.16.用描述法表示如图中阴影部分的点(含边界)的坐标的集合(不含虚线)为________.三、解答题17.设集合A={x|2x2+3px+2=0},B={x|2x2+x+q=0},其中p、q为常数,xR,当AB={12}时,求p、q的值和AB.18.已知f(x),g(x)在(a,b)上是增函数,且ab,求证:f(g(x))在(a,b)上也是增函数.19.函数f(x)=4x2-4ax+a2-2a+2在区间[0, 2]上有最小值3,求a 的值.20.已知f(x)=xx-a(xa).(1)若a=-2,试证f(x)在(-,-2)内单调递增;(2)若a>0且f(x)在(1,+) 内单调递减,求a的取值范畴.21.某公司打算投资A、B两种金融产品,依照市场调查与推测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).(1)分别将A、B两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:如何样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.已知函数y=x+tx有如下性质:假如常数t>0,那么该函数在(0,t]上是减函数,在[t,+)上是增函数.(1)已知f(x)=4x2-12x-32x+1,x[0,1],利用上述性质,求函数f(x)的单调区间和值域;“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合测试题 总分150分
第一卷
一、选择题(共10题,每题5分) 1.下列集合的表示法正确的是( ) A .实数集可表示为R ;
B .第二、四象限内的点集可表示为{}
(,)0,,x y xy x R y R ≤∈∈; C .集合{}1,2,2,5,7; D .不等式14x -<的解集为{}5x <
2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( ) A . 4 B. 3 C. 2 D. 1
3.集合{},,a b c 的子集共有 ( ) A .5个 B .6个 C .7个 D.8个 4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则P
Q =( )
A .{}1,2
B .{}3,4
C .{}1
D .{}2,1,0,1,2--
5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆ ④0;∈∅⑤0⋂∅.=∅其中错误..写法的个数为 ( ) A .1 B .2 C .3 D .4
6.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )
A .{}|9a a <
B .{}|9a a ≤
C .{}|19a a <<
D .{}|19a a <≤
7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( ) A .A
B B .A B
C .()()U U C A C B
D .()()U U C A C B
8.设集合(]{}
2,,|1,M m P y y x x R =-∞==-∈,若M P =∅,则实数m 的取值范围是
( )
A .1m ≥-
B .1m >-
C .1m ≤-
D .1m <-
9.定义A-B={}
,,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( ) A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,10
10.集合{}{}
2
2
,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( )
A .1-
B .0或1
C .0
D . 2
第二卷 总分150分
二、填空题:(共4题,每题5分) 11.满足{}
{}1,21,2,3B =的所有集合B 的集合为 。
12.已知集合A ={2,3,4-},B ={2,x x t t A =∈},用列举法表示集合B= 13.50名学生参加体能和智能测验,已知体能优秀的有40人,智能优秀的有31人,两项都不优秀的有4人,问这种测验都优秀的有 人。
14.设集合,A B 满足:{}{}1,2,3,4,5A B
==, {}|M x x A =⊆, {}|N x x B =⊆,则M N = 。
三、解答题:(共5题) 15(12分).已知{}(){}3,4,6,8U A
B C A B ==,(){}1,5U A C B =,
()(){}*|10,3,U U C A C B x x x x N =<≠∈且,求(),U C A
B ,A B 。
16(15分).已知集合22
{|320},{|20}A x x x B x x x m =-+==-+=且=B A ,A 求m 的取值范围。
17(15分).已知I ={不超过5的正整数},集合{}
2|50A x x x q =-+=,
{}2|120B x x px =++=,且{}()1,3,4,5.I C A B =求,p q 的值,并求()
()I I C A C B .
18(18分).已知集合}023|{2=+-=x x x A ,}0)5()1(2|{2
2=-+++=a x a x x B , (1)若}2{=B A ,求实数a 的值; (2)若A B A = ,求实数a 的取值范围;
19(20分).已知集合A 的元素全为实数,且满足:若a A ∈,则
11a
A a
+∈-。
(1)若2a =,求出A 中其它所有元素;
(2)0是不是集合A 中的元素?请你设计一个实数a A ∈,再求出A 中的所有元素? (3)根据(1)(2),你能得出什么结论。
第一章测试题
一选择题
1A 2.B 3.D 4.A 5.C 6.D 7.D 8.D 9.D 10.C 二填空题 11.
{}{}{}{}{}3,1,3,2,3,1,2,3 12.{}4,9,16 13.25 14. {}∅
三解答题 15. (){}2,7,9U A B =ð,{}{}1,3,5,3,4,6,8A B ==;
16.
,A B A B A =∴⊆,B ∴集合有四种可能:{}{}{}121,2∅,,,,分别讨论求解,得1m ≥;
17. ()(
){}
{}{} 7,6,1,4,51,2,51,5I I
p q A B =-===痧;
18.(1) 1a =-或3a =- (2) 当A B A = 时,B A ⊆,从而B 可能是{}{}{},1,2,1,2∅.分
别求解,得3a ≤-;
19.(1)由2A ∈,则
12312A +=-∈-,又由3A -∈,得131132A -=-∈+,再由1
2
A -∈,得1
1121312A -
=∈+,而13A ∈,得1132113
A -=∈+,故A 中元素为112,3,,23--. (2) 0不是A 的元素.若0A ∈,则10110A +=∈-,而当1A ∈时,
11a
a +-不存在,故0不是A 的元素.取3a =,可得113,2,,32A ⎧
⎫=--⎨⎬⎩
⎭.
(3) 猜想:①A 中没有元素1,0,1-;②A 中有4个,且每两个互为负倒数.①由上题知:0,1A ∉.
若1A -∈,则
111a
a
+=--无解.故1A -∉②设1a A ∈,则12123121
111
11a a a A a A a A a a a ++∈⇒
=∈⇒==-∈--314
451314
111111a a a a A a a A a a a +-+⇒=
=∈⇒==∈-+-,又由集合元素的互异性知,A 中最多只有4个元素1234,,,a a a a ,且131,a a =-241a a =-.显然1324,a a a a ≠≠.若12a a =,则1
1111a a a +=-,
得:2
11a =-无实数解.同理,14a a ≠.故A 中有4个元素.。