磁光效应

合集下载

电光磁光效应实验报告(3篇)

电光磁光效应实验报告(3篇)

第1篇一、实验目的1. 理解电光效应和磁光效应的基本原理。

2. 通过实验验证马吕斯定律和法拉第定律。

3. 探究电光晶体在不同电场和磁场下的光学性质。

4. 深入理解光的偏振现象及其在光通信和光显示等领域的应用。

二、实验原理电光效应是指当光通过电场作用下的介质时,光的偏振方向发生改变的现象。

马吕斯定律描述了电光效应的基本规律,即入射光的偏振方向与电场方向垂直时,透射光的强度与入射光的强度成正比。

磁光效应是指光通过磁场作用下的介质时,光的偏振方向发生改变的现象。

法拉第定律描述了磁光效应的基本规律,即光在磁场中传播时,其偏振方向会旋转。

三、实验仪器与材料1. 电光晶体样品(如LiNbO3)2. 激光器(如He-Ne激光器)3. 偏振器4. 电场发生器5. 磁场发生器6. 光功率计7. 光谱仪8. 望远镜9. 计算机及数据采集系统四、实验步骤1. 电光效应实验(1)将电光晶体样品放置在实验装置中,并确保其表面平行于电场方向。

(2)调整偏振器,使其偏振方向与入射光的偏振方向垂直。

(3)开启激光器,调节光功率计,使入射光功率稳定。

(4)调节电场发生器,改变电场强度,观察透射光的偏振方向变化。

(5)记录不同电场强度下透射光的偏振方向,并与理论计算结果进行比较。

2. 磁光效应实验(1)将电光晶体样品放置在实验装置中,并确保其表面平行于磁场方向。

(2)调整偏振器,使其偏振方向与入射光的偏振方向垂直。

(3)开启激光器,调节光功率计,使入射光功率稳定。

(4)调节磁场发生器,改变磁场强度,观察透射光的偏振方向变化。

(5)记录不同磁场强度下透射光的偏振方向,并与理论计算结果进行比较。

3. 电光与磁光效应综合实验(1)同时调节电场发生器和磁场发生器,观察透射光的偏振方向变化。

(2)记录不同电场和磁场强度下透射光的偏振方向,并与理论计算结果进行比较。

五、实验数据与结果分析1. 电光效应实验:通过实验数据,可以观察到透射光的偏振方向随电场强度的变化而变化,符合马吕斯定律。

磁光效应简介

磁光效应简介
详细描述
法拉第反射是光在磁场中反射时,偏振面发生旋转的现象。这种现象是由于光 在磁场中反射时,磁场所引起的偏振面旋转角与光反射距离成正比。
磁光克尔效应
总结词
磁光克尔效应是磁光效应的一种 ,在光学测量和光学通信等领域 有重要应用。
详细描述
磁光克尔效应是指在外加磁场作 用下,某些非中心对称晶体或各 向异性媒质中,由于光偏振方向 改变而引起折射率变化的现象。
光学数据加密
利用磁光效应可以对数据进行加密和解密,提高数据的安全性。
光学检测领域的应用
光学传感
利用磁光效应可以设计出各种光学传感器,用于测量物理量的变化,如磁场、温度、压力等。
非线性光学效应
磁光效应可以增强非线性光学效应,如光学倍频、光学参量放大等,为光学检测提供了新的手段。
其他领域的应用
激光雷达
2. Phelan, T. W., & Ritz, T. (2007). Magneto-optic effects in semiconductor quantum dots. Journal of applied physics, 101(6), 063102.
3. Sivak, D. A., & Zhang, X. (2012). Magneto-optic effects in thin film garnets. Journal of magnetism and magnetic materials, 324(20), 3395-3400.
磁光效应的实验研究
近年来,实验研究主要集中在利用磁光效应进行 光学通信、光学传感、光学信息处理等领域。
3
磁光效应的理论模型
理论模型主要基于经典电磁理论和量子力学理论 进行描述。

磁光效应实验报告

磁光效应实验报告

磁光效应实验报告磁光效应是指当一束光穿过具有磁性的介质时,光的传播速度和偏振方向都会发生变化的现象。

磁光效应实验是研究光在磁场中的行为和性质的重要手段,通过实验可以验证磁光效应的存在,并测定磁光常数等参数。

本实验旨在通过测量光在磁场中的传播速度和偏振方向的变化,验证磁光效应的存在,并进一步探究其规律和特性。

实验仪器和材料:1. He-Ne 氦氖激光器。

2. 磁铁。

3. 偏振片。

4. 介质样品。

5. 光电探测器。

6. 数据采集系统。

实验步骤:1. 将氦氖激光器放置在实验台上,并调整使其发出稳定的激光。

2. 在激光器发出的光路上放置一个偏振片,调整偏振片使光通过后为线偏光。

3. 将磁铁放置在光路上,使光线通过磁场区域。

4. 在磁场区域内放置介质样品,调整磁场强度和方向。

5. 在光路的末端放置光电探测器,并连接数据采集系统,记录光的强度和偏振方向随时间的变化。

实验结果:通过实验测量和数据分析,我们发现在磁场作用下,光的传播速度和偏振方向发生了变化。

当介质样品处于磁场中时,光的传播速度随磁场强度和方向的变化而发生改变,同时光的偏振方向也发生了旋转。

这些结果表明了磁光效应的存在,并且为进一步研究磁光效应的规律和特性提供了重要的实验数据。

实验讨论:磁光效应的存在和特性对于光学和材料科学具有重要意义。

通过实验我们可以进一步研究磁光常数和材料的磁光性质,为开发新型光学器件和材料提供理论和实验基础。

在实际应用中,磁光效应也被广泛应用于光学通信、光存储和光传感等领域,具有重要的科学和技术价值。

结论:通过本次实验,我们验证了磁光效应的存在,并测定了光在磁场中的传播速度和偏振方向的变化。

磁光效应是光学和材料科学中的重要现象,具有重要的理论和实际应用价值。

我们将继续深入研究磁光效应的规律和特性,为光学和材料科学的发展做出更多的贡献。

通过本次实验,我们对磁光效应有了更深入的了解,也为相关领域的研究和应用提供了实验数据支持。

磁光效应简介

磁光效应简介

极向克尔效应

极向克尔效应的磁致效应最强,而且和纵 向的克尔效应一样都与磁化强度成正比, 因此极向克尔效应是目前应用最广泛的一 种克尔效应。

习惯上可以将极向克尔效应的旋转简称为 克尔旋转。它与物质的折射率有关。而且 也和外磁场和磁化强度有关。
磁光材料

磁光晶体是具有磁光效应的晶体材料。 磁光效应与晶体材料的磁性,特别是材 料的磁化强度密切相关,因此一些优良 的磁性材料往往是磁光性能优良的材料。


石榴石单晶

石榴石单晶是一种十分常见的硅酸盐类矿物, YIG是一种典型的亚铁磁性石榴石材料。它能 传递近红外光。 石榴石铁氧体是一种极具代表性的强磁性物质, 在近红外波段具有非常高的透过率。 由于光是一种电磁波,当光透过透明的磁性物 质或在磁性物质表面反射时,会受到磁性物质 内部磁矩的影响,产生磁光效应。 而在YIG中铁离子是磁性离子。当用其他离子 代替铁离子时,总磁矩或者增加或者减少。从 而影响了他的磁光效应的效果。
石榴石单晶薄膜

磁光薄膜有单晶、多晶和非晶态等多种类型。 常用的介质薄膜多为单晶和多晶薄膜。稀土石 榴石在1000~6000nm的范围内有很低的光吸收, 而在其他的光波区域,吸收则大大增加。因此 我们在其中掺入一些其他的元素,抑制它对光 波的吸收。例如:在其中掺入Pr,他的主要作 用是使膜呈平面易磁化。从而增强磁光效应。

磁光效应包括很多种,目前对其研究பைடு நூலகம்应 用最广泛的是法拉第效应和克尔效应。
磁光效应的几种理论

一、法拉第效应 二、克尔效应 三、磁线双折射(科顿—莫顿效应或者佛赫特 效应) 四、磁圆振二向色性

五、塞曼效应
六、磁激发光散射 下面就简单介绍一下法拉第效应和克尔效应。

磁光效应

磁光效应
磁光效应
目录
磁光效应原理
• 法拉第效应基本概述
磁光材料介电常数各向异性
• 对各向同性材料外加磁场 • 材料本身的铁磁性
磁光效应当今具体应用
• 光纤电流传感器优点 • 具体的操作
引言
自然界中存在一些物质,当线偏振光沿光轴方向通过这些物质后,其偏振面会 发生旋转,即发生旋光现象,称之为自然旋光。 旋光现象最早由阿拉果在石英晶体中发现,随后毕奥发现一些各向同性的气体 和液体也具备该特性;而一些不具备自然旋光本领的晶体在磁场的作用下,偏 振面产生偏转的现象称为磁光效应,该现象由法拉第首次发现,也称为法拉第 效应。
将各向同性吸收体放入磁场:
光纤式电流传感器(OFCT) 主要由传感头 、输送与接收光纤 、电子回路 等三部分组成 , 如图 1 所示 :
各向异性吸收体的磁光第效应:
H1是金 H2是连续的电介质层,介电常数为2 H3是掺铋钇铁石榴石Bi-substituted yttrium iron garnet M是玻璃,介电常数为2.13
参考文献——张昊. 环形结构全光纤电流传感器研究[D]. 福建师范大学, 2014.
在自然旋光晶体中,对应左右旋圆偏振光的折射率不同,而光在磁场的作用下, 同样也会有这样的效应产生。磁场作用下,经过一定长度的传播后,两种圆偏 振光转过的角度将大小不同,如图2.3。
二、磁光效应介电常数
一般的,在没有外加磁场的情况下,二氧化硅为各向同性吸收材料,相对介电 常数值取一个常数:
谢谢!
参考文献——Lei C, Li D, Chen L, et al. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays[J]. Optics Letters, 2016, 41(4):729.

磁光效应传感器原理和应用范围

磁光效应传感器原理和应用范围

磁光效应传感器原理和应用范围1. 引言嘿,大家好!今天我们要聊聊一个有趣的话题——磁光效应传感器。

别看这名字听起来复杂,其实它的原理和应用都是挺简单的,就像我们生活中的一杯水,表面平静,却有许多奥妙藏在里面。

磁光效应听起来像是科幻电影里的高科技玩意儿,但其实它就在我们身边,默默地为我们的生活和工业服务。

你准备好了吗?那咱们就开始吧!2. 磁光效应传感器的原理2.1 磁光效应是什么?首先,让我们来搞清楚什么是磁光效应。

简单来说,磁光效应就是当光线通过一个有磁场的物质时,它的传播方式会受到影响。

就像你在河边看鱼,水流的波动会改变你看到的鱼的样子,磁光效应也是如此。

这里面有个关键点,那就是光的偏振状态会因为磁场而改变,听起来是不是很酷?2.2 传感器的工作原理那么,传感器是怎么工作的呢?想象一下,你在海边用望远镜观察远方的船只。

这个望远镜就是我们的传感器,它能捕捉光线的变化。

磁光效应传感器利用材料对光的响应,能很敏锐地检测到周围环境的变化,比如磁场的强弱。

当外部磁场作用在传感器上时,传感器内部的光线就会发生变化,通过一些特殊的算法,我们就能把这些变化转化为可用的数据。

就像是将复杂的音乐简化成简单的旋律,既好听又易懂!3. 磁光效应传感器的应用范围3.1 工业领域说到应用,磁光效应传感器可谓是“无处不在”。

在工业领域,它们的身影可真是随处可见,简直就是工业界的小精灵。

比如在汽车制造中,这种传感器能够帮助检测汽车部件的磁场变化,确保安全性和稳定性。

想象一下,万一某个部件出现问题,那可是“前面一片狼藉”的大事!而有了这些传感器,汽车的安全性就能得到保障。

3.2 医疗领域除了工业,这种传感器在医疗领域的应用也越来越多。

想象一下,医生在给病人做检查时,如果能更精准地监测到病人的状态,那可真是“如虎添翼”啊!例如,在一些磁共振成像(MRI)设备中,磁光效应传感器可以帮助提高成像的清晰度和准确性。

通过精准的测量,医生能更好地诊断病情,给患者提供及时有效的治疗。

磁光效应

磁光效应

行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/
• 法拉第旋转效应的应用
法拉第效应可以应用于测量 仪器。例如,法拉第效应被用于 测量旋光度、或光波的振幅调变 、或磁场的遥感。在自旋电子学 里,法拉第效应被用于研究半导 体内部的电子自旋的极化。法拉 第旋转器(Faraday rotator)可 以用于光波的调幅,是光隔离器 与光循环器(optical circulator )的基础组件,在光通讯与其它 激光领域必备组件。
克尔磁光效应的应用
克尔磁光效应主要应 用与磁光光盘存储系统中。 人们很早就知道光信息的记 录和再生技术----照相技术 。激束发明后,照相技术有 了很大的发展。光盘就是用 激光非接触式高密度地记录 图像,声音,数据等信息的 圆板状媒体。
参考资料
李国栋 -《 磁性材料及器件》 都有为 - 《功能材料》 牛永宾,许丽萍等 - 《红外与激光工程》
• 克尔磁光效应
线偏振光入射到磁化媒
质表面反射出去时,偏振面
发生旋转的现象。也叫克尔
磁光效应或克尔磁光旋转。
这是继法拉第效应发现
后,英国科学家J.克尔于
图一
1876年发现的第二个重要
的磁光效应。
按磁化强度和入射面的相对取向,克尔磁光效应分极向 克尔磁光效应、横向克尔磁光效应和纵向克尔磁光效应 (图一)。极向和纵向克尔磁光旋转都正比于样品的磁 化强度。通常极向克尔旋转最大、纵向次之。
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ 范文下载:/fanwen/ 教案下载:/jiaoan/

法拉第磁光效应

法拉第磁光效应

法拉第磁光效应
1 磁光效应的基本概念
磁光效应,也称为法拉第效应,是指在施加磁场时,光在介质中
的传播速度及折射率等光学参数发生变化的现象。

这种现象是由英国
科学家法拉第于1845年首次发现的,因而得名为磁光效应或法拉第效应。

2 磁光效应的原理
磁光效应的原理基于磁场与电介质中的电场相互作用而产生的。

在磁场存在的情况下,电介质中的电子将受到磁场的作用而发生运动,并因此产生磁矩。

当光线通过这样的电介质时,它的电矢量将与产生
的磁场相互作用,从而导致光的折射率的变化。

换句话说,磁光效应
是由磁场和电光作用相互影响而产生的光现象。

3 磁光效应的应用
磁光效应在很多领域中都有着重要的应用。

当前,磁光效应广泛
应用于光学通信、光学传感器、光学计算、光学储存等领域。

在光学
通信中,磁光效应可以用来调制光信号;在光学传感器中,它可以用
来检测磁场强度,测量温度和应力等参数;在光学计算和光学存储中,磁光效应可以用来实现光路开关和存储数据,等等。

这些应用表明,
磁光效应在光学领域中具有广阔的前景和应用前景。

4 磁光效应的未来
随着光学科学和技术的快速发展,磁光效应也得到了更多的研究和应用。

目前,科学家们正在进行更为深入的研究,以探索并开发磁光效应的更多潜在用途。

例如,一些新型的材料和结构正被研究,以提高磁光效应的灵敏度和响应时间,以及拓展其应用范围。

因此,磁光效应有望在未来的科学研究和工程技术中发挥更为重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从光波在介质中传播的图象看,法拉第效应可以做如下理解:一束平行于磁场方向传播的线偏振光,可以看作是两束等幅左旋和右旋圆偏振光的迭加。这里左旋和右旋是相对于磁场方向而言的。
图3 法拉第效应的唯象解释
如果磁场的作用是使右旋圆偏振光的传播速度 和左旋圆偏振光的传播速度 不等,于是通过厚度为 的介质后,便产生不同的相位滞后:
一、法拉第效应
实验表明,在磁场不是非常强时,如图1所示,偏振面旋转的角度 与光波在介质中走过的路程 及介质中的磁感应强度在光的传播方向上的分量 成正比,即:
(1)
比例系数 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。
费尔德常数 与磁光材料的性质有关,对于顺磁、弱磁和抗磁性材料(如重火石玻璃等), 为常数,即 与磁场强度 有线性关系;而对铁磁性或亚铁磁性材料(如YIG等立方晶体材料), 与 不是简单的线性关系。
(3)
所以
(4)
由(2)式得:
(5)
当 时, ,表示右旋;当 时, ,表示左旋。假如 和 的差值正比于磁感应强度 ,由(5)式便可以得到法拉第效应公式(1)。式中的 为单位长度上的旋转角,称为比法拉第旋转。因为在铁磁或者亚铁磁等强磁介质中,法拉第旋转角与外加磁场不是简单的正比关系,并且存在磁饱和,所以通常用比法拉第旋转 的饱和值来表征法拉第效应的强弱。(4)式也反映出法拉第旋转角与通过波长 有关,即存在旋光色散。
(37)
当 , 时,磁光调制器输出最小光强,由式(33)知
(38)
由式(37)和(38)得

所以有
(39)
调制角幅度 为
(40)
由式(39)和(40)可以知道,测得磁光调制器的调制角幅度 ,就可以确定磁光调制器的光强调制深度 ,由于 随交变磁场 的幅度 连续可调,或者说随输入低频信号电流的幅度 连续可调,所以磁光调制器的光强调制深度 连续可调。只要选定调制频率 (如 )和输入励磁电流 ,并在示波器上读出在 状态下相应的 和 (以格为单位)
【实验原理】
概述:1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。
假定入射光波场具有通常的简谐波的时间变化形式 ,因为我们要求的特解是在外加光波场作用下受迫振动的稳定解,所以 的时间变化形式也应是 ,因此式(6)可以写成
(7)
式中 ,为电子共振频率。设磁场沿 方向,又设光波也沿此方向传播并且是右旋圆偏振光,用复数形式表示为
将式(7)写成分量形式
(8)
(9)
将(9)式乘 并与式(8)式相加可得
对于每一种给定的物质,法拉第旋转方向仅由磁场方向决定,而与光的传播方向无关(不管传播方向与磁场同向或者反向),这是法拉第磁光效应与某些物质的固有旋光效应的重要区别。固有旋光效应的旋光方向与光的传播方向有关,即随着顺光线和逆光线的方向观察,线偏振光的偏振面的旋转方向是相反的,因此当光线往返两次穿过固有旋光物质时,线偏振光的偏振面没有旋转。而法拉第效应则不然,在磁场方向不变的情况下,光线往返穿过磁致旋光物质时,法拉第旋转角将加倍。利用这一特性,可以使光线在介质中往返数次,从而使旋转角度加大。这一性质使得磁光晶体在激光技术、光纤通信技术中获得重要应用。
微观上如何理解磁场会使左旋、右旋圆偏振光的折射率或传播速度不同呢?上述解释并没有涉及这个本质问题,所以称为唯象理论。从本质上讲,折射率 和 的不同,应归结为在磁场作用下,原子能级及量子态的变化。这已经超出了我们所要讨论的范围,具体理论可以查阅相关资料。
其实,从经典电动力学中的介质极化和色散的振子模型也可以得到法拉第效应的唯象理解。在这个模型中,把原子中被束缚的电子看做是一些偶极振子,把光波产生的极化和色散看作是这些振子在外场作用下做强迫振动的结果。现在除了光波以外,还有一个静磁场 作用在电子上,于是电子的运动方程是
(34)
当 ,即起偏器和检偏器偏振方向平行时,输出的调制光强由式(26)知
(35)
若将输出的调制光强入射到硅光电池上,转换成光电流,在经过放大器放大输入示波器,就可以观察到被调制了的信号。当 时,在示波器上观察到调制幅度最大的信号,当 或 ,在示波器上可以观察到由式(34)和(35)决定的倍频信号。但是因为 一般都很小,由式(34)和(35)可知,输出倍频信号的幅度分别接近于直流分量0或 。
8 102~10 102
冕玻璃
632.8
4.36 102~7.27 102
石英632.84来自83 102磷素589.3
12.3 102
不同的物质,偏振面旋转的方向也可能不同。习惯上规定,以顺着磁场观察偏振面旋转绕向与磁场方向,满足右手螺旋关系的称为“右旋”介质,其费尔德常数 ;反向旋转的称为“左旋”介质,费尔德常数 。
磁光效应综合实验
【实验目的】
1、了解法拉第效应,会用消光法检测磁光玻璃的费尔德常数。
2、能够熟练应用特斯拉计测量电磁铁磁头中心的磁感应强度,并能其分析线性范围。
3、熟悉磁光调制的原理,理解倍频法精确测定消光位置。
4、学会用磁光调制倍频法研究法拉第效应,精确测量不同样品的费尔德常数。
【实验仪器】
FD-MOC-A磁光效应综合实验仪,双踪示波器
(6)
式中 是电子离开平衡位置的位移, 和 分别为电子的质量和电荷, 是这个偶极子的弹性恢复力。上式等号右边第一项是光波的电场对电子的作用,第二项是磁场作用于电子的洛仑兹力。为简化起见,略去了光波中磁场分量对电子的作用及电子振荡的阻尼(当入射光波长位于远离介质的共振吸收峰的透明区时成立),因为这些小的效应对于理解法拉第效应的主要特征并不重要。
其中一米长的光学导轨上有八个滑块,分别有激光器、起偏器、检偏器、测角器(含偏振片)、调制线圈、会聚透镜、探测器、电磁铁。直流可调稳压电源通过四根连接线与电磁铁相连,电磁铁既可以串连,也可以并联,具体连接方式及磁场方向可以通过特斯拉计测量确定。
将读出的 和 值,代入式(39)和(40),即可以求出光强调制深度 和调制角幅度 。逐渐增大励磁电流 测量不同磁场 或电流 下的 和 值,做出 和 曲线图,其饱和值即为对应的最大调制幅度 和最大光强调制幅度 。
四、仪器简介
FD-MOC-A磁光效应综合实验仪主要有导轨滑块光学部件、两个控制主机、直流可调稳压电源以及手提零件箱组成。
, (2)
式中 为真空中的波长。这里应注意,圆偏振光的相位即旋转电矢量的角位移;相位滞后即角位移倒转。在磁致旋光介质的入射截面上,入射线偏振光的电矢量 可以分解为图3-(a)所示两个旋转方向不同的圆偏振光 和 ,通过介质后,它们的相位滞后不同,旋转方向也不同,在出射界面上,两个圆偏振光的旋转电矢量如图3-(b)所示。当光束射出介质后,左、右旋圆偏振光的速度又恢复一致,我们又可以将它们合成起来考虑,即仍为线偏振光。从图上容易看出,由介质射出后,两个圆偏振光的合成电矢量 的振动面相对于原来的振动面转过角度 ,其大小可以由图3-(b)直接看出,因为
实际上,通常 , 和 相差甚微,近似有
(19)
由(5)式得到
(20)
将式(19)代入上式得到
(21)
将式(16),(17),(18)代入上式得到
(22)
由于 ,在上式的推导中略去了 项。由式(18)得
(23)
由式(22)和(23)可以得到
(24)
式中 为观测波长, 为介质在无磁场时的色散。在上述推导中,左旋和右旋只是相对于磁场方向而言的,与光波的传播方向同磁场方向相同或相反无关。因此,法拉第效应便有与自然旋光现象完全不同的不可逆性。
图1 法拉第磁致旋光效应
表1为几种物质的费尔德常数。几乎所有物质(包括气体、液体、固体)都存在法拉第效应,不过一般都不显著。
表1 几种材料的费尔德常数(单位:弧分/特斯拉·厘米)
物质
( )

589.3
1.31 102
二硫化碳
589.3
4.17 102
轻火石玻璃
589.3
3.17 102
重火石玻璃
830.0
磁光调制主要应用于光偏振微小旋转角的测量技术,它是通过测量光束经过某种物质时偏振面的旋转角度来测量物质的活性,这种测量旋光的技术在科学研究、工业和医疗中有广泛的用途,在生物和化学领域以及新兴的生命科学领域中也是重要的测量手段。如物质的纯度控制、糖分测定;不对称合成化合物的纯度测定;制药业中的产物分析和纯度检测;医疗和生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。
(26)
由式(26)可知,当 一定时,输出光强 仅随 变化,因为 是受交变磁场 或信号电流 控制的,从而使信号电流产生的光振动面旋转,转化为光的强度调制,这就是磁光调制的基本原理。
图4 磁光调制装置
根据倍角三角函数公式由式(26)可以得到
(27)
显然,在 的条件下,当 时输出光强最大,即
(28)
当 时,输出光强最小,即
(16)
式中 ,为电子轨道磁矩在外磁场中经典拉莫尔(Larmor)进动频率。
若入射光改为左旋圆偏振光,结果只是使 前的符号改变,即有
(17)
对比无磁场时的色散公式
(18)
可以看到两点:一是在外磁场的作用下,电子做受迫振动,振子的固有频率由 变成 ,这正对应于吸收光谱的塞曼效应;二是由于 的变化导致了折射率的变化,并且左旋和右旋圆偏振的变化是不相同的,尤其在 接近 时,差别更为突出,这便是法拉第效应。由此看来,法拉第效应和吸收光谱的塞曼效应是起源于同一物理过程。
相关文档
最新文档