2020年七年级下册数学期中考试卷及答案
人教版数学七年级下学期《期中检测试卷》有答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -= B. 1x y -=C. 1x y +=D. 21x y += 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --= B. 224x x --= C. 24x x -+= D. 224x x -+= 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 25. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 56. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 47. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.10. 若三角形的两边长分别为 2cm 和 4cm ,且第三条边为偶数,那么这个三角形的周长为______cm . 11. 关于 x 的不等式-2 < x -1≤ 3 的所有整数解的和为_____.12. 某商品进价1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.三、解答题(共 78 分)15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x-++≥.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.17. 解不等式组:(1)513(1)182x xx x->+⎧⎨-≤-⎩;(2)2+53(2)123x xx x≤+⎧⎪+⎨<⎪⎩.18. “雷神山”病床安装突击队有22 名队员,按要求在规定时间内要完成340 张病床安装,其中高级工每人能安装20 张,初级工每人能安装15 张. 问该突击队高级工与初级工各多少人?19. 甲乙两辆汽车同时从A、B 两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米,两车在距A、B 两地的中点32 千米处相遇.求甲乙两地相距多少千米?20. 如图,在△ABC 中,∠B=26°,∠BAC=30°,过点A 作BC 边上的高,交BC 的延长线于点D,CE 平分∠ACD,交AD 于点E.求∠AEC 的度数.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为200 元,每个口罩的标价为4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送10 个口罩;乙药店:额温枪和口罩全部按标价的9 折优惠.现某公司要购买20 支额温枪和若干个口罩,若购买的口罩为x 个(x>200).(1)分别用含x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为元;到乙药店购买需要金额为元.(2)购买的口罩至少为多少个时到乙药店购买更合算?22. 某中学为打造书香校园,计划购进甲、乙两种规格书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.23. (1)如图(1),在△ABC 中,∠BAC=70°,点D 在BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线BP,CP 相交于点P,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC=m°,那么∠P= °(用含有m 代数式表示)[探究]:如图(2)在四边形MNCB 中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD 的角平分线BP,CP 相交于点P.为了探究∠P 的度数与α 和β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边BM 与CN,设它们的交点为点A,如图( 3 ),则∠A= (用含有α 和β 的代数式表示),因此∠P= .(用含有α 和β 的代数式表示)[拓展]:将(2)中的α+β>180°改为α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)答案与解析一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 [答案]D[解析][分析]最高气温是23℃,即气温小于或等于23℃,最低气温是12℃,即气温大于或等于12℃,据此写出即可.[详解]解:如果长春市2020年4月30日最高气温是23℃,最低气温是12℃,则当天长春市气温 t (℃)的变化范围是:12≤t ≤23.故选:D .[点睛]本题考查了由实际问题抽象出不等式组,解题的关键是抓住关键词,正确理解最高和最低的含义. 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -=B. 1x y -=C. 1x y +=D. 21x y += [答案]C[解析][分析]直接利用二元一次方程解的定义求解即可解答.[详解]解:∵一个二元一次方程的一个解为21x y =⎧⎨=-⎩∴.x+y=1,x-y=3,y-x=-3,x+2y=0.故C 正确.故答案为C.[点睛]本题考查了二元一次方程的解.理解二元一次方程的解就是指示方程等号两边的值相等的两个未知数的值是解答本题的关键. 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --=B. 224x x --=C. 24x x -+=D. 224x x -+=[答案]D[解析][分析]方程组利用代入消元法变形得到结果,即可作出判断.[详解]用代入法解方程组124y x x y =-⎧⎨-=⎩时, 把y=1-x 代入x-2y=4,得:x-2(1-x )=4,去括号得:224x x -+=,故选:D .[点睛]本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 2[答案]C[解析][分析] 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.[详解]解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴= 1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.[点睛]本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.5. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1B. 1C. ﹣5D. 5[答案]A[解析][分析]把x 与y 的值代入方程组求a +b 的值即可. [详解]解:把21x y =⎧⎨=⎩代入方程组14ax by bx ay +=⎧⎨+=-⎩, 得:2124a b b a +=⎧⎨+=-⎩①②, ①+②得:3(a +b )=3-,则a +b =.故选:A .[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 4[答案]C[解析][分析]几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐一判断即可.[详解]解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面; 四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面; 圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C .[点睛]本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.7. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + [答案]C[解析][分析]根据不等式基本性质,逐项判断即可.[详解]A 、∵a >b ,∴﹣a <-b ,1﹣a <1﹣b∴选项A 不符合题意;B 、∵a <b ,x 2≥0∴ax 2≤bx 2,∴选项B 不符合题意;C 、∵ac >bc ,c 是什么数不明确,∴a >b 不正确,∴选项C 符合题意;D 、∵m >n ,∴21m x +>21n x +, ∴选项D 不符合题意.故选:C .[点睛]此题主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 的度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°[答案]B[解析][分析]连接AD ,则∠1与∠2分别是△ADE 和△ADF 的外角,由三角形的外角性质即可解决问题.[详解]连接AD ,如图所示,则∠1与∠2分别是△ADE 和△ADF 的外角,∴∠1=∠EAD+∠EDA ,∠2=∠FAD+∠FDA∴∠1+∠2=∠EAD+∠EDA+∠FAD+∠FDA=∠EDF+∠EAF=∠EDF+α=120°∴∠EDF=120°-α故选:B.[点睛]本题考查三角形外角的性质,解题的关键是学会作辅助线构造三角形即可解决问题.二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.[答案]x<0[解析][分析]根据一元一次不等式的解法解答即可.[详解]解:移项,得2x-3x>1-1,即﹣x>0,解得:x<0.故答案为:x<0.[点睛]本题考查了一元一次不等式的解法,属于基础题型,熟练掌握解一元一次不等式的方法是解题关键.10. 若三角形的两边长分别为2cm 和4cm,且第三条边为偶数,那么这个三角形的周长为______cm.[答案]10[解析][分析]先根据三角形的三边关系确定第三边的范围,再由第三条边为偶数即可确定其具体的数值,进而可得答案.[详解]解:记这个三角形的第三边为c cm,则4-2<c<4+2,即2<c<6,∵c为偶数,∴c=4,∴这个三角形的周长=2+4+4=10cm.故答案为:10.[点睛]本题考查了三角形的三边关系和三角形的周长计算,属于基础题型,熟练掌握三角形的三边关系是解题的关键.11. 关于x 的不等式-2 <x -1≤ 3 的所有整数解的和为_____.[答案]10[解析][分析]此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值即可得解.[详解]不等式-2 <x-1≤ 3可以化简为-1<x≤4,适合不等式-1<x≤4的所有整数解0、1,2,3,4.所以,所有整数解的和为:0+1+2+3+4=10.故答案为:10.[点睛]此题考查是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.[答案]450元[解析][分析][详解]试题分析:设商店降x%出售商品,根据“进价是1000元,售价是1500元,利润率不低于5%”即可列不等式求解.设商店降x%出售商品,由题意得15001100x ⎛⎫⨯- ⎪⎝⎭≥1000×(1+5%) 解得x≥30则商店最多降30%出售商品.考点:一元一次不等式的应用点评:解题的关键是读懂题意,找到不等关系,正确列不等式求解.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.[答案]24[解析][分析]设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.[详解]解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ∵x 为正整数,∴x =2,∴10x +x +2=24,则这个两位数是24.故答案为:24.[点睛]本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键. 14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.[答案]30[解析][分析]由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .[详解]1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为30[点睛]本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.三、解答题(共 78 分) 15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x -++≥. [答案](1)7x >-;(2)2x ≥-[解析][分析](1)先去小括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.[详解](1) 3(x -1) < 4x + 4 ;3344-<+x x3434-<+x x7-<x∴7x>-;(2)342523 x x-++≥3(34)302(2)x x-+≥+9123024x x-+≥+9212430x x-≥+-714x≥-∴2x≥-[点睛]本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.[答案](1)42mn⎧=⎨=⎩;(2)17213xy⎧=⎪⎨⎪=⎩.[解析][分析](1)根据代入消元法求解即可;(2)先化简原方程组,再利用加减消元法解答.[详解]解:(1)22314m nm n-=⎧⎨+=⎩①②,由①得:m =2+n ③,把③代入②,得()22314n n ++=,解得:n =2,把n =2代入③,得:m =4,所以原方程组的解是:42m n ⎧=⎨=⎩;(2)原方程组即:25443x y x y ⎧⎨-=-=⎩-①②, ②×2,得4x -2y =8③,③-①,得y =13,把y =13代入②,得2x -13=4, 解得:172x =, 所以原方程组的解是:17213x y ⎧=⎪⎨⎪=⎩. [点睛]本题考查了二元一次方程组的解法,属于基础题型,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题关键.17. 解不等式组:(1)513(1)182x x x x ->+⎧⎨-≤-⎩; (2)2+53(2)123x x x x ≤+⎧⎪+⎨<⎪⎩. [答案](1)2<x ≤3;(2)无解.[解析][分析](1)分别求出每个不等式的解集,再取它们的公共部分即可得解;(2)分别求出每个不等式的解集,再取它们的公共部分即可得解.[详解](1)513(1)182x x x x ->+⎧⎨-≤-⎩①②; 解不等式①得,x >2解不等式②得,x ≤3,所以,不等式组的解集为:2<x ≤3;(2)2+53(2)1 23x x x x ≤+⎧⎪⎨+<⎪⎩①② 解不等式①得,x ≥-1;解不等式②得,x <-3;所以,不等式组无解.[点睛]本题考查的是解一元一次不等式组,正确求出每个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. “雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?[答案]该突击队有高级工2人,初级工20人.[解析][分析]设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.[详解]解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.[点睛]本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键. 19. 甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?[答案]甲乙两地相距832千米[解析][分析]设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.[详解]甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米[点睛]此题考查了列一元一次方程解决问题,关键是找出等量关系.20. 如图,在△ABC 中,∠B =26°,∠BAC =30°,过点 A 作 BC 边上的高,交 BC 的延长线于点 D , CE 平分∠ACD ,交 AD 于点 E .求∠AEC 的度数.[答案]118°[解析][分析]由三角形外角的性质求出∠ACD=56°,由角平分线定义求出∠ECD=28°,最后由外角性质得出∠AEC=118°.[详解]∵∠B =26°,∠BAC =30°,∴∠ACD=∠B +∠BAC =56°,∵CE 平分∠ACD ,∴∠DCE=12∠ACD=28° 又∠ADC=90°∴∠AEC=∠DCE+∠CDE=28°+90°=118°.[点睛]此题主要考查了三角形外角性质,灵活运用三角形外角的性质是解答本题的关键.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为 200 元,每个口罩的标价为 4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送 10 个口罩;乙药店:额温枪和口罩全部按标价的 9 折优惠.现某公司要购买 20 支额温枪和若干个口罩,若购买的口罩为 x 个(x >200).(1)分别用含 x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为 元;到乙药店购买需要金额为 元.(2)购买的口罩至少为多少个时到乙药店购买更合算?[答案](1)4x+3200;3.6x+3600;(2)购买口罩至少为1001个时到乙药店购买更合算[解析][分析](1)根据甲、乙两家药店推出各自的销售方案,列出代数式即可;(2)根据购买的口罩到乙药店购买更合算列出不等式进行计算即可.[详解](1)到甲药店购买所需金额:20×200+4(x-200)=4x+3200,到乙药店购买所需金额:(20×200+4x)×0.9=3.6x+3600,故答案为:4x+3200;3.6x+3600;(2)∵到乙药店购买更合算∴3.6x+3600<4x+3200解得x>1000∴购买的口罩至少为1001个时到乙药店购买更合算[点睛]此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.22. 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.[答案](1)甲种书柜每个的价格为180元,乙种书柜每个的价格为240元;(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[解析][分析](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,根据“若购买一个乙种书柜比购买一个甲种书柜贵60元;若购买甲种书柜1个,乙种书柜2个,共需资金660元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种书柜m个,则购买乙种书柜(20-m)个,根据乙种书柜的数量不少于甲种书柜的数量且学校至多能够提供资金4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.[详解](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,依题意,得:602660y x x y ⎨⎩-+⎧==, 解得:180240x y ⎧⎨⎩==. 答:甲种书柜每个的价格为180元,乙种书柜每个的价格为240元.(2)设购买甲种书柜m 个,则购买乙种书柜(20-m )个,依题意,得:()20180240204320m m m m -≥+-≤⎧⎨⎩, 解得:8≤m≤10.∵m 为整数,∴m 可以取的值为:8,9,10.∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23. (1)如图(1),在△ABC 中,∠BAC =70°,点 D 在 BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BP ,CP 相交于点 P ,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC =m °,那么∠P = °(用含有 m 的代数式表示)[探究]:如图(2)在四边形 MNCB 中,设∠M =α,∠N =β,α+β>180°,四边形的内角∠MBC 与外角∠NCD 的角平分线 BP ,CP 相交于点 P .为了探究∠P 的度数与 α 和 β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM 与 CN ,设它们的交点为点 A , 如图( 3 ), 则∠ A = (用含有 α 和 β 的代数式表示), 因此∠P = .(用含有 α 和 β 的代数式表示)[拓展]:将(2)中的 α+β>180°改为 α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)[答案](1)35°;感知:12m°,探究:α+β-180°,12(α+β)-90°;拓展:90°-12α-12β[解析] [分析](1)根据角平分线的定义可得∠CBP=12∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=12∠A,代入数据计算即可得解.[感知]求∠P度数的方法同(1)[探究] 添加辅助线,利用(1)中结论解决问题即可;根据四边形的内角和定理表示出∠BCN,再表示出∠DCN,然后根据角平分线的定义可得∠PBC=12∠ABC,∠PCD=∠DCN,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCD,然后整理即可得解;拓展:同探究的思路求解即可[详解](1)∵BP平分∠ABC,∴∠CBP=12∠ABC,∵CP平分△ABC的外角,∴∠DCP=12∠ACD=12(∠A+∠ABC)=12∠A+12∠ABC,在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=12∠ABC+∠P,∴12∠A+12∠ABC=12∠ABC+∠P,∴∠P=12∠A=12×70°=35°.感知:由(1)知∠P=12∠A∵∠BAC=m°,∴∠P=12 m°,故答案为:12 m°,探究:延长BM交CN的延长线于A.∵∠A=180°-∠AMN-∠ANM=180°-(180°-α)-(180°-β)=α+β-180°,由(1)可知:∠P=12∠A,∴∠P=12(α+β)-90°;故答案为:α+β-180°,12(α+β)-90°;[拓展] 如图③,延长MB交NC的延长线于A.∵∠A=180°-α-β,∠P=12∠A,∴∠P=12(180°-α-β)=90°-12α-12β故答案为:90°-12α-12β[点睛]本题考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题.。
2020人教版七年级下册数学《期中考试卷》含答案

2020⼈教版七年级下册数学《期中考试卷》含答案七年级下学期期中测试数学试卷⼈教版⼀.选择题(共10⼩题)1.点P (2,-3)() A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限2. 4的算术平⽅根是()B. 2C. ±2D. 3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 227 4.有下列命题:①对顶⾓相等;②若a ∥b ,b ∥c ,则a ∥c ;③在同⼀平⾯内,若a ⊥b ,b ⊥c ,则a ∥c ;④ac =bc ,则a =b .其中正确的有()A. 1个B. 2个C. 3个D. 4个 5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm ),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?7.(b ﹣3)2=0,则(a +b )2019等于()A. 1B. ﹣1C. ﹣2019D. 20198.下列说法错误的是()A. 2±B. 64的算术平⽅根是4C. 0=D. 0≥,则x =19.点P (3﹣2m ,m )不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限10.如图,把⼀张长⽅形纸⽚ABCD 沿EF 折叠后,点C 、D 分别落在C ′、D ′位置上,EC ′交AD 于点G ,已知∠EFG =56°,则∠BEG 等于()A. 112°B. 88°C. 68°D. 56°⼆.填空题(共6⼩题)11.若⼀个正数平⽅根是3a +2和2a ﹣1,则a 为_____.12.若点P (3a ﹣2,2a +7)在第⼆、四象限的⾓平分线上,则点P 的坐标是_____. 13.互为相反数,则b a =_____. 14.如图楼梯截⾯,其中AC =3m ,BC =4m ,AB =5m ,要在其表⾯铺地毯,地毯长⾄少需_____⽶.15.如图,直线l 1∥l 2,若∠1=130°,∠2=60°,则∠3=__________. 的的是16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.三.解答题(共8⼩题)(1(2;(3)|﹣|+1|+|1﹣|.18.求下列各式中的x .(1)4(3x +1)2﹣1=0;(2)(x +2)3+1=0.19.如图所⽰,直线AB ,CD 相交于点O ,P 是CD 上⼀点.(1)过点P 画AB 垂线段PE .(2)过点P 画CD 的垂线,与AB 相交于F 点.(3)说明线段PE ,PO ,FO 三者的⼤⼩关系,其依据是什么?20.△ABC 在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.21.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P和点Q都在过A(2,3)点且与x轴平⾏的直线上,PQ=3,求Q点的坐标.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.23.已知a、b满⾜b24.已知点A(1,a),将线段OA平移⾄线段BC,B(b,0),a是m+6n=3,n,且m<n,正数b满⾜(b+1)2=16.(1)直接写出A、B两点坐标为:A,B;(2)如图1,连接AB、OC,求四边形AOCB的⾯积;(3)如图2,若∠AOB=a,点P为y轴正半轴上⼀动点,试探究∠CPO与∠BCP之间的数量关系.答案与解析⼀.选择题(共10⼩题)1.点P(2,-3)在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点P(2,-3)在第四象限.故选D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第⼀象限(+,+);第⼆象限(-,+);第三象限(-,-);第四象限(+,-).2. 4的算术平⽅根是()B. 2C. ±2D.【答案】B【解析】试题分析:根据算术平⽅根的定义可得4的算术平⽅根是2,故答案选B.考点:算术平⽅根的定义.3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 22 7【答案】B【解析】【分析】根据⽆理数是⽆限不循环⼩数,逐⼀验证即可.【详解】A=2,是整数,属于有理数,故选项不符合题意;B.C.3.14属于有理数,故选项不符合题意;D.227是分数,属于有理数,故选项不符合题意.故选:B.【点睛】本题考查了⽆理数的定义,注意有理数的化简变形,理解⽆理数的定义是解题的关键.4.有下列命题:①对顶⾓相等;②若a∥b,b∥c,则a∥c;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c;④ac=bc,则a=b.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C根据对顶⾓定义,平⾏的“传递性”以及平⾏判定的条件,等式的性质进⾏逐⼀验证判断即可.【详解】①对顶⾓相等,是正确的;②若a∥b,b∥c,则a∥c,是正确的;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c,是正确的;④当a=1,b=2,c=0时,ac=bc,但a≠b,∴ac=bc,则a=b,是错误的;故选:C.【点睛】本题考查了平⾏线的概念和性质,等式的性质,熟练掌握相关概念内容是解题的关键.5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 【答案】B【解析】【分析】根据题意,电脑主板是⼀个多边形,由周长的定义可知,周长是求围成图形⼀周的长度之和,计算周长只需要把横着的和竖着的所有线段加起来即可.【详解】由图形可得出:该主板的周长是:24+24+16+16+4×4=96(mm ),故该主板的周长是96mm ,故选:B .【点睛】本题考查了不规则多边形周长的求解⽅法,理解周长的定义是求解的关键. 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?【答案】A【解析】【分析】求出a ,b ,得出,4=,5,根据,3的度数求出,5的度数,即可得出答案.【详解】解:∴∠4=∠5,∵∠3=108°,∴∠5=180°-108°=72°,∴∠4=72°,故选A .【点睛】本题考查了平⾏线的性质和判定的应⽤,能灵活运⽤性质和判定进⾏推理是解此题的关键.7.(b﹣3)2=0,则(a+b)2019等于()A. 1B. ﹣1C. ﹣2019D. 2019【答案】B【解析】【分析】根据⾮负数的性质,⾮负数的和为0,即每个数都为0,可求得a、b的值,代⼊所求式⼦即可.【详解】根据题意得,a+4=0,b﹣3=0,解得a=﹣4,b=3,∴(a+b)2019=(﹣4+3)2019=﹣1,故选:B.【点睛】本题考查了⾮负数的性质,以及-1的奇次⽅是-1,理解⾮负数的性质是解题关键.8.下列说法错误的是()A. 2± B. 64的算术平⽅根是4≥,则x=1 =0【答案】B【解析】【分析】根据平⽅根、算术平⽅根、⽴⽅根的概念对选项逐⼀判定即可.B.64的算术平⽅根是8,错误;C=,正确;D0≥,则x=1,正确;故选:B.【点睛】本题考查了平⽅根、算数平⽅根,⽴⽅根的概念,理解概念内容是解题的关键.9.点P(3﹣2m,m)不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据象限内的点坐标的特征,分点P的横坐标是正数和负数两种情况讨论求解即可.【详解】当m>1.5时,点在第⼆象限;当m=1.5时,点在y轴上;当0<m<1.5时,点在第⼀象限;当m=0时,点x轴上;当m<0时,点在第四象限;故选:C.【点睛】本题考查了点坐标在象限内时的取值范围,注意分类讨论思想的应⽤.10.如图,把⼀张长⽅形纸⽚ABCD沿EF折叠后,点C、D分别落在C′、D′的位置上,EC′交AD于点G,已知∠EFG=56°,则∠BEG等于()A. 112°B. 88°C. 68°D. 56°【答案】C【解析】【分析】根据平⾏线和折叠的性质可知,∠GEF=∠CEF=∠EFG=56°,由平⾓的定义计算即可.【详解】∵AD∥BC,∠EFG=56°,∴∠EFG=∠FEC=56°,由折叠的性质可知,∠FEC=∠FEG,∴∠GEC=∠FEC+∠FEG=112°,∴∠BEG=180°-∠GEC=68°,故选:C.【点睛】本题考查了平⾏线和折叠结合的性质,平⾓的定义,熟练掌握平⾏和折叠的关系是解题的关键,也是中考常考的重难点.⼆.填空题(共6⼩题)11.若⼀个正数的平⽅根是3a+2和2a﹣1,则a为_____.【答案】15 -.【解析】【分析】根据⼀个正数的平⽅根有两个,且互为相反数可得3a+2+2a﹣1=0,解出a即可.【详解】由题意得,3a+2+2a﹣1=0,解得:a=15 -.故答案为:15 -.【点睛】本题考查了正数的平⽅根的定义,互为相反数的两个数和为0的性质,理解平⽅根的定义是解题的关键.12.若点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,则点P的坐标是_____.【答案】(﹣5,5).【解析】【分析】根据第⼆、四象限的⾓平分线上的点,横纵坐标互为相反数,由此可列出关于a的⽅程,解出a的值即可求得点P的坐标.【详解】∵点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,∴3a﹣2+2a+7=0,解得:a=﹣1,∴P(﹣5,5).故答案为:(﹣5,5).【点睛】本题考查了点坐标在象限⾓平分上的性质和列⼀次⽅程求解的问题,熟记点坐标在象限⾓平分线上的性质是解题的关键.13.互相反数,则ba=_____.【答案】32.【解析】【分析】根据⽴⽅根的概念,结合相反数的定义,可知两个被开⽅数也互为相反数,由两数和为0可列出关于a、b的关系式,化简整理即可.∴(3a﹣1)+(1﹣2b)=0,∴3a=2b,∴ba=32.故答案为:32.【点睛】本题考查了⽴⽅根的概念,相反数的定义,由关系式求两数的⽐值,理解⽴⽅根和相反数的概念是解题的关键.14.如图是楼梯截⾯,其中AC=3m,BC=4m,AB=5m,要在其表⾯铺地毯,地毯长⾄少需_____⽶.【答案】7.【解析】【分析】根据图形可知,由三⾓形三边长可知,满⾜勾股数,△ABC是直⾓三⾓形,需要铺的地毯的长度即为AC+BC的长度,数值代⼊计算即可.【详解】根据题意结合图形可知,△ABC三边长满⾜勾股数,是直⾓三⾓形,所以要铺的地毯的长度即为AC+BC,∴4+3=7(⽶).答:地毯长⾄少需7⽶.故答案为:7.【点睛】本题考查了勾股数判定直⾓三⾓形,图形的折叠和展开图与⽔平距离和竖直距离之间的关系,理解⽴体图展开成平⾯图形的关系是解题的关键.15.如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=__________.【答案】70°【解析】试题分析:,直线l1,l2,,,4=,1=130°,,,5=,4﹣,2=70°,,,5=,3=70°.,故答案为70°.考点:平⾏线的性质.16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.【答案】(15,5)【解析】由图形可知:点的个数依次是1,2,3,4,5,…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14⾏点的⾛向为向上,∴纵坐标为从第92个点向上数8个点,即为8,∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学⽣的观察图形的能⼒和理解能⼒,解此题的关键是根据图形得出规律,题⽬⽐较典型,但是是⼀道⽐较容易出错的题⽬.三.解答题(共8⼩题)17.计算:(1(2;(3)|﹣|+1|+|1﹣|.【答案】(1)5;(2)﹣1;(3【解析】【分析】(1)根据开平⽅的运算进⾏计算即可得;(2)根据开平⽅和开⽴⽅的运算进⾏化简,然后进⾏加减计算即可;(3)根据绝对值概念可知,正数的绝对值是它本⾝,负数的绝对值是它的相反数,0的绝对值是0,进⾏化简计算即可.【详解】(1=3+2=5,故答案为:5.(2=4﹣3﹣12﹣32=﹣1,故答案为:-1.(3)|﹣|+1|+|1﹣|﹣﹣1,.【点睛】本题考查了实数的混合运算法则,开平⽅,开⽴⽅的化简求值,去绝对值符号的化简,注意化简时符号的问题.18.求下列各式中的x.(1)4(3x+1)2﹣1=0;(2)(x+2)3+1=0.【答案】(1)1x=﹣16或2x=﹣12;(2)x=﹣3.【解析】【分析】(1)根据题意,把-1移项,然后直接开⽅即可求得;(2)由题⽬可知,把+1移项,根据⽴⽅根的定义,直接开⽴⽅计算可得.【详解】(1)4(3x+1)2﹣1=0,4(3x+1)2=1,(3x+1)2=14,3x+1=±12,∴1x=﹣16或2x=﹣12故答案为:1x=﹣16或2x=﹣12;(2)(x+2)3+1=0,(x+2)3=﹣1,x+2=﹣1,∴x=﹣3,故答案为:-3.【点睛】本题考查了利⽤直接开平⽅和开⽴⽅的⽅法求⽅程的解,注意开平⽅有两个根,且互为相反数.19.如图所⽰,直线AB,CD相交于点O,P是CD上⼀点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的⼤⼩关系,其依据是什么?【答案】(1)见解析;(2)见解析;(3)PE<PO<FO,其依据是“垂线段最短”【解析】【分析】前两问尺规作图见详解,第(3)问中利⽤垂线段最短即可解题.【详解】(1)(2)如图所⽰.(3)在直⾓△FPO中,PO<FO,在直⾓△PEO中,PE<PO,∴PE<PO<FO,其依据是“垂线段最短”.【点睛】本题考查了尺规作图和垂线段的性质,属于简单题,熟悉尺规作图的⽅法和步骤,垂线段的性质是解题关键.20.△ABC在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.【答案】(1)(1,3)、(2,0)、(4,1);(2)如图所⽰,△OB′C′即为所求,见解析;B′(1,﹣3)、C′(3,﹣2).(3)△OB′C′的⾯积为72.【解析】【分析】(1)根据点在平⾯直⾓坐标系的位置,可分别写出点所对应的坐标即可;(2)根据平移前后点A与对应点O坐标的位置,可以得出图形△ABC向左平移1个单位、向下平移3个单位,由此可得出平移后点B′、C′的坐标;(3)利⽤割补法,把△OB′C′补成⼀个正⽅形,减去三个直⾓三⾓形的⾯积计算即可.【详解】(1)由图形知A(1,3),B(2,0),C(4,1);故答案为:(1,3)、(2,0)、(4,1);(2)由A(1,3)及其对应点O(0,0)知,需将△ABC向左平移1个单位、向下平移3个单位,如图所⽰,△OB′C′即为所求,其中B′(1,﹣3)、C′(3,﹣2),故答案为:B′(1,﹣3)、C′(3,﹣2);(3)△OB ′C ′的⾯积为3×3﹣12×1×3﹣12×3×2﹣12×1×2=72,故答案为:72.【点睛】本题考查了平⾯直⾓坐标系内,点坐标的表⽰,平移图形的变化关系,割补法求⼀般三⾓形的⾯积,熟记平⾯直⾓坐标系的点坐标的表⽰是解题的关键.21.已知,点P (2m ﹣6,m +2).(1)若点P 在y 轴上,P 点的坐标为;(2)若点P 和点Q 都在过A (2,3)点且与x 轴平⾏直线上,PQ =3,求Q 点的坐标.【答案】(1)P (0,5);(2)Q 点坐标为(-1,3)或(-7,3)【解析】【分析】(1)根据y 轴上点的横坐标为0,得2m -6=0,求m 值即可得P 点坐标;(2)根据题意可得直线PQ 经过A 点且平⾏于x 轴,可得P 、Q 的纵坐标均为3,由此得m+2=3,确定m 值后根据PQ=3,可得Q 点的横坐标.【详解】解:(1)∵点P 在y 轴上∴2m -6=0∴m=3∴m+2=3+2=5∴P (0,5)(2)根据题意可得PQ ∥x 轴,且过A (2,3)点,∴m+2=3∴m=1的∴2m-6=-4∴P(-4,3)∵PQ=3∴Q点横坐标-4+3=-1,或-4-3=-7∴Q点坐标为(-1,3)或(-7,3)【点睛】本题考查y轴上和平⾏于x轴上点坐标的特征,根据此特征确定点的横坐标或纵坐标是解答此题的关键.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∵AB∥CD∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.【答案】AB∥EF,理由见解析;填空答案:AB∥EF,两直线平⾏,内错⾓相等;等量代换,∠E,∠DCE,CD,同旁内⾓互补,两直线平⾏;平⾏于同⼀直线的两条直线互相平⾏.【解析】【分析】根据平⾏线性质,可得∠BCD=80°,进⽽可得到∠E+∠ECD=180°,可证明EF∥CD,由。
2020-2021学年度七年级下册期中考试数学试卷及答案

2020-2021学年度第二学期期中考试试卷七年级数学满分:120分 时间:90分钟一、选择题(本大题共10分,每小题3分,共30分) 1.下列图中,∠1和∠2是对顶角的有( )个.A .1个B .2个C .3个D .4个 2.在平面直角坐标系中,点(-2,3)所在的象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3.已知点A (4,-3)到y 轴的距离为( )A 、4B 、-4C 、3D 、-3 4.下列说法错误的是( )A 、1)1(2=-B 、113-=-C 、2的平方根是2±D 、81-的平方根是9±5.在实数,,,0,﹣1.414,,中,无理数有( )A .2个B .3个C .4个D .5个6.下列命题是真命题的是( )A 、邻补角相等B 、对顶角相等C 、内错角相等D 、同位角相等 7.如题7图,能够判断AD ∥BC 的条件是( ) A .∠1=∠2 B .∠1=∠4C .∠B=∠DD .∠3=∠4 题7图8.将点P (2,1)向左平移2个单位后得到P ’,则P ’的坐标是( ) A 、(2,3) B 、(2,-1) C 、(4,1) D 、(0,1)9.如题9图,已知直线AB ,CD 相交于点O ,OE ⊥AB ,∠EOC=28°,则∠BOD 的度数为( ) A .28° B .52°C .62°D .118°题9图10.如题10图,原来是完全重叠的两个直角三角形,将其中一个直角三角形沿着BC 方向平移BE 的距离,就得到此图形,则阴影部分面积是( )平方厘米 A 、24 B 、20 C 、32.5 D 、60题10图 二、填空题(本大题共7小题,每小题4分,共28分) 11.如题11图,AB 、CD 相交于点O ,射线OE 在∠DOB 的内部, 则∠AOD 的邻补角是________________.12.9的平方根是_______,4的算术平方根是_________,13.如题13图,直线a 与直线b 、c 分别相交于点A 、B ,将直线b 绕点A 转动,当∠1=∠ 时,c ∥b ;14.5的相反数是______,绝对值是_______. 15.已知|x+1|+=0,则P (x,y )在第_____________象限.16.1+x 的算术平方根是3,则x =________. 题13图 17.在y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为_______________. 三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:2252383+--+19.如图题19图,将△ABC 向右平移5个单位长度,再向下平移2个单位长度,得到△A'B'C',请画出平移后的图形,并写出△A'B'C'各顶点的坐标。
2020学年七年级下学期期中考试数学试题(含答案)

2020年春学期初一期中考试数学试卷 2020.5注意事项:1. 考试时间为100分钟,试卷满分为110分.2. 所有答案必须填涂到答卷纸上相应位置,答案写在试卷其他部分无效.一、选择题(本大题共10小题,每小题3分,共30分.)1.把图形(1)进行平移,能得到的图形是 ( ▲ )2.下列等式从左到右的变形,属于因式分解的是 ( ▲ )A .2(1)(1)1x x x +-=-B .224(4)(4)x y x y x y -=+-C .221(1)1x x x x -+=-+D .22816(4)x x x -+=- 3.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是( ▲ )A .2B .9C .10D . 114.下列计算正确的是 ( ▲ )A . 1266a a a =+B .22414mm =- C .877222=+ D .93339)3(y x xy = 5.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( ▲ )A.110°B.125°C.135°D.140°6.若()()A b a b a +-=+223535,则A 等于 ( ▲ ) A .ab 12 B .ab 15 C .ab 30 D .ab 607.下列说法中,正确的个数有( ▲ )①同位角相等; ②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°;⑤两个角的两边分别平行,则这两个角相等。
第9题A.0个B.1个C.2个D.3个8.已知0222)21(,)21(,2,)2.0(-=-=-=-=--d c b a ,则比较a 、b 、c 、d 的大小结果是 ( ▲ )A. c d a b <<<B.c d b a <<<C. d c a b <<<D.c a d b <<<9.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM 平分∠AOD ,ON 平分∠COB,则∠M0N 的度数为( ▲ )A.60°B.45°C. 65.5°D.52.5°10.如图,若平行四边形AFPE 、BGPF 、EPHD 的面积分别为15、6、25,则阴影部分的面积是( ▲ )A.20B. 15.5C.23D.25二、填空题(本大题共8小题,每小题2分,共16分.)11.2019年末,新型冠状病毒引发的肺炎在我国爆发,被命名为2019-nCoV 的新型冠状病毒直径最小约0.00000006厘米,用科学计数法表示为 ▲ 厘米.12.若92-2++x m x )(是一个完全平方式,则m = ▲ .13. 若3424==y x ,,则=-y x 24 ▲ .14.计算)8)(4(22+++-mx x n x x 的结果不含3x 的项,那么m= ▲ .15.将长方形ABCD 折叠,折痕为EF ,BC 的对应边为''C B 与CD 交于点M ,若∠MD B '=50°,则∠BEF 的度数为 ▲ °.16.计算:()()870.1258⨯-= ▲ . 17.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = ▲ ° .18.无锡市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°.B 灯先转第17题 第18题第15题第10题动2秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 ▲ 秒.三、解答题(本大题共8小题,共64分.)19.计算:(每小题3分,共12分.)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+-- (2)23)3)(()2(x x x ---(3))2)(3()7(+--+x x x x (4))21)(12()12(2a a a +-+-+20.因式分解:(每小题3分,共9分.)(1)b a b a ab 322375303+- (2))(16)(2x y y x a -+- (3)()222224y x y x -+ 21.(6分)先化简,再求值:)3)(3()23)(12(62-++-+-x x x x x ,其中21=x22.( 8分)如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC 的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△'''C B A ,点C 的对应点是直线上的格点'C .(1)画出△'''C B A .(2)若连接'AA 、'BB ,则这两条线段之间的关系是 .(3)试在直线l 上画出所有符合题意的格点P ,使得由点'A 、'B 、'C 、P 四点围成的四边形的面积为9.23.(6分)如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,∠1=∠2,∠C+∠ADE =90°.(1)求证:DE ∥AC ;(2)判断EF 与BC 的位置关系,并证明你的猜想.24.(6分)如图,AD 平分BAC ∠,EAD EDA =∠∠.(1)EAC ∠与B ∠相等吗?为什么?(2)若50B =︒∠,:13CAD E =∠∠:,求E ∠的度数.25. (8分)完全平方公式:(a ±b )2=a 2±2ab+b 2适当的变形,可以解决很多的数学问题. 例如:若a+b =3,ab =1,求a 2 +b 2 的值.解:因为a+b =3,ab =1所以(a+b )2=9,2ab =2所以a 2+b 2+2ab =9,2ab =2得a 2+b 2=7根据上面的解题思路与方法,解决下列问题:(1)若(7﹣x )(x ﹣4)=1,求(7﹣x )2+(x ﹣4)2的值;(2)如图,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设AB =5,两正方形的面积和S 1+S 2=17,求图中阴影部分面积.26.(9分)在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)EC B A D图② 图① 备用图(1)如图①,当AE ⊥BC 时,求证:DE ∥AC .(2)若︒=∠-∠10B C ,∠BAD =x ° .①如图②,当DE ⊥BC 时,求x 的值;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.2020年春学期初一期中考试数学参考答案和评分标准2020.5一、选择题(每题3分,共30分)1. C 2 .D 3 . B 4 . C 5 . B 6. D 7. B 8. A 9. D 10. B二、填空题(每空2分,共16分)11. 8106-⨯ ; 12. 84或- ; 13.92 ; 14. 4 ;15. 70 ; 16 . 81- ; 17. 66 ; 18. 2171或 三、解答题(共64分)19. 计算(每题3分,共12分)(1)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+--;=-1+4-1------------------------2分(化错1个扣一分)= 2 ----------------------3分(2)23)3)(()2(x x x ---.= 3398x x +- ------------2分(每个化简1分)= 3x --------------------3分(3) )2)(3()7(+--+x x x x= )6(722---+x x x x ------------2分 = 68+x --------------------3分(4) )21)(12()12(2a a a +-+-+ =)14(14422--++a a a ------------2分 =24+a ------------3分20.把下列各式分解因式:(每题3分,共9分)(1) b a b a ab 322375303+-=)2510(322a ab b ab +-------------1分 =2)5(3a b ab -------------3分(2) )(16)(2x y y x a -+-=)16)((2--a y x -----------------------------------1分 =)4)(4)((-+-a a y x -------------------------------3分(3) ()222224y x y x -+ = )2)(2(2222xy y x xy y x -+++--------1分 = 22)()(y x y x -+ ------------3分21.(6分)解:原式= 9)26(6222-+---x x x x ------------------2分 = 72-+x x --------------------4分当21=x ,原式=7-2141+=416- -----------------------6分22. (8分)(1)画图--------------2分 (2)平行且相等--------------4分(3)8分23. (6分)(1)证明:∵AD ⊥BC∴∠1+∠C=90°………………1′∵∠C+∠ADE =90°∴∠1=∠ADE ………………2′∴DE ∥AC ………………3’(2) EF ⊥BC ………………4′∵∠1=∠2,∠1=∠ADE∴∠2=∠ADE∴EF ∥AD ………………5′∴∠EFD =∠ADC=90°∴EF ⊥BC ………………6′(其他方法酌情给分)24. (6分)解:(1)∠E AC =∠B ………………1′理由:∵AD 平分∠BAC∴∠1=∠2………………2′∵∠ADE=∠B+∠1,∠EAD=∠2+∠EAC ,且∠EAD=∠EDA∴∠B=∠EAC ………………3’(2)∵:13CAD E =∠∠:∴设∠CAD (即∠2)=x °,则∠E=x 3°∵∠B=50°∴∠EAD=∠EDA=(50+x )° (4)∴180325050=+++x x∴16=x ………………5′∴∠E=48° ………………6′(其他方法酌情给分)25. (8分)解:(1)设4,7-=-=x b x a则由题意可得:1,3==+ab b a∴7291232)(2222=-=⨯-=-+=+ab b a b a 即7)4()7(22=-+-x x ………………4′ (2)………………8′26. (9分)(1)∵AE ⊥BC∴∠EAC+∠C=90°∵∠BAC=90°∴∠B+∠C=90°∴∠B=∠EAC∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E∴∠EAC=∠E∴DE ∥AC ………………3′(2)①∵∠B+∠C=90°,︒=∠-∠10B C∴∠B=40°,∠C=50°∵DE ⊥BC∴∠EDF=90°∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E=40°,∠BAD=∠EAD=x °∴∠DFE=5O °∵∠DFE=BAF B ∠+∠∴50402=+x 5=x ………………3′②由题意可得,∠ADC=x +40, ∠ABD=x -140 ,∠EDF=x x x 2100)40(140-=+--∠DFE=x 240+(ⅰ)若∠EDF=∠DFE x x 2402-100+= 15=x (ⅱ)若∠EDF=∠E 402-100=x 30=x(ⅲ)若∠DFE =∠E 40240=+x 0=x (舍去)综上可得3015或=x . ………………3′。
2020年七年级下册期中质量数学试题及答案

七年级数学下学期期中质量检测试题(解析版)一、选择题,每小题3分,共30分1.如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于()A.130°B.140°C.150°D.160°2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25° C.20° D.15°3.如图,直线a∥b,则∠A的度数是()A.38°B.48° C.42° D.39°4.16的平方根是()A.2 B.4 C.﹣2或2 D.﹣4或45.下列式子正确的是()A.± =7 B. =﹣C. =±5 D. =﹣36.若a2=9, =﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.﹣5或﹣117.若点A(﹣,﹣)在第三象限的角平分线上,则a的值为()A.B.﹣ C.2 D.﹣28.在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A.(0,﹣2)B.(4,6) C.(4,4) D.(2,4)9.以为解的二元一次方程组是()A.B.C.D.10.方程组的解满足方程x+y﹣a=0,那么a的值是()A.5 B.﹣5 C.3 D.﹣3二、填空题,每小题3分,共30分11.把命题“平行于同一条直线的两条直线平行”改成如果…那么形成.12.一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD= 度.13.如图,有下列判断:①∠A 与∠1是同位角;②∠A 与∠B 是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角. 其中正确的是 (填序号).14.若+(b ﹣3)2=0,则的平方根是 .15.在数轴上,﹣2对应的点为A ,点B 与点A 的距离为,则点B 表示的数为 .16.已知P 1(a ﹣1,5)和P 2(2,b ﹣1)关于x 轴对称,则(a+b )2015的值为 .17.第二象限内的点P (x ,y )满足|x|=9,y 2=4,则点P 的坐标是 .18.已知,那么x+y 的值为 ,x ﹣y 的值为 . 19.若方程组中的x 是y 的2倍,则a= .20.如图,数轴上表示1、的对应点分别为点A 、点B ,若点A 是BC 的中点,则点C 表示的数为 .三、解答题21.解方程组(1)(2).22.求下列方程中x 的值(1)9x 2﹣16=0(2)(﹣2+x )3=﹣216.23.已知a ,b ,c 在数轴上如图所示,化简:.24.已知方程组的解x 与y 的和为8,求k 得值.25.如图,直线AB 、CD 相交于点OF ⊥CD ,∠AOF 与∠BOD 的度数之比为3:2,求∠AOC 的度数.26.如图,已知AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F ,∠BEF 与∠EFD 的平分线相交于点P ,求证:EP ⊥FP .27.如图,平面直角坐标系中,C (0,5)、D (a ,5)(a >0),A 、B 在x 轴上,∠1=∠D ,请写出∠ACB 和∠BED 数量关系以及证明.28.下列各图中的MA 1与NA n 平行.(1)图①中的∠A 1+∠A 2= 度,图②中的∠A 1+∠A 2+∠A 3= 度,图③中的∠A 1+∠A 2+∠A 3+∠A 4= 度,图④中的∠A 1+∠A 2+∠A 3+∠A 4+∠A 5= 度,…, 第⑩个图中的∠A 1+∠A 2+∠A 3+…+∠A 10= 度(2)第n 个图中的∠A 1+∠A 2+∠A 3+…+∠A n = .七年级数学试题参考答案与试题解析一、选择题,每小题3分,共30分1.如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于()A.130°B.140°C.150°D.160°【考点】对顶角、邻补角.【分析】两直线相交,对顶角相等,即∠AOC=∠BOD,已知∠AOC+∠BOD=100°,可求∠AOC;又∠AOC与∠BOC互为邻补角,即∠AOC+∠BOC=180°,将∠AOC的度数代入,可求∠BOC.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC+∠BOD=100°,∴∠AOC=50°.∵∠AOC与∠BOC互为邻补角,∴∠BOC=180°﹣∠AOC=180°﹣50°=130°.故选A.【点评】本题考查对顶角的性质以及邻补角的定义,是一个需要熟记的内容.2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25° C.20° D.15°【考点】平行线的性质.【分析】本题主要利用两直线平行,内错角相等作答.【解答】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.3.如图,直线a∥b,则∠A的度数是()A.38°B.48° C.42° D.39°【考点】平行线的性质;三角形的外角性质.【分析】根据平行线的性质和三角形外角的性质求解.【解答】解:∵a∥b,∴∠DBC=80°(两直线平行,内错角相等)∵∠DBC=∠ADB+∠A(三角形的一个外角等于它不相邻的两个内角之和),∴∠A=∠DBC﹣∠ADB=80°﹣32°=48°.故选B.【点评】此题综合利用了平行线的性质和三角形外角的性质,需灵活掌握.4.16的平方根是()A.2 B.4 C.﹣2或2 D.﹣4或4【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:16的平方根是±4.故选:D.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.5.下列式子正确的是()A.± =7 B. =﹣ C. =±5 D. =﹣3【考点】立方根;平方根;算术平方根.【分析】运用立方根,平方根及算术平方根的定义求解.【解答】解:A、±=±7,故A选项错误;B、=﹣,故B选项正确;C、=5,故C选项错误;D、=3,故D选项错误.故选:B.【点评】本题主要考查了立方根,平方根及算术平方根,解题的关键是熟记定义.6.若a2=9, =﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.﹣5或﹣11【考点】实数的运算.【分析】利用平方根及立方根定义求出a与b的值,即可求出a+b的值.【解答】解:∵a2=9, =﹣2,∴a=3或﹣3,b=﹣8,则a+b=﹣5或﹣11,故选C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.若点A(﹣,﹣)在第三象限的角平分线上,则a的值为()A.B.﹣C.2 D.﹣2【考点】点的坐标.【分析】根据第三象限角平分线上的点的横坐标与纵坐标相等解答.【解答】解:∵点A(﹣,﹣)在第三象限的角平分线上,∴﹣=﹣,∴a=2.故选C.【点评】本题考查了点的坐标,熟记各象限内点的坐标特征以及各象限角平分线上的点的特征是解题的关键.8.在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A.(0,﹣2)B.(4,6) C.(4,4) D.(2,4)【考点】坐标与图形变化-平移.【分析】先根据点A、B的坐标确定出平移规律,再求解即可.【解答】解:∵点A(﹣4,0),点B(0,2),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移2个单位,∴点B的对应点的坐标为(4,6).故选:B.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.以为解的二元一次方程组是()A.B. C. D.【考点】二元一次方程组的解.【分析】把代入各方程组检验即可.【解答】解:方程组,①+②得:2x=2,即x=1,①﹣②得:2y=﹣2,即y=﹣1,则以为解的二元一次方程组是.故选D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.10.方程组的解满足方程x+y﹣a=0,那么a的值是()A.5 B.﹣5 C.3 D.﹣3【考点】二元一次方程组的解;二元一次方程的解.【分析】根据解二元一次方程组的步骤,先求出x,y的值,再把x,y的值代入要求的式子,即可求出a 的值.【解答】解:把①代入②得:y=﹣5,把y=﹣5代入①得:x=0,把y=﹣5,x=0代入x+y﹣a=0得:a=﹣5;故选:B.【点评】此题考查了二元一次方程组的解,关键是用代入法求出x,y的值,是一道基础题.二、填空题,每小题3分,共30分11.把命题“平行于同一条直线的两条直线平行”改成如果…那么形成如果两条直线平行于同一条直线,那么这两条直线平行.【考点】命题与定理.【分析】每一个命题都一定能用“如果…那么…”的形式来叙述.“如果”后面的内容是“题设”,“那么”后面的内容是“结论”.【解答】解:命题:“平行于同一条直线的两条直线平行”的题设是两条直线平行于同一条直线,结论是这两条直线平行,改写成如果…那么…的形式为:如果两条直线平行于同一条直线,那么这两条直线平行.故答案为:如果两条直线平行于同一条直线,那么这两条直线平行.【点评】考查了命题与定理的知识,解决本题的关键是理解命题的题设和结论的定义.题设是命题的条件部分,结论是由条件得到的结论.12.一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD= 270 度.【考点】平行线的性质.【分析】首先过点B作BF∥AE,易得∠BAE+∠ABC+∠BCD=360°,又由BA⊥AE,即可求得∠ABC+∠BCD的值.【解答】解:过点B作BF∥AE,∵CD∥AE,∴CD∥BF∥AE,∴∠BCD+∠CBF=180°,∠ABF+∠BAE=180°,∴∠BAE+∠ABF+∠CBF+∠BCD=360°,即∠BAE+∠ABC+∠BCD=360°,∵BA⊥AE,∴∠BAE=90°,∴∠ABC+∠BCD=270°.故答案为:270.【点评】此题考查了平行线的性质.注意准确作出辅助线是解此题的关键.13.如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是①②(填序号).【考点】同位角、内错角、同旁内角.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.【解答】解:①由同位角的概念得出:∠A 与∠1是同位角;②由同旁内角的概念得出:∠A 与∠B 是同旁内角;③由内错角的概念得出:∠4与∠1不是内错角,错误;④由内错角的概念得出:∠1与∠3是内错角,错误.故正确的有2个,是①②.故答案为:①②.【点评】本题考查了同位角、内错角、同旁内角的概念.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.14.若+(b ﹣3)2=0,则的平方根是 . 【考点】非负数的性质:算术平方根;非负数的性质:偶次方;平方根. 【分析】根据非负数的性质列出算式,分别求出a 、b 的值,根据平方根的概念解答即可. 【解答】解:由题意得,a ﹣9=9,b ﹣3=0,解得,a=9,b=3,则的平方根是±,故答案为:±.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.15.在数轴上,﹣2对应的点为A ,点B 与点A 的距离为,则点B 表示的数为 ﹣2或﹣﹣2 .【考点】实数与数轴.【分析】设B 点表示的数是x ,再根据数轴上两点间的距离公式即可得出结论.【解答】解:设B 点表示的数是x ,∵﹣2对应的点为A ,点B 与点A 的距离为,∴|x+2|=,解得x=﹣2或x=﹣﹣2.故答案为:﹣2或﹣﹣2.【点评】本题考查的是实数与数轴,熟知数轴上两点间的距离公式是解答此题的关键.16.已知P 1(a ﹣1,5)和P 2(2,b ﹣1)关于x 轴对称,则(a+b )2015的值为 ﹣1 .【考点】关于x 轴、y 轴对称的点的坐标.【分析】根据关于x 轴对称点的性质,横坐标相等,纵坐标互为相反数,进而求出即可.【解答】解:∵P 1(a ﹣1,5)和P 2(2,b ﹣1)关于x 轴对称,∴a ﹣1=2,b ﹣1=﹣5,解得:a=3,b=﹣4,∴(a+b )2015=(﹣1)2015=﹣1.故答案为:﹣1.【点评】此题主要考查了关于x 轴对称点的性质,得出a ,b 的值是解题关键.17.第二象限内的点P (x ,y )满足|x|=9,y 2=4,则点P 的坐标是 (﹣9,2) .【考点】点的坐标.【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【解答】解:∵点P (x ,y )在第二象限,∴x <0 y >0,又∵|x|=9,y2=4,∴x=﹣9 y=2,∴点P的坐标是(﹣9,2).故答案填(﹣9,2).【点评】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(﹣,+).18.已知,那么x+y的值为,x﹣y的值为﹣1 .【考点】解二元一次方程组.【分析】方程组两方程相加减求出x+y与x﹣y的值即可.【解答】解:,①+②得:3(x+y)=11,解得:x+y=;①﹣②得:x﹣y=﹣1,故答案为:;﹣1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.若方程组中的x是y的2倍,则a= ﹣6 .【考点】解二元一次方程组.【分析】根据x是y的2倍代入第一个方程求出x、y的值,然后代入第二个方程计算即可得解.【解答】解:∵x是y的2倍,∴x+4=y可化为2y+4=y,解得y=﹣4,∴x=2y=2×(﹣4)=﹣8,2a=2x﹣y=2×(﹣8)﹣(﹣4)=﹣16+4=﹣12,解得a=﹣6.故答案为:﹣6.【点评】本题考查了解二元一次方程组,根据x是y的2倍与方程组的第一个方程联立求出x、y的值是解题的关键.20.如图,数轴上表示1、的对应点分别为点A、点B,若点A是BC的中点,则点C表示的数为2﹣.【考点】实数与数轴.【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【解答】解:设点C表示的数是x,∵数轴上表示1、的对应点分别为点A、点B,点A是BC的中点,∴=1,解得x=2﹣.故选D.【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.三、解答题21.解方程组(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①+②×4得:9x=63,即x=7,把x=7代入①得:y=2,则方程组的解为;(2),①×2+②×3得:13x=26,即x=2,把x=2代入①得:y=0,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.求下列方程中x的值(1)9x2﹣16=0(2)(﹣2+x)3=﹣216.【考点】立方根;平方根.【分析】(1)先移项,把方程化为x2=a的形式再直接开平方;(2)先开方,再移项得到结果.【解答】解:(1)解:9x2=16,x2=,∴x=±,(2)解:﹣2+x=﹣6,∴x=﹣4.【点评】此题主要考查了直接开方法解一元二次方程和一元三次方程,正确开方是解题关键.23.已知a,b,c在数轴上如图所示,化简:.【考点】二次根式的性质与化简;实数与数轴.【分析】根据数轴abc的位置推出a+b<0,c﹣a>0,b+c<0,根据二次根式的性质和绝对值进行化简得出﹣a+a+b+c﹣a﹣b﹣c,再合并即可.【解答】解:∵从数轴可知:a<b<0<c,∴a+b<0,c﹣a>0,b+c<0,∴﹣|a+b|++|b+c|=﹣a+a+b+c﹣a﹣b﹣c=﹣a.【点评】本题考查了二次根式的性质,实数、数轴的应用,关键是能得出﹣a+a+b+c﹣a﹣b﹣c.24.已知方程组的解x与y的和为8,求k得值.【考点】二元一次方程组的解.【分析】根据等式的性质,可得关于k的方程,根据解方程,可得答案.【解答】解:①+②得5(x+y)=2k+3.由x+y=8,得2k+3=5×8,解得k=.【点评】本题考查了二元一次方程组的解,利用等式的性质得出2k+3=5×8是解题关键.25.如图,直线AB、CD相交于点OF⊥CD,∠AOF与∠BOD的度数之比为3:2,求∠AOC的度数.【考点】垂线;对顶角、邻补角.【分析】先根据OF⊥CD,得出∠AOC+∠AOF=90°,再根据∠AOF与∠AOC的度数之比为3:2,列出关于x 的方程,求得x的值,进而得出∠AOC的度数.【解答】解:∵OF⊥CD,∴∠COF=90°,∴∠AOC+∠AOF=90°,∵∠AOF与∠BOD的度数之比为3:2,∴∠AOF与∠AOC的度数之比为3:2,设∠AOF=3x,∠AOC=2x,则3x+2x=90°,解得x=18°,∴∠AOC=2x=36°.【点评】本题主要考查了垂线以及对顶角的概念,解决问题的关键是利用角的和差关系进行计算求解.解题时注意运用对顶角的性质:对顶角相等.26.如图,已知AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F ,∠BEF 与∠EFD 的平分线相交于点P ,求证:EP ⊥FP .【考点】三角形内角和定理;角平分线的定义;平行线的性质.【分析】要证EP ⊥FP ,即证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD )=90°.【解答】证明:∵AB ∥CD ,∴∠BEF+∠EFD=180°,又EP 、FP 分别是∠BEF 、∠EFD 的平分线,∴∠PEF=∠BEF ,∠EFP=∠EFD ,∴∠PEF+∠EFP=(∠BEF+∠EFD )=90°,∴∠P=180°﹣(∠PEF+∠EFP )=180°﹣90°=90°,即EP ⊥FP .【点评】本题的关键就是找到∠PEF+∠EFP 与∠BEF+∠EFD 之间的关系,考查了整体代换思想.27.如图,平面直角坐标系中,C (0,5)、D (a ,5)(a >0),A 、B 在x 轴上,∠1=∠D ,请写出∠ACB 和∠BED 数量关系以及证明.【考点】平行线的判定与性质;坐标与图形性质.【分析】先由C 点、D 点的纵坐标相等,可得CD ∥x 轴,即CD ∥AB ,然后由两直线平行同旁内角互补,可得:∠1+∠ACD=180°,然后根据等量代换可得:∠D+∠ACD=180°,然后根据同旁内角互补两直线平行,可得AC ∥DE ,然后由两直线平行内错角相等,可得:∠ACB=∠DEC ,然后由平角的定义,可得:∠DEC+∠BED=180°,进而可得:∠ACB+∠BED=180°.【解答】解:∠ACB+∠BED=180°.理由:∵C (0,5)、D (a ,5)(a >0),∴CD ∥x 轴,即CD ∥AB ,∴∠1+∠ACD=180°,∵∠1=∠D ,∴∠D+∠ACD=180°,∴AC ∥DE ,∴∠ACB=∠DEC ,∵∠DEC+∠BED=180°,∴∠ACB+∠BED=180°.【点评】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,另外由C 点、D 点的纵坐标相等,可得CD ∥x 轴,也是解题的关键.28.下列各图中的MA 1与NA n 平行.(1)图①中的∠A 1+∠A 2= 180 度,图②中的∠A 1+∠A 2+∠A 3= 360 度,图③中的∠A 1+∠A 2+∠A 3+∠A 4= 540 度,图④中的∠A 1+∠A 2+∠A 3+∠A 4+∠A 5= 720 度,…, 第⑩个图中的∠A 1+∠A 2+∠A 3+…+∠A 10= 1620 度(2)第n 个图中的∠A 1+∠A 2+∠A 3+…+∠A n = (n ﹣1)180° .【考点】平行线的性质.【分析】(1)①根据两直线平行,同旁内角互补求解即可;②③④⑩分别过拐点作MA 1的平行线,然后根据两直线平行,同旁内角互补解答;(2)根据(1)中的计算规律,不难发现为180°的倍数,然后根据脚码的变化规律写出即可.【解答】解:(1)图①中,∵MA 1∥NA 2,∴∠A 1+∠A 2=180°,如图,分别过A 2、A 3、A 4作MA 1的平行线,图②中的∠A 1+∠A 2+∠A 3=360°,图③中的∠A 1+∠A 2+∠A 3+∠A 4=540°,图④中的∠A1+∠A2+∠A3+∠A4+∠A5=720°,…,第⑩个图中的∠A1+∠A2+∠A3+…+∠A10=1620°;(2)第n个图中的∠A1+∠A2+∠A3+…+∠An=(n﹣1)180°.故答案为:180,360,540,720,1620;(n﹣1)180°.【点评】本题考查了两直线平行,同旁内角互补的性质,过拐点作辅助线利用平行线的性质是解题的关键.。
2020-2021学年人教版七年级数学下册期中测试卷(含答案)

七年级数学试卷- 1 -(共4页)2020-2021学年度第二学期七年级期中质量检测数 学 试 卷一、选择题(共10小题,每小题4分,满分40分,每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.9的平方根是A .9B .±9C .±3D .3 2.如图,∠1,∠2是对顶角的是3.在实数5 , 56 ,3-8 ,3.14, π 3 , 36 ,0.1010010001…中,无理数有A .2个B .3个C .4个D .5个 4.将一块直角三角板与长方形纸条如图放置.若∠1=60°,则∠2的度数为 A .30° B .45° C . 50° D . 60° 5.如图,数轴上表示实数 5 的点可能是 A .点A B .点B C .点C D .点D6.下列命题是真命题的是A .相等角是对顶角B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥cC .内错角相等D .如果a ∥b ,b ∥c ,则a ∥c12A21B D 2 121 第4题 —2 —1 0123 45 6 第5题21C七年级数学试卷- 2 -(共4页)7.如图所示,下列推理不正确的是 A .若∠1=∠B ,则BC ∥DE B .若∠2=∠ADE ,则AD ∥CE C .若∠A +∠ADC =180°,则AB ∥CD D .若∠B +∠BCD =180°,则BC ∥DE8.如果方程x —y =3与下面的方程组成的方程组的解为 ,那么这一个方程可以是A .2(x —y )=6yB .3x —4y =16C . 1 4 x +2y =5D . 12x +3y =89.某运输队接到给武汉运输物资的任务,该队有A 型卡车和B 型卡车,A 型卡车每次可运输6t 物资,每天可来回6次,B 型卡车每次可运输10t 物资,每天可来回4次,若每天派出20辆卡车,刚好运输860t 物资,设该运输队每天派出A 型卡车x 辆,B 型卡车y 辆,则所列方程组正确的是10.若有3 x + 3y =0,则x 和y 的关系是A . x =y =0B . x -y =0C . xy =1D . x+y =0二、填空题(共6小题,每小题4分,满分24分,请将答案填写在答题卡相应位置)11.计算: 64 = ;3- 18 = .12.已知x =1,y =-8是方程3ax -y =-1的解,则a 的 值为 .13.如图,为了把河中的水引到A 处,可过点A 作AB ⊥CD 于B ,然后沿AB 开渠,这样做可使所开的渠道最短,这种设计的依据是 .14.把命题改写成“如果……,那么……”的形式:两直线平行,同位角相等. .15.已知∠α与∠β互补,且∠α与∠β的差是70°,则∠α= ,∠β= .小河A B CD第13题x + y =20 6•6x + 4•10y =860 B.6x +4 y =20 6x + 10y =860 A. x + y =20 6x + 10y =860C.6x + 4y =20 6•6x + 4•10y =860D. ABE C D 321 第7题x =4y =1七年级数学试卷- 3 -(共4页)16.一束光线照射到平面镜AB 上,然后在平面镜 AB 和CD 之间来回反射,这时光线的入射角等于反射角, 即∠1=∠2,∠3=∠4,∠5=∠6. 若已知∠1=50°, ∠6=65°,那么∠3的度数为 . 三、解答题(共9小题,满分86分)17.(每小题4分,共8分)计算:(1)|5 -7 |+5 ; (2)0.09 + 3-8- 1 418.(本题6分)解下列方程组:19.(本题8分)某小组去看电影,甲种票每张24元,乙种票每张20元.如果40人购票恰好用去920元,甲乙两种票各买了多少张?20.(本题8分)完成下列证明:已知CD ⊥AB ,FG ⊥AB ,垂足分别为D 、F ,且∠1=∠2,求证DE ∥BC . 证明:∵ AB ⊥CD ,FG ⊥AB (已知),∴∠BDC =∠BFG =90°() ∴CD ∥GF ( ) ∴∠2=∠3( ) 又∵∠1=∠2(已知) ∴∠1=∠3 (等量代换)∴DE ∥BC ( )21.(本题10分)已知4a + 7的立方根是3,2a + 2b + 2的算术平方根是4. (1)求a ,b 的值;(2)求6a + 3b 的平方根.22.(本题10分)如图,已知AC ⊥BC 于点C ,∠DAB =70°,AC 平分∠DAB ,∠DCA =35°.求∠B 的度数.2x +3y =4 3x -2y =-7ABC D EFG12 3第20题ABCD第22题第16题七年级数学试卷- 4 -(共4页)23.(本题10分)某电器超市销售每台进价分别为2000元、1700元A 、B 两种型号的空调,如表是近两周的销售情况:(1)求A 、B 两种型号的空调的销售单价; (2)求近两周的销售利润.24.(本题12分)先阅读下面材料,再解答问题:材料:已知a ,b 是有理数,并且满足等式5- 7 a = 2b + 23 7 -a ,求a ,b 的值. 解:∵ 5- 7 a =2b + 23 7 -a ∴ 5- 7 a =(2b -a )+ 23 7 ∵ a ,b 是有理数∴ 解得问题:(1)已知a ,b 是有理数,a+ 3 2 =5 + 2 b ,则a = ,b = . (2)已知x ,y 是有理数,并且满足等式7x -9+ 2 x =-5y + 2 y + 3 2 ,求x ,y 的值.25.(本题14分)如图1,AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B ,过B 作BD ⊥CN ,垂足为D .(1)求证:∠BAM =∠CBD ;(2)如图2,分别作∠CBD 、∠ABD 的平分线交DN 于E 、F ,连接AF ,若∠CBF = 5 4∠CBE ,①求∠CBE 的度数; ②求证:∠CBF =∠CFB.2b -a =5 -a = 23a =- 23 b = 13 6 第25题图1ABCD MN 图2ABCD E FMN七年级数学试卷- 5 -(共4页)数学参考答案及评分细则一、选择题(有10小题,每小题4分,共40分)1. C2. C3. B4.A5. A6. D7. D8. A9. B 10. D 二、填空题(每小题4分,共24分)11. 8 - 1212. -3 13. 垂线段最短14. 如果两条直线互相平行,那么这两条直线被第三条直线所截形成的同位角相等. (注:“如果两条直线平行,那么同位角相等”也给分) 15. 125° 55° 16. 57.5°三、解答题(有9道题,共86分)17.(1)解:原式= 7 - 5 +5 …………………………………………2分= 7 +(- 5 +5 )=7 ………………………………………………………………4分(2)解:原式=0.3 +(-2)- 12……………………………………………3分=-115…………………………………………………………4分 18. 解:将①×3得……………………………………………………………1分②×2得………………………………………………………2分 将③-④得 13y =26y =2 ……………………………………………………………………3分将y =2 代入①中,得2x +3×2=4 ………………………………………………………………4分 x =1 ………………………………………………………………5分 ∴ 这个方程组的解是 ………………………………………………6分19. 解:设甲种票买了x 张,乙种票买了y 张,依题意可得 ………………………1分………………………………………………………5分解得…………………………………………………………7分答:甲种票买了30张,乙种票买了10张.…………………………………8分20.证明:∵AB⊥CD,FG⊥AB(已知),∴∠BDC=∠BFG=90°(垂直的定义)∴CD∥GF (同位角相等,两直线平行)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3 (等量代换)∴DE∥BC (内错角相等,两直线平行)(注:每空2分)21. 解:(1)∵4a + 7的立方根是3,2a + 2b + 2的算术平方根是4∴4a + 7=27,2a + 2b + 2=16 …………………………………………4分∴a=5,b=2 ……………………………………………………………6分(2)由(1)知a=5,b=2∴6a + 3b=6×5+3×2=36 ……………………………………………8分∴6a + 3b的平方根为±6 ………………………………………………10分22.解:∵∠DAB=70°,AC平分∠DAB∴∠DAC=∠BAC=35°……………………………………………………1分又∵∠DCA=35°∴∠DCA=∠BAC ……………………………………………………3分∴DC//AB ……………………………………………………………5分∴∠DCB+∠B=180°……………………………………………………6分又∵AC⊥BC∴∠ACB=90°……………………………………………………………7分∴∠DCB=∠DCA+∠ACB=125°………………………………………8分∴∠B=180°-∠DCB=55°………………………………………………10分23. 解:(1)设A型号空调的销售单价为x元,B型号空调的销售单价为y元,七年级数学试卷- 6 -(共4页)依题意可得………………………………………………………………1分…………………………………………………5分解得………………………………………………6分答:A型号空调的销售单价为2500元,B型号空调的销售单价为2100元.……7分(2)由(1)题知A型号空调的销售单价为2500元,B型号空调的销售单价为2100元,则销售总利润为(2500-2000)(4+5)+(2100-1700)(5+10)…………………………8分=4500+6000=10500(元)………………………………………………………………9分答:近两周的销售利润为10500元. ………………………………………10分24.解:(1)a=5 ,b=3;………………………………………………………………4分(2)∵7x-9+ 2 x=-5y + 2 y + 3 2∴7x-9+ 2 x=-5y + 2(y + 3)………………………………6分∵a,b是有理数∴……………………………………………………10分解得……………………………………………………12分25. 解:(1)过点B作BG//AM ………………………………………………………1分∴∠BAM=∠ABG ……………………………………………………2分∵AB⊥BC∴∠ABG=90°-∠CBG∴∠BAM=90°-∠CBG ……………………3分∵BG//AM,AM//CN∴BG//CN∵BD⊥CN∴∠DBG=90°=∠D∴∠CBD=90°-∠CBG ………………………………………………4分七年级数学试卷- 7 -(共4页)七年级数学试卷- 8 -(共4页)∴ ∠BAM =∠CBD ………………………………………………5分(2)如图2,∵ BE 为∠CBD 的平分线∴ ∠DBE =∠CBE …………………6分 设∠DBE =∠CBE =x ,则∠BAM =2x , ∠CBF = 54 x ……………………8分①∵ BF 为∠ABD 的平分线 ∴ ∠ABF =∠DBF = 134x∴ ∠ABC = 13 4 x + 5 4 x = 184 x …………………………………………9分∵ AB ⊥BC∴ ∠ABC =90°,即 184 x =90° ………………………………………10分∴ x =20°,即∠CBE =20° …………………………………………11分 ②∵ BG //AM ,AM //CN ∴ ∠ABG =∠BAM ,BG //CN ∴ ∠CFB =∠FBG∴ ∠CFB +∠BAM =∠FBG +∠ABG即∠CFB +∠BAM =∠ABF …………………………………………12分 ∴ ∠CFB =∠ABF -∠BAM = 13 4 x - 2x = 54 x ……………………13分∴ ∠CBF =∠CFB ……………………………………14分七年级数学试卷- 9 -(共4页)。
2020年初一下册数学期中试卷及答案

2020年初一下册数学期中试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. 2B. 3√2C. 0.333...D. √9答案:B2. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26答案:C3. 下列等式正确的是:A. √(4)²=2B. √(9)²=3C. √(16)²=4D. √(25)²=5答案:D4. 某数的平方根是3,则这个数是:A. 9B. 8C. 7D. 6答案:A5. 下列哪个数是正数:A. -2B. -1C. 0D. 1答案:D6. 下列哪个数是负数:A. 2B. -2C. 0D. 1答案:B7. 下列哪个数的立方根是3:A. 27B. 64C. 125D. 243答案:A8. 已知a=2,b=3,则a²+b²的值是:A. 13B. 11C. 9D. 7答案:A9. 下列哪个数是无理数:A. √9B. √16C. √25D. √36答案:B10. 下列等式正确的是:A. √(4)²=2B. √(9)²=3C. √(16)²=4D. √(25)²=5答案:C二、填空题(每题4分,共40分)1. 2的平方是______。
答案:42. 3的立方是______。
答案:273. 5的平方根是______。
答案:√54. 16的平方根是______。
答案:±45. 0.333...的值是______。
答案:1/36. -2的立方是______。
答案:-87. 81的平方根是______。
答案:98. 125的立方根是______。
答案:59. 7²的值是______。
答案:4910. (-3)²的值是______。
答案:9三、解答题(共20分)1. 计算下列各数的平方根:(1) 64(2) 121(3) 256答案:(1) ±8(2) 11(3) ±162. 已知a=5,b=3,求a²+b²的值。
【精编】人教版2020学年七年级(下)期中数学试卷【解析版】.doc

七年级(下)期中数学试卷一、选择题(每小题2分,共20分,每小题只有一个正确答案).±4.(2分)如图直线a∥b,∠1=52°,则∠2的度数是()5.(2分)下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有(),共有6.(2分)如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()AOC=∠EOC=8.(2分)(2012•梧州)如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()10.(2分)观察下列计算过程:…,由此猜想二、填空题(每小题3分,共24分)11.(3分)比较大小:4>(填“>”、“<”或“=”)=4,比较和,,,,题目12.(3分)如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是垂线段最短.13.(3分)命题“同位角相等,两直线平行”中,条件是同位角相等,结论是两直线平行14.(3分)如图要证明AD∥BC,只需要知道∠B=∠EAD.15.(3分)如图,∠1+∠2=180°,∠3=108°,则∠4=72度.16.(3分)已知三角形ABC的三个顶点坐标为A(﹣2,3),B(﹣4,﹣1),C(2,0).在三角形ABC中有一点P(x,y)经过平移后对应点P1为(x+3,y+5),将三角形ABC作同样的平移得到三角形A1B1C1,则A1的坐标为(1,8).17.(3分)如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=134°.18.(3分)在平面直角坐标系中,点A1(1,2),A2(2,5)A3(3,10),A4(4,17),…,用你发现的规律确定点A9的坐标为(9,82).三、解答题(共56分)19.(8分)计算:(1)(2).;20.(6分)作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.21.(8分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.22.(6分)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?23.(8分)完成下面证明:(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b证明:∵a⊥c (已知)∴∠1=∠2(垂直定义)∵b∥c (已知)∴∠1=∠2 (两直线平行,同位角相等)∴∠2=∠1=90°(等量代换)∴a⊥b (垂直的定义)(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE证明:∵AB∥CD (已知)∴∠B=∠C(两直线平行,内错角相等)∵∠B+∠D=180°(已知)∴∠C+∠D=180°(等量代换)∴CB∥DE (同旁内角互补,两直线平行)24.(8分)如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A1(4,7),B1(1,2),C1(6,4);(2)画出平移后三角形A1B1C1;(3)求三角形ABC的面积.﹣.25.(12分)(1)如图1,a∥b,则∠1+∠2=180°(2)如图2,AB∥CD,则∠1+∠2+∠3=360°,并说明理由(3)如图3,a∥b,则∠1+∠2+∠3+∠4=540°(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n=(n﹣2)•180°(直接写出你的结论,无需说明理由)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年七年级下册数学期中考试卷及答案
题号 一 二 三 总分 得分
一、选择题(每题3分,共24分)
1实数m 在数轴上对应的点的位置在表示-3和-4的两点之间且靠近表示-4的点,这个实数可能是( )
A .-3 3
B .-2 3
C .-11
D .-15
2.如图,A 、B 、C 、D 中的哪幅图案可以通过图4平移得到( )
3.如图,下列条件中,不能判断直线a//b 的是( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180°
4. 若a 是(-3)2
的平方根,则3a 等于( )
A.-3
B.33
C.33或-33
D.3或-3
5.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =8,
nx -my =1的解,则2m -n 的算术平方根为( )
A .4
B .2 C. 2 D .±2
6.在平面直角坐标系中,若点P 关于x 轴的对称点在第二象限,且到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为( ) A .(﹣3,﹣2)
B .(﹣2,﹣3)
C .(2,3)
D .(3,2)
7.设2
2
1-)(=a ,,,2-=d ,则按由小到大的顺序排列正确的是
( )
A .
B .
C .
D .
2(3)b =-39c =-a b c d ,,,c a d b <<<b d a c <<<a c d b <<<b c a d <<<
c
b
a
5 4
3
2 1
8.如图,已知AB ∥DE ,则下列式子表示∠BCD 的是( ) A .∠2﹣∠1 B .∠1+∠2
C .180°+∠1﹣∠2
D .180°﹣∠2﹣2∠1
二、填空题(每题3分,共27分)
9.如图,若AB //CD ,∠BEF =70°,则∠ABE +∠EFC +∠FCD 的度数是
________
10.若52=x ,则=x ;若22)3(-=x ,则=x ; 当______m 时,m -3有意义;当______m 时,3
3-m 有意义;
11.如图,当半径为30cm 的转动轮转过180︒角时,传送带上的物体A 平移的距离为 cm 。
12.命题:(1)若│x │=│y │,则x =y ; (2)大于直角的角是钝角;
(3)一个角的两边与另一个角的两边平行,则这两个角相等或互补, 假命题是_______.
13.已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则
_________,==n m ;
14.实数a ,b ,c 在数轴上的对应点如图所示
化简c b c b a a ---++2=________________。
15.已知点P(a ,b )到x 轴的距离是2,到y 轴的距离是5,且|a -b |=a -b ,则P 点坐标是________ 若已知0=mn ,则点(m ,n )在 ; 16.如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD 下列结论:
①BC 平分∠ABE ;②AC ∥BE ;③∠BCD +∠D =90°;④∠DBF =2∠ABC . 其中正确的是_________
c
b
a
17.如图,在平面直角坐标系中,已知点A (1,1),B (﹣1,1),C (﹣1,﹣2), D (1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A →B →C →D →A …的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是 . 三、解答题
18.计算(每题4分,共20分) (1)
3
109.0+
5
125.0-3008.0+3332125.03++-
(2)81+25x 3=-116. (3)81)1(42=+x
(4)⎩⎨
⎧=+=-1732623y x y x (5)341112
38x y x y =⎧⎪
⎨-=⎪⎩
19.(5分)如图,∠1+∠2=180°,∠DAE=∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么? (3)BC 平分∠DBE 吗?为什么.
20.(7分)已知:AB ∥CD ,OE 平分∠AOD ,OF ⊥OE 于O ,∠D = 60°,求∠BOF 的度数.
O
F
E D C
B
A
F E
2
1
D
C
B
A。