2018年人教版七年级数学下册期末考试试题
人教版2018年七年级下数学期末试卷

2018年第二学期七年级数学竞赛测试卷学校姓名 班级 得分一.选择题(本题共有8小题,每小题3分,共24分)1、点A(-2,1)在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2、下列各图中,∠1和∠2是对顶角的是()A 、、 1 2C 、D 、 1 23、下列各式中,正确的是( )A 、16=±4B 、±16=4C 、327-=-3D 、)4(-24.的解是( )25 A x=2 B x=-5.5 C 5、下列调查中,适宜采用全面调查(普 查)方式的是 ( )A .对全国中学生心 理健康现状的调查B .对我国首架大型民用飞机零部件的检查C .对我市市民实施低碳生活情况的调查D .对市场上的冰淇淋质量的调查5. 若不等式组2<x <a 的整数解恰有3个,则a 的取值范围是( )A .a >5B .5<a <6C .5≤a <6D .5<a≤66. 是方程2mx ﹣y=10的解,则m 的值为( )Y=2A .2B .4C .6D .108、一个正方形的面积是15,估计它的边长大小在( )A 、 2和3之间B 、3和4之间C 、4和5之间D 、5和6之间二、填空题(本题共有8小题,每小题3分,共24分)9、2的相反数是 。
10、一个数的平方根等于它本身,这个数是 。
11、点(3,2)关于x 轴对称的点的坐标是 。
12、若a >b,则-3a+2 -3b+2(用 “ >”或 “<”填空)13、若|m-3|+|n-2|=0,则m+2n 的值是 。
14、直角坐标系中第二象限一点P 到x 轴的距离为4,到y 轴的距离为6,则点p 的坐标为 。
15、若关于的方程组 x + y=m 的解是 x=-2 ,则m -n =______ 。
x + my=n y=116、如图,AD ∥BC ,BD 平分∠ABC ,且∠A =110°,则∠D =_______度.A DB C三、解答题(共52分)17.求下列各式的值(每题3分,共9分)(1)-√0.16 (2)√0.0273 (3)√2(√2+2)18、解下列方程组(每题4分,共8分)(1) 2x-y=5 (2) 2x+5y=25 3x+4y=2 4x+3y=1519、解下列不等式(每题4分,共8分)(1)2(x+5)≤3(x-5) (2)x−32<2x−5320、完成下面的证明(本题6分)如图,AB∥CD,CB∥DE,求证:∠B+∠D=180。
人教版七年级数学下册期末测试题 (16)

山东省菏泽市单县启智学校2017-2018学年七年级(下)期末数学试卷(解析版)一、选择题1.把多项式2x2﹣8分解因式,结果正确的是()A.2(x2﹣8)B.2(x﹣2)2C.2(x+2)(x﹣2)D.2x(x﹣)【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式2,进而利用平方差公式分解因式得出即可.【解答】解:2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2).故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式分解因式是解题关键.2.下列计算正确的是()A.x3+x3=x6B.x3÷x4=C.(m5)5=m10D.x2y3=(xy)5【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【分析】直接利用同底数幂的乘法、幂的乘方、积的乘方以及同底数幂的除法的性质求解即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、x3+x3=2x3,故本选项错误;B、x3÷x4=x﹣1=,故本选项正确;C、(m5)5=m25,故本选项错误;D、(xy)5=x5y5,故本选项错误.故选B.【点评】此题考查了同底数幂的乘法、幂的乘方、积的乘方以及同底数幂的除法.此题比较简单,注意掌握指数的变化是解此题的关键.3.若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.6【考点】L3:多边形内角与外角.【分析】根据多边形的外角和定理作答.【解答】解:∵多边形外角和=360°,∴这个正多边形的边数是360°÷45°=8.故选C.【点评】本题主要考查了多边形的外角和定理:任何一个多边形的外角和都为360°.4.如果等腰三角形的一个外角等于110°,则它的顶角是()A.40°B.55°C.70°D.40°或70°【考点】KH:等腰三角形的性质.【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故选D.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.5.下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x+1 C.x2+2x﹣1 D.x2﹣2x﹣1【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式得出即可.【解答】解:A、x2+x+1,无法分解因式,故此选项错误;B、x2+2x+1=(x+1)2,故此选项正确;C、x2+2x﹣1,无法分解因式,故此选项错误;D、x2﹣2x﹣1,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.6.用加减法解方程组时,(1)×2﹣(2)得()A.3x=﹣1 B.﹣2x=13 C.17x=﹣1 D.3x=17【考点】98:解二元一次方程组.【分析】此题考查的是加减消元法,消元时两方程相减,要注意是方程的左边减去左边、方程的右边减去右边.【解答】解:(1)×2﹣(2),得2(5x+y)﹣(7x+2y)=2×4﹣(﹣9),去括号,得10x+2y﹣7x﹣2y=2×4+9,化简,得3x=17.故选D.【点评】本题要求同学们要熟悉二元一次方程组的解法:加减消元法和代入消元法,解题时要根据方程组的特点进行有针对性的计算.7.在平面直角坐标系中,已知点A(3,﹣4),B(4,﹣3),C(5,0),O是坐标原点,则四边形ABCO的面积为()A.9 B.10 C.11 D.12【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】作出图形,作AD⊥x轴于D,BE⊥x轴于E,然后把四边形ABCD的面积转化为△OAD、梯形ADEB、△BEC的面积和,再根据三角形的面积和梯形的面积公式列式计算即可得解.【解答】解:如图,作AD⊥x轴于D,BE⊥x轴于E,则S四边形ABCD=S△OAD+S梯形ADEB+S△BEC=×3×4+(3+4)×1+×1×3=6++=6+5=11.故选C.【点评】本题考查了坐标与图形性质,三角形的面积,把四边形分解成规则的三角形和梯形是解题的关键,作出图形更形象直观.8.如图所示,∠1+∠2+∠3+∠4的度数为()A.100° B.180° C.360° D.无法确定【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】把原图形化为两个三角形,然后根据三角形内角和定理求解.【解答】解:如图,,∠1+∠2+∠3+∠4=2×180°=360°.故选C.【点评】本题考查了三角形内角和定理:记住三角形内角和是180°.9.若(1﹣2x)0=1,则()A.x≠0 B.x≠2C.x≠D.x为任意有理数【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由(1﹣2x)0=1,得1﹣2x≠0.解得x≠,故选:C.【点评】本题考查了零指数幂,利用非零的零次幂等于1得出不等式是解题关键.10.多项式4x2+mxy+25y2是完全平方式,则m的值是()A.20 B.10 C.10或﹣10 D.20或﹣20【考点】4E:完全平方式.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵4x2+mxy+25y2是完全平方式,∴m=±20,故选D【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.二、填空题11.分解因式:3x2﹣27= 3(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】观察原式3x2﹣27,找到公因式3,提出公因式后发现x2﹣9符合平方差公式,利用平方差公式继续分解.【解答】解:3x2﹣27,=3(x2﹣9),=3(x+3)(x﹣3).故答案为:3(x+3)(x﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.12.点P(﹣5,1)到x轴距离为 1 .【考点】D1:点的坐标.【分析】根据点P(x,y)到x轴距离为|y|求解.【解答】解:点P(﹣5,1)到x轴距离为1.故答案为1.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.13.已知a+b=2,ab=﹣10,则a2+b2= 24 .【考点】4C:完全平方公式.【分析】此题可将a2+b2变形为(a+b)2﹣2ab,再代入求值即可.【解答】解:∵a+b=2,ab=﹣10,∴a2+b2=(a+b)2﹣2ab,=22﹣2×(﹣10),=4+20=24.故答案为:24.【点评】本题考查了因式分解的应用,注意应用因式分解对a2+b2变形是解决此题的关键.14.若5x=18,5y=3,则5x﹣2y= 2 .【考点】48:同底数幂的除法;47:幂的乘方与积的乘方.【分析】利用同底数的幂的除法的性质,以及幂的乘方的性质,所求的式子可以变形=,代入即可求解.【解答】解:原式====2.故答案是:2.【点评】本题考查了幂的除法的性质,以及幂的乘方的性质,正确对所求的式子进行变形是关键.15.若代数式x2﹣(a﹣2)x+9是一个完全平方式,则a= 8或﹣4 .【考点】4E:完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a的值.【解答】解:∵代数式x2﹣(a﹣2)x+9是一个完全平方式,∴﹣(a﹣2)x=±2•x•3,解得:a=8或﹣4,故答案为:8或﹣4.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要,注意:完全平方公式为①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.16.(﹣)2015×22014= ﹣.【考点】47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可得积的乘方,根据积的乘方,可得答案.【解答】解:原式=(﹣)×[(﹣)2014×22014]=﹣×(﹣×2)2014=﹣,故答案为:﹣.【点评】本题考查了积的乘方,利用积的乘方是解题关键.17.蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是6.1 万元和 6.9 万元.【考点】9A:二元一次方程组的应用.【分析】设甲、乙两种贷款分别是x、y万元,根据甲、乙两种贷款,共13万元可以列出方程x+y=13,根据王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为 3.5%可以列出方程6%x+3.5%y=0.6075,联立两个方程组成方程组,解方程组即可求出甲、乙两种贷款的数目.【解答】解:设甲、乙两种贷款分别是x、y万元,则6075元=0.6075万元,依题意得,解之得,答:甲、乙两种贷款分别是6.1万元,6.9万元.【点评】此题主要考查了利率、利息和本金之间的关系,解题关键是弄清题意,合适的等量关系,列出方程组.18.如图,已知∠1=∠2,∠B=40°,则∠3= 40°.【考点】JB:平行线的判定与性质.【分析】由∠1=∠2,根据“内错角相等,两直线平行”得AB∥CE,再根据两直线平行,同位角相等即可得到∠3=∠B=40°.【解答】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,而∠B=40°,∴∠3=40°.故答案为40°.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等.19.已知是方程kx﹣2y﹣1=0的解,则k= 3 .【考点】92:二元一次方程的解.【分析】根据二元一次方程解的定义,直接把代入方程kx﹣2y﹣1=0中,得到关于k的方程,然后解方程就可以求出k的值.【解答】解:把代入方程kx﹣2y﹣1=0,得5k﹣14﹣1=0,则k=3.故答案为:3.【点评】此题主要考查了二元一次方程的解的定义,利用定义把已知的解代入原方程得到关于k的方程,解此方程即可.20.(2015﹣π)0+(﹣)﹣2= 10 .【考点】6F:负整数指数幂;6E:零指数幂.【分析】首先根据零指数幂的运算方法:a0=1(a≠0),求出(2015﹣π)0的值是多少;然后根据负整指数幂的运算方法:a﹣p=,求出(﹣)﹣2的值是多少;最后把求出的(2015﹣π)0、(﹣)﹣2的值相加,求出算式的值是多少即可.【解答】解:(2015﹣π)0+(﹣)﹣2=1+9=10.故答案为:10.【点评】(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a ≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.三、计算题(20分)21.(10分)分解因式:(1)3a3﹣6a2+3a.(2)a2(x﹣y)+b2(y﹣x).【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式提取3a,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=3a(a2﹣2a+1)=3a(a﹣1)2;(2)原式=(x﹣y)(a2﹣b2)=(x﹣y)(a﹣b)(a+b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.(10分)计算:(1)4x2﹣(﹣2x+3)(﹣2x﹣3)(2)(x+2y)2﹣(x+y)(3x﹣y)﹣5y2.【考点】4I:整式的混合运算.【分析】(1)先利用平方差公式,再利用整式混合运算的顺序求解即可,(2)先利用完全平方公式及多项式乘多项式的方法,再利用整式混合运算的顺序求解即可.【解答】解:(1)4x2﹣(﹣2x+3)(﹣2x﹣3)=4x2﹣(4x2﹣9)=4x2﹣4x2+9=9;(2)(x+2y)2﹣(x+y)(3x﹣y)﹣5y2=x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2=﹣2x2+2xy.【点评】本题主要考查了整式的混合运算,解题的关键是熟记平方差,完全平方公式及整式混合运算的顺序.四、解答题23.(9分)将一副直角三角板如图放置,已知AE∥BC,求∠AFD的度数.【考点】JA:平行线的性质.【分析】根据平行线的性质及三角形内角定理解答.【解答】解:由三角板的性质,可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.因为AE∥BC,所以∠EAC=∠C=30°,所以∠DAF=∠EAD﹣∠EAC=45°﹣30°=15°,所以∠AFD=180°﹣∠ADE﹣∠DAF=180°﹣90°﹣15°=75°.【点评】本题考查的是平行线的性质及三角形内角和定理,解题时注意:两直线平行,内错角相等.24.(9分)先化简再求值:(a+2b)(2a﹣b)﹣(a+2b)2﹣(a﹣2b)2,其中.【考点】4J:整式的混合运算—化简求值.【分析】利用多项式乘以多项式法则和完全平方公式法化简,然后把给定的值代入求值.【解答】解:原式=2a2+3ab﹣2b2﹣(a2+4ab+4b2)﹣(a2﹣4ab+4b2),=2a2+3ab﹣2b2﹣a2﹣4ab﹣4b2﹣a2+4ab﹣4b2,=3ab﹣10b2,当时,原式=3×(﹣)×(﹣3)﹣10×(﹣3)2=3﹣90=﹣87.【点评】考查的是整式的混合运算,主要考查了公式法、多项式与多项式相乘以及合并同类项的知识点.25.(10分)某儿童服装店欲购进A、B两种型号的儿童服装.经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.求A、B两种型号童装的进货单价各是多少元?【考点】9A:二元一次方程组的应用.【分析】可设A型号童装进货单价为x元,则B型号童装进货单价为y元,则y=2x;再利用购进A型号童装60件和B型号童装40件共用2100元.则60x+40y=2100,联立方程组解答.【解答】解:设A型号童装进货单价为x元,则B型号童装进货单价为y元,依题意得:,解得.答:A型号童装进货单价为15元,则B型号童装进货单价为30元.【点评】本题考查了二元一次方程组的应用.二元一次方程组的应用问题的解答关键是审题,找出题干中的相等关系,设未知数,列关系式解答.26.(12分)△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移5个单位后再向下平移3个单位得到△A1B1C1(1)写出经平移后△A1B1C1点A1、B1、C1的坐标;(2)作出△A1B1C1;(3)求△ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用(1)中所求进而得出答案;(3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:A1(3,0),B1(2,﹣1),C1(4,﹣2);(2)如图所示:△A1B1C1即为所求;(3)△ABC的面积为:2×2﹣×1×1﹣×1×2﹣×1×2=1.5.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:事件A 必然事件 随机事件m 的值 ________ ________(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
2018-2019学年新人教版七年级下册期末数学试卷含答案

2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分) 1. 下列调查,比较适合全面调查方式的是( )A. 乘坐地铁的安检B. 长江流域水污染情况C. 某品牌圆珠笔笔芯的使用寿命D. 端午节期间市场上的粽子质量情况 2. 下列命题中,假命题是( )A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行B. 在同一平面内,过一点有且只有一条直线与已知直线垂直C. 两条直线被第三条直线所截,同旁内角互补D. 两直线平行,内错角相等3. 下列四组值中,是二元一次方程x −2y =1的解的是( )A. {y =1x=0B. {y =−1x=1C. {y =1x=1D. {y =0x=14. 如图图形中,由∠1=∠2能得到AB//CD 的是( )A. B.C. D.5. 下列说法不正确的是( )A. 4是16的算术平方根B. 53是259的一个平方根 C. (−6)2的平方根−6 D. (−3)3的立方根−36. 已知a <b ,则下列不等式一定成立的是( )A. 12a <12bB. −2a <−2bC. a −3>b −3D. a +4>b +47. 某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A. 得分在70~80分的人数最多B. 该班的总人数为40C. 得分及格(≥60分)的有12人D. 人数最少的得分段的频数为28. 亮亮准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x −45≥300 B. 30x +45≥300 C. 30x −45≤300D. 30x +45≤300 9. 某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余.若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( )A. {12x −10y =0x+y=22B. {6x −10y =0x+y=22C.{24x −10y =0x+y=22D. {12x −20y =0x+y=2210. 已知点M(2m −1,1−m)在第四象限,则m 的取值范围在数轴上表示正确的是( )A.B.C.D.二、填空题(本大题共5小题,共15.0分) 11. √16的平方根是______.12. 如图,直线a//b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55∘,则∠2的度数为______.13. 点P(−5,1)到x 轴距离为______.14. 不等式3(x −1)≤5−x 的非负整数解有______个.15. 算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x ,y 的系数.因此,根据此图可以列出方程:x +10y =26.请你根据图2列出方程组______.三、解答题(本大题共8小题,共64.0分)16.计算:(1)3(√3+√2)−2(√3−√2)(2)|√2−3|+√(−3)2−(−1)2019+√−27317.用适当的方法解下列方程组:(1){x−2y=2y=5−x(2){3x−2y=72x−3y=318.解不等式组:{4x>2x−6x+13≥x−1,并把解集表示在数轴上.19.已知:如图的网格中,△ABC的顶点A(0,5)、B(−2,2).(1)根据A、B坐标在网格中建立平面直角坐标系并写出点C的坐标:(______,______);(2)平移三角形ABC,使点C移动到点F(7,−4),画出平移后的三角形DEF,其中点D与点A对应,点E与点B对应.(3)画出AB边上中线CD和高线CE;(利用网格点和直尺画图)(4)△ABC的面积为______.20.如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH//BC交AB于点H.(1)请你补全图形(不要求尺规作图);(2)求证:∠BDH=∠CEF.21.2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.(1)统计表中,a=______,b=______,c=______;(2)扇形统计图中,m的值为______,“C”所对应的圆心角的度数是______;(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?22.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.23.探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1//l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=______.(2)如图2,若AC//BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.过点P作PE//AC.∴∠A=______∴______//______∴∠B=______∵∠BPA=∠BPE−∠EPA∴______.(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180∘.【答案】 1. A 2. C 3. D 4. B 5. C 6. A 7. C8. B 9. A 10. B11. ±2 12. 35∘ 13. 1 14. 315. {x +y =18x+2y=2216. 解:(1)原式=3√3+3√2−2√3+2√2 =√3+5√2;(2)原式=3−√2+3+1−3 =4−√2. 17. 解:(1){x −2y =2 ②y=5−x ①把①代入②得 x −2(5−x)=2, 解得x =4把x =4代入得①,y =5−4=1, ∴原方程组的解为{y =1x=4;(2){3x −2y =7 ②2x−3y=3 ①解:由①得 6x −9y =9 ③ 由②得 6x −4y =14 ④ ③−④得−5y =−5, 解得 y =1,把y =1代入①得 2x −3=3, 解得x =1∴原方程组的解为{y =1x=3.18. 解:解不等式4x >2x −6,得:x >−3, 解不等式x+13≥x −1,得:x ≤2,∴不等式组的解集为:−3<x ≤2, 将不等式组解集表示在数轴上如图:19. 2;3;11220. 解:(1)如图所示,EF ,DH 即为所求;(2)∵DH//BC , ∴∠BDH =∠DBC , ∵BD ⊥AC ,EF ⊥AC , ∴BD//EF ,∴∠CEF =∠DBC , ∴∠BDH =∠CEF .21. 225;500;0.3;45;108∘22. 解:(1)设篮球每个x 元,排球每个y 元,依题意,得 {3x =5y 2x+3y=190, 解得,{y =30x=50,答:篮球每个50元,排球每个30元;(2)设购买篮球m 个,则购买排球(20−m)个,依题意,得 50m +30(20−m)≤800. 解得m ≤10, 又∵m ≥8, ∴8≤m ≤10.∵篮球的个数必须为整数, ∴m 只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个; ②购买篮球9,排球11个; ③购买篮球10个,排球10个, 以上三个方案中,方案①最省钱.23. ∠A +∠B ;∠1;PE ;BD ;∠EPB ;∠APB =∠B −∠1 【解析】1. 解:A 、乘坐地铁的安检,适合全面调查,故A 选项正确; B 、长江流域水污染情况,适合抽样调查,故B 选项错误;C 、某品牌圆珠笔笔芯的使用寿命,适合抽样调查,故C 选项错误;D 、端午节期间市场上的粽子质量情况,适于抽样调查,故D 选项错误. 故选:A .根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2. 解:∵如果两条直线都与第三条直线平行,那么这两条直线也互相平行, ∴选项A 是真命题;∵在同一平面内,过一点有且只有一条直线与已知直线垂直,∴选项B 是真命题;∵两条直线被第三条直线所截,同旁内角不一定互补, ∴选项C 是假命题;∵两直线平行,内错角相等, ∴选项D 是真命题. 故选:C .分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 3. 解:{y =0x=1是二元一次方程x −2y =1的解,故选:D .把x 与y 的值代入方程检验即可.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4. 解:A 、∠1、∠2是同旁内角,由∠1=∠2不能判定AB//CD ; B 、∠1、∠2是内错角,由∠1=∠2能判定AB//CD ;C 、∠1、∠2是内错角,由∠1=∠2能判定AC//BD ,不能判定AB//CD ; D ,∠1、∠2是同旁内角,由∠1=∠2不能判定AB//CD ; 故选:B .在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角.5. 解:4是16的算术平方根,故A 正确,不符合要求;53是259的一个平方根,故B 正确,不符合要求; (−6)2的平方根是±6,故C 错误,符合要求; (−3)3的立方根−3故D 正确,不符合要求. 故选:C .依据平方根、算术平方根、立方根的性质解答即可.本题主要考查的是立方根、平方根、算术平方根的性质,熟练掌握相关性质是解题的关键. 6. 解:∵a <b ,∴A 、12a <12b ,此选项正确;B 、−2a >−2b ,此选项错误;C 、a −3<b −3,此选项错误;D 、a +4<a +4,此选项错误; 故选:A .根据不等式的性质求解即可.本题考查了不等式的性质,利用不等式的性质是解题关键. 7. 解:A 、得分在70~80分的人数最多,正确; B 、该班的总人数为4+12+14+8+2=40,正确;C 、得分及格(≥60分)的有12+14+8+2=36人,错误;D 、人数最少的得分段的频数为2,正确; 故选:C .根据直方图即可得到每个分数段的人数,据此即可直接作出判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8. 解:x 个月可以节省30x 元,根据题意,得 30x +45≥300. 故选:B .此题中的不等关系:现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.本题主要考查由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 9. 解:设安排x 个工人加工桌子,y 个工人加工椅子, 由题意得{4×3x −10y =0x+y=22,即{12x −10y =0x+y=22.故选:A .设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可.本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子. 10. 解:∵点M(2m −1,1−m)在第四象限, ∴{1−m <0 ②2m−1>0 ①,由①得,m >0.5; 由②得,m >1, 在数轴上表示为:故选:B .根据第四象限内点的坐标特点列出关于m 的不等式组,求出m 的取值范围,并在数轴上表示出来即可.本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键. 11. 解:√16的平方根是±2.故答案为:±2根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 12. 解:∵AB ⊥BC ,∠1=55∘, ∴∠2=90∘−55∘=35∘. ∵a//b ,∴∠2=∠3=35∘. 故答案为:35∘.先根据∠1=55∘,AB ⊥BC 求出∠3的度数,再由平行线的性质即可得出结论. 本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等. 13. 解:点P(−5,1)到x 轴距离为1.故答案为1.根据点P(x,y)到x 轴距离为|y|求解.本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点. 14. 解:去括号,得:3x −3≤5−x ,移项,得:3x +x ≤5+3,合并同类项,得:4x ≤8,系数化为1,得:x ≤2,则不等式的非负整数解有0、1、2这3个,故答案为:3.根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15. 解:根据题意,图2可得方程组:{x +y =18x+2y=22,故答案为{x +y =18x+2y=22.由图1可得从左向右的算筹中,前两个算筹分别代表未知数x ,y 的系数,第三个算筹表示的两位数是方程右边的常数项:前面的表示十位,后面的表示个位,由此可得图2的表达式.本题考查了由实际问题抽象出二元一次方程组,主要培养学生的观察能力,关键是能够根据对应位置的算筹理解算筹表示的实际意义.16. (1)直接利用二次根式混合运算法则计算得出答案;(2)利用二次根式以及立方根、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17. 根据代入消元法或加减消元法,可得答案.本题考查了及二元一次方程组,利用代入消元法或加减消元法是解题关键. 18. 分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集再表示在数轴上即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 解:(1)平面直角坐标系如图所示,C(2,3),故答案为2,3.(2)平移后的△DEF如图所示.(3)AB边上中线CD和高线CE如图所示;(4)S△ABC=3×4−12×2×3−12×2×2−12×1×3=112.故答案为112.(1)根据点C的位置写出坐标即可;(2)根据点C的平移规律,画出对应点D、E即可;(3)根据中线、高的定义画出中线,高即可;(4)利用分割法求三角形面积即可;本题考查作图−平移变换,作图−基本作图等知识,解题的关键是理解题意,学会用分割法求三角形的面积,属于中考常考题型.20. (1)过E点作EF⊥AC,垂足为F,过点D作DH//BC交AB于点H.(2)利用DH//BC,可得∠BDH=∠DBC,依据BD⊥AC,EF⊥AC,即可得到BD//EF,进而得出∠CEF=∠DBC,即可得到∠BDH=∠CEF.本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21. 解:(1)b=50÷0.1=500,a=500−(50+75+150)=225,c=150÷500=0.3;故答案为:225,500,0.3;(2)m%=225500×100%=45%,∴m=45,“C”所对应的圆心角的度数是360∘×0.3=108∘,故答案为:45,108∘;(3)5000×0.45=2250,答:估计成绩在95分及以上的学生大约有2250人.(1)由A组频数及其频率求得总数b=500,根据各组频数之和等于总数求得a,再由频率=频数÷总数可得c;(2)D组人数除以总人数得出其百分比即可得m的值,再用360∘乘C组的频率可得;(3)总人数乘以样本中D组频率可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22. (1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.23. 解:(1)如图,过P作PE//l1,∵l1//l2,∴PE//l1//l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE//AC.∴∠A=∠1,∵AC//BD,∴PE//BD,∴∠B=∠EPB,∵∠APB=∠BPE−∠EPA,∴∠APB=∠B−∠1;故答案为:∠1,PE,BD,∠EPB,∠APB=∠B−∠1;(3)证明:如图3,过点A作MN//BC,∴∠B=∠1,∠C=∠2,∵∠BAC+∠1+∠2=180∘,∴∠BAC+∠B+∠C=180∘.(1)过P作PE//l1,根据平行线的性质得到∠APE=∠A,∠BPE=∠B,据此可得∠APB=∠APE+∠BPE=∠A+∠B;(2)过点P作PE//AC,根据平行线的性质得出∠A=∠1,∠B=∠EPB,进而得出∠APB=∠B−∠1;(3)过点A作MN//BC,根据平行线的性质进行推导即可.本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作平行线构造内错角.。
人教版2017-2018学年七年级(下册)期末数学试卷及答案

2017-2018学年七年级(下册)期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.22.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣33.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b4.将不等式组的解集表示在数轴上,下面表示正确的是()A.BC.D.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.6.方程组的解是()A.B.C.D.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是.12.方程组的解是.13.用不等式表示:x与5的差不大于x的2倍:.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED 为°.16.关于x的不等式组有三个整数解,则a的取值范围是.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).18.(6分)解二元一次方程组:.19.(7分)解不等式组.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.2【分析】根据表示16的算术平方根,需注意的是算术平方根必为非负数求出即可.【解答】解:根据算术平方根的意义,=4.故选A.【点评】此题主要考查了算术平方根的定义,关键是掌握算术平方根的概念:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为.2.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3【分析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.【解答】解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.3.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.【点评】本题考查了不等式的性质,属于基础题.4.将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解集;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:﹣、、是有理数,π是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.方程组的解是()A.B.C.D.【分析】利用代入法求解即可.【解答】解:,①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以,方程组的解是.故选D.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°【分析】先根据∠1=35°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出答案.【解答】解:∵AB⊥BC,∠1=35°,∴∠2=90°﹣35°=55°.∵a∥b,∴∠2=∠3=55°.故选C.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是﹣0.6.【分析】根据立方根的定义即可求解.【解答】解:﹣的立方根是﹣0.6,故答案为﹣0.6.【点评】本题主要考查了立方根的概念,如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根,比较简单.12.方程组的解是.【分析】根据观察用加减消元法较好,①+②消去y,解出x的值,再把x的值代入①,解出y.【解答】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【点评】此题考查的是解二元一次方程组,解题的关键是用加减消元法求解.13.用不等式表示:x与5的差不大于x的2倍:x﹣5≤2x.【分析】x与5的差为x﹣5,不大于即小于等于,x的2倍为2x,据此列不等式.【解答】解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x【点评】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是把文字语言的不等关系转化为用数学符号表示的不等式,注意抓住关键词语,弄清不等关系.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成(4,3).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:确定平面直角坐标系中x轴为从下数第一条横线,y轴为从左数第一条竖线,小明的位置为原点,从而可以确定小浩位置点的坐标为(4,3).故答案为:(4,3).【点评】此题主要考查了根据坐标确定点的位置,由已知条件正确确定坐标轴的位置是解决本题的关键.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为114°.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114.【点评】本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.16.关于x的不等式组有三个整数解,则a的取值范围是﹣<a≤﹣.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a 的范围.【解答】解:∵解不等式①得:x>2,解不等式②得:x<10+6a,∴不等式组的解集为2<x<10+6a,方程组有三个整数解,则整数解一定是3,4,5.根据题意得:5<10+6a≤6,解得:﹣<a≤﹣.故答案是:﹣<a≤﹣.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).【分析】(1)根据特殊角的函数值即可求出答案.(2)先化简原方程组,然后根据二元一次方程组的解法即可【解答】解:(1)原式=1﹣+3+4=8﹣=(2)原方程组化为①﹣②得:4x=﹣4x=﹣1将x=﹣1代入①中,y=解得:【点评】本题考查学生的计算能力,解题的关键熟练运用运算法则,本题属于基础题型.18.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(7分)解不等式组.【分析】分别求出求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式①,得x<1.解不等式②,得x≥0,故不等式组的解集为0≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了200名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为126度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示;(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300人故答案为:(1)200;(3)126【点评】本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.【分析】根据同旁内角互补,两直线平行由∠1+∠2=180°得AB∥EF,再根据平行线的性质得∠B=∠EFC,而∠B=∠3,所以∠3=∠EFC,然后根据平行线的判定方法即可得到结论.【解答】证明:∵∠1+∠2=180°,∴AB∥EF,∴∠B=∠EFC,∵∠B=∠3,∴∠3=∠EFC,∴DE∥BC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?【分析】先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.【解答】解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x≤,x≤17,答:最多还能买词典17本.【点评】本题是一元一次不等式的应用,列不等式时要先根据“至少”、“最多”、“不超过”、“不低于”等关键词来确定问题中的不等关系,本题要弄清数量、单价、总价和书名,明确数量×单价=总价;在确定最后答案时,要根据实际意义,不能利用四舍五入的原则取整数值.24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【点评】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.。
人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
2017-2018学年人教版数学七年级(下册)期末考试试卷及答案

2017-2018学年七年级(下)期末数学试卷一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为.17.观察下列图形的构成规律,根据此规律,第8个图形中有个圆.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)20.(4分)计算:.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.参考答案与试题解析一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个【分析】根据整式的运算法则即可求出答案.【解答】解:①原式=2ab,故①错误;②原式=﹣6x2y2,故②错误;③原式=﹣64c,故③错误;④原式=(﹣ab2)2=a2b4,故④正确;故选(C)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b【分析】分别根据零指数幂,负指数幂、乘方的运算法则计算,然后再比较大小.【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣()2=﹣;c=(﹣)﹣2=(﹣3)2=9,d=(﹣)0=1,∵﹣<0.09<1<9,∴b<a<d<c,故选:B.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°【分析】两人互相看时,说明方向正好是相反关系,故小颖应在小明的南偏西70°.【解答】解:∵小明处在小颖的北偏东70°方向上,∴小颖应在小明的南偏西70°,故选:C.【点评】此题主要考查了方向角,关键是掌握方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【解答】解:A、只有锐角三角形三条高都在三角形内,故本选项错误;B、三角形三条中线相交于一点正确,故本选项正确;C、三角形的三条角平分线一定都在三角形内,故本选项错误;D、三角形的角平分线是线段,故本选项错误.故选B.【点评】本题考查了三角形的高线、中线、角平分线,是基础题,熟记概念是解题的关键.6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°【分析】根据三角形的内角和等于180°,当三个角都相等时每个角等于60°,所以最大的角不小于60°.【解答】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C.【点评】本题主要考查三角形内角和定理的运用.7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到AB=BE=EC,∠ABC=∠DBE=∠C,根据直角三角形的判定得到∠A=90°,计算即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴AB=BE=EC,∠ABD=∠DBE=∠C,∴∠A=90°,∴∠C=30°,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.【分析】一开始是匀速行进,随着时间的增多,行驶的距离也将由0匀速上升,停下来修车,距离不发生变化,后来加快了车速,距离又匀速上升,由此即可求出答案.【解答】解:由于先匀速再停止后加速行驶,故其行驶距离先匀速增加再不变后匀速增加.故选B.【点评】本题考查了函数的图象,应首先看清横轴和纵轴表示的量,然后根据实际情况进行确定.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.【分析】找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.【解答】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选B.【点评】此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为 2.04×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00204=2.04×10﹣3,故答案为:2.04×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=50°.【分析】根据两直线平行,同位角相等可得∠1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:如图,∵AB∥CD,∠C=50°,∴∠1=∠C=50°,∴∠A+∠E=∠1=50°.故答案为:50°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为8或9或10.【分析】根据三角形的三边关系即可确定a的范围,则a的值即可求解.【解答】解:a的范围是:9﹣2<a<9+2,即7<a<11,则a=8或9或10.故答案为:8或9或10.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为y=x2+6x.【分析】增加的面积=边长为3+x的新正方形的面积﹣边长为3的正方形的面积,把相关数值代入即可求解.【解答】解:由正方形边长3,边长增加x,增加后的边长为(x+3),则面积增加y=(x+3)2﹣32=x2+6x+9﹣9=x2+6x.故应填:y=x2+6x.【点评】解决本题的关键是得到增加的面积的等量关系,注意新正方形的边长为3+x.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=1.【分析】由Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,可得S△ABC=AC•BC=(AC+BC+AB)•r,继而可求得答案.【解答】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,=AC•BC=(AC+BC+AB)•r,∴S△ABC∴3×4=(3+4+5)×r,解得:r=1.故答案为:1.=【点评】此题考查了角平分线的性质.此题难度适中,注意掌握S△ABCA C•BC=(AC+BC+AB)•r.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为22cm或14cm.【分析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,可得x﹣6=2或6﹣x=2,继而可求得答案.【解答】解:设腰长为xcm,根据题意得:x﹣6=2或6﹣x=2,解得:x=8或x=4,∴这个等腰三角形的周长为:22cm或14cm.故答案为:22cm或14cm.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握方程思想与分类讨论思想的应用.17.观察下列图形的构成规律,根据此规律,第8个图形中有65个圆.【分析】观察图形可知,每幅图可看成一个正方形加一个圆,利用正方形的面积计算可得出结果.【解答】解:第一个图形有2个圆,即2=12+1;第二个图形有5个圆,即5=22+1;第三个图形有10个圆,即10=32+1;第四个图形有17个圆,即17=42+1;所以第8个图形有82+1=65个圆.故答案为:65.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是115°.【分析】根据角平分线的定义求出∠EBC的度数,根据线段垂直平分线的性质得到EB=EC,求出∠C的度数,根据邻补角的概念计算即可.【解答】解:∵BE是∠ABC的平分线,∠ABC=50°,∴∠EBC=25°,∵AD垂直平分线段BC,∴EB=EC,∴∠C=∠EBC=25°,∴∠DEC=90°﹣25°=65°,∴∠AEC=115°,故答案为:115°.【点评】本题考查的是线段垂直平分线的概念和性质以及等腰三角形的性质,掌握线段垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)【分析】直接利用同底数幂的乘法、幂的乘方与积的乘方以及合并同类项的知识求解即可求得答案.【解答】解:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)=x8+x8﹣x8﹣x8=0.【点评】此题考查了同底数幂的乘法、幂的乘方与积的乘方.此题比较简单,注意掌握指数与符号的变化是解此题的关键.20.(4分)计算:.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,同底数幂相乘底数不变指数相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:=﹣a4b2c.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)【分析】先去小括号,再合并同类项,再根据单项式除以单项式的法则计算即可.【解答】解:原式=﹣[a2+2ab+b2﹣a2+2ab﹣b2]÷4ab=﹣4ab÷4ab=﹣1.【点评】本题考查了整式的除法.解题的关键是注意灵活掌握去括号法则、单项式除单项式的法则.22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣10m2n3+8m3n2;(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.【点评】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.【分析】原式前两项利用完全平方公式化简,最后一项利用平方差公式化简,去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=x6+4x3+4﹣x6+4x3﹣4﹣2x4+32=8x3﹣2x4+32,当x=时,原式=1﹣+32=32.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.【分析】(1)根据垂直的定义可得∠1+∠AOC=90°,再求出∠2+∠AOC=90°,然后根据平角等于180°列式求解即可;(2)根据垂直的定义可得∠AOM=∠BOM=90°,然后列方程求出∠1,再根据余角和邻补角的定义求解即可.【解答】解:(1)∵OM⊥AB,∴∠AOM=∠1+∠AOC=90°,∵∠1=∠2,∴∠NOC=∠2+∠AOC=90°,∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∵∠1=∠BOC,∴∠BOC=∠1+90°=3∠1,解得∠1=45°,∠AOC=90°﹣∠1=90°﹣45°=45°,∠MOD=180°﹣∠1=180°﹣45°=135°.【点评】本题考查了垂线的定义,邻补角的定义,是基础题,熟记概念并准确识图,找准各角之间的关系是解题的关键.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.【分析】由全等三角形的判定定理SSS证得△ABC≌△DEF,则对应角∠BCA=∠EFD,易证得结论.【解答】证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.【点评】本题考查了全等三角形的判定与性质,平行线的判定.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.【分析】首先根据角平分线的定义,可得:∠1=∠ABD,∠2=∠BDC,然后根据等量代换,求出∠ABD+∠BDC=180°,即可判断出AB∥CD.【解答】证明:直线AB、CD的位置关系为:AB∥CD,理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠1=∠ABD,∠2=∠BDC.∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,∴AB∥CD.【点评】此题主要考查了平行线的判定,解答此题的关键是熟练掌握角平分线定义和平行线的判定方法.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?【分析】O是AB、A′B′的中点,得出两组对边相等,又因为对顶角相等,通过SAS得出两个全等三角形,得出AA′、BB′的关系.【解答】解:数量关系:AA′=BB′;理由如下:∵O是AB′、A′B的中点,∴OA=OB′,OA′=OB,在△A′OA与△BOB′中,,∴△A′OA≌△BO B′(SAS),∴AA′=BB′.【点评】本题考查最基本的三角形全等知识的应用;用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,是一种很重要的方法,注意掌握.28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.【分析】首先可判断△ABC是等腰直角三角形,连接AD,根据全等三角形的判定易得到△ADE≌△CDF,继而可得出结论.【解答】证明:连AD,如图所示:∵AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形,∵D为BC中点,∴AD=DC,AD平分∠BAC,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是利用等腰直角三角形的性质得出证明全等需要的条件,难度一般.。
2018年七年级下期末考试数学试题及答案8

FEDCBA七年级下期末考试数学试题及答案一、选择题(本大题共10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列数中,是无理数的是A. 0B. 71-C. 3D. 2 2. 下面4个图形中,∠1与∠2是对顶角的是21212121A. B. C. D.3、已知点P 在第四象限,且P 到x 轴的距离为3,到y 轴的距离为4,则P 点的坐标为( )A .(3,-4)B .(-3,4)C .(4,-3)D .(-4,3) 4.下列调查中,适宜采用全面调查方式的是 A. 了解全国中学生的视力情况 B. 调查某批次日光灯的使用寿命 C. 调查市场上矿泉水的质量情况D. 调查机场乘坐飞机的旅客是否携带了违禁物品 5.已知正方形的面积是17,则它的边长在( )A .5与6之间B .4与5之间C .3与4之间D .2与3之间 6.下列说法错误..的是 A. 1的平方根是1 B. 0的平方根是0C. 1的算术平方根是1D. -1的立方根是-1 7.若a >b ,则下列不等式变形错误的是( )A .a+1>b+1B .C .3a ﹣4>3b ﹣4D .4﹣3a >4﹣3b8.如图1,下列条件能判定AD ∥BC 的是A. ∠C =∠CBEB. ∠C +∠ABC =180°C. ∠FDC =∠CD. ∠FDC =∠A 9.下列命题中,是真命题的是A . 若b a >,则a >b B. 若a >b ,则b a > C. 若b a =,则22b a = D. 若22b a =,则b a =图110.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是A. ⎪⎩⎪⎨⎧+=+=1215.4x y x yB. ⎪⎩⎪⎨⎧-=+=1215.4x y x yC. ⎪⎩⎪⎨⎧+=-=1215.4x y x yD. ⎪⎩⎪⎨⎧-=-=1215.4x y x y11.关于x 的不等式组21111x x a -⎧⎨+⎩≤>恰好只有两个整数解,则a 的取值范围为A. 56a ≤<B. 56a <≤C. 6a 4≤<D. 46a <≤ 12.已知点P (x ,y )的坐标满足|x|=3,且xy <0,则点P 的坐标是( )A .(3,-2)B .(-3,2)C .(3,-4)D .(-3,4)二、填空题(本大题有8小题,每小题3分,共24分) 12.不等式2x+5>4x ﹣1的正整数解是 .11. 若36.25=5.036,6.253=15.906,则253600=__________。
人教版初中数学七年级下册期末测试题(2018-2019学年内蒙古呼伦贝尔市满洲里市

2018-2019学年内蒙古呼伦贝尔市满洲里市七年级(下)期末数学试卷一、选择题(每题3分,共36分,请将正确答案选出并将其字母填入表格中)1.(3分)平方根和立方根都是本身的数是()A.0B.1C.±1D.0和±12.(3分)下列式子中,正确的是()A.B.C.D.3.(3分)平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等4.(3分)在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)5.(3分)方程x+y=5的自然数解有()个.A.4B.5C.6D.76.(3分)已知a<b,下列变形正确的是()A.a﹣3>b﹣3B.2a<2bC.﹣5a<﹣5b D.﹣2a+1<﹣2b+17.(3分)如图:直线AB,CF相交于点O,∠EOB=∠DOF=90°,则图中与∠DOE互余的角有()A.1个B.2个C.3个D.4个8.(3分)为了了解某市去年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析,在这个问题中,下列说法正确的是()A.样本是500B.被抽取的500名考生的中考数学成绩是样本容量C.被抽取的500名考生是个体D.全市去年中考数学成绩是总体9.(3分)有40个数据,其中最大值为100,最小值为55,对这组数据进行等距分组,若组距为5,则这组数据应该分成的组数为()A.8B.9C.10D.1110.(3分)在平面直角坐标系中,点P(m﹣2,m+1)一定不在第()象限.A.四B.三C.二D.一11.(3分)已知关于x的不等式4x﹣a≤0的非负整数解是0,1,2,则a的取值范围是()A.3≤a<4B.3≤a≤4C.8≤a<12D.8≤a≤12 12.(3分)在迎宾晚宴上,若每桌坐12人,则空出3张桌子;若每桌坐10人,则还有12人不能就坐.设有嘉宾x名,共准备了y张桌子.根据题意,下列方程组正确的是()A.B.C.D.二、填空题(每题3分,共15分)13.(3分)P(m﹣1,2﹣m)在y轴上,则m=.14.(3分)若=2.938,=6.329,则=.15.(3分)在平面直角坐标系中,点(2,3)到x轴的距离是.16.(3分)如图,三角形ABC的周长为22cm,现将三角形ABC沿AB方向平移2cm至三角形A′B′C′的位置,连接CC′,则四边形AB′C′C的周长是.17.(3分)将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,则该班共有人.三、计算题(每小题6分,共24分)18.(6分)计算+19.(6分)解方程:3(x﹣2)2=27.20.(6分)解方程组21.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.四、画图题(6分)22.(6分)如图,在平面直角坐标系中,已知A(﹣2,2),B(2,0),C(3,3),P(a,b)是三角形ABC的边AC上的一点,把三角形ABC经过平移后得三角形DEF,点P的对应点为P′(a﹣2,b﹣4).(1)画出三角形DEF;(2)求三角形DEF的面积.五、解答题(23、24每题6分,25题7分、26、27每题10分,共39分)23.(6分)某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀正正正a30%良好正正正正正正30b合格正915%不合格35%合计6060100%(说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=,b=;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为.24.(6分)将证明过程填写完整.如图,AD⊥BC于点D,EF⊥BC于点F,∠1=∠2.求证AB∥DG.证明:∵EF⊥BC于点F,AD⊥BC于点D,(已知)∴∠CFE=∠CDA=90°(),∴AD∥(),∴∠2=∠3(),又∵∠1=∠2(已知),∴∠1=∠3(),∴AB∥DG().25.(7分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2019+(﹣b)2018.26.(10分)某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购买50根跳绳,如果A型跳绳的数量不多于B型跳绳数量的3倍,那么A型跳绳最多能买多少条?27.(10分)如图,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD与AE相交于F,∠CFE=∠AEB.(1)若∠B=86°,求∠DCG的度数;(2)AD与BC是什么位置关系?并说明理由;(3)若∠DAB=α,∠DGC=β,直接写出当α、β满足什么数量关系时,AE∥DG?2018-2019学年内蒙古呼伦贝尔市满洲里市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共36分,请将正确答案选出并将其字母填入表格中)1.(3分)平方根和立方根都是本身的数是()A.0B.1C.±1D.0和±1【分析】根据平方根和立方根的定义,求出平方根和立方根都是本身数是0.【解答】解:平方根是本身的数有0,立方根是本身的数有1,﹣1,0;所以平方根和立方根都是本身的数是0.故选:A.【点评】本题考查平方根和立方根的计算,关键是考虑特殊值.2.(3分)下列式子中,正确的是()A.B.C.D.【分析】根据平方根、算术平方根、立方根的定义求出每个式子的值,再进行判断即可.【解答】解:A、,故选项A错误;B、,故选项B错误;C、,故选项C错误;D、,故选项D正确.故选:D.【点评】本题主要考查立方根和算术平方根,解题的关键是掌握立方根和算术平方根的定义与性质.3.(3分)平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等【分析】根据平移的性质即可得出结论.【解答】解:平移后的图形与原来的图形的对应点连线平行或在同一条直线上且相等.故选:C.【点评】本题考查了平移的性质,牢记“连接各组对应点的线段平行且相等”是解题的关键.4.(3分)在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)【分析】由A(﹣2,3)平移后坐标变为(﹣3,2)可得平移变化规律,可求B点变化后的坐标.【解答】解:∵A(﹣2,3)平移后坐标变为(﹣3,2),∴可知点A向左平移1个单位,向下平移1个单位,∴B点坐标可变为(1,0).故选:B.【点评】本题运用了坐标的平移变化规律,由分析A点的坐标变化规律可求B点变化后坐标.5.(3分)方程x+y=5的自然数解有()个.A.4B.5C.6D.7【分析】首先用x表示y,再进一步根据x等于0、1、2、3、4、5,对应求出y的值,只要y值为自然数即可.【解答】解:∵x+y=5,∴y=5﹣x,当x=0时,y=5,当x=1时,y=4;当x=2时,y=3;当x=3时,y=2;当x=4时,y=1;当x=5时,y=0;故选:C.【点评】本题考查了二元一次方程的解,解题的关键是设x的值为定值,然后求出y的值,看y值是否为自然数即可.6.(3分)已知a<b,下列变形正确的是()A.a﹣3>b﹣3B.2a<2bC.﹣5a<﹣5b D.﹣2a+1<﹣2b+1【分析】运用不等式的基本性质求解即可.【解答】解:由a<b,可得:a﹣3<b﹣3,2a<2b,﹣5a>﹣5b,﹣2a+1>﹣2b+1,故选:B.【点评】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.7.(3分)如图:直线AB,CF相交于点O,∠EOB=∠DOF=90°,则图中与∠DOE互余的角有()A.1个B.2个C.3个D.4个【分析】由于∠AOF和∠COB是对顶角,得到∠DOE=∠FOA=∠BOC,根据垂直定义和互为余角的定义即可得到结论.【解答】解:∵∠EOB=∠DOF=90°,∴图中与∠DOE互余的角有∠DOB,∠EOF,故选:B.【点评】本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.8.(3分)为了了解某市去年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析,在这个问题中,下列说法正确的是()A.样本是500B.被抽取的500名考生的中考数学成绩是样本容量C.被抽取的500名考生是个体D.全市去年中考数学成绩是总体【分析】我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量.【解答】解:A.样本是抽取的500名考生的中考数学成绩,故本选项错误;B.被抽取的500名考生的中考数学成绩是样本,故本选项错误;C.被抽取的每名考生的数学成绩是个体,故本选项错误;D.全市去年中考数学成绩是总体,故本选项正确;故选:D.【点评】此题主要考查了样本的定义,正确把握定义是解题关键.9.(3分)有40个数据,其中最大值为100,最小值为55,对这组数据进行等距分组,若组距为5,则这组数据应该分成的组数为()A.8B.9C.10D.11【分析】根据频数分布直方图的组数的确定方法,用极差除以组距,然后根据组数比商的整数部分大1确定组数.【解答】解:因为极差为100﹣55=45,组距为5,所以45÷5=9,则这组数据应该分成的组数为10,故选:C.【点评】本题考查了频数分布直方图的组数的确定,需要特别注意,组数比商的整数部分大1,不能四舍五入.10.(3分)在平面直角坐标系中,点P(m﹣2,m+1)一定不在第()象限.A.四B.三C.二D.一【分析】求出点P的纵坐标大于横坐标,再根据各象限内点的坐标特征解答.【解答】解:∵(m+1)﹣(m﹣2)=m+1﹣m+2=3,∴点P的纵坐标大于横坐标,∴点P一定不在第四象限.故选:A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)11.(3分)已知关于x的不等式4x﹣a≤0的非负整数解是0,1,2,则a的取值范围是()A.3≤a<4B.3≤a≤4C.8≤a<12D.8≤a≤12【分析】先求出不等式的解集,再根据其正整数解列出不等式,解此不等式即可.【解答】解:解不等式4x﹣a≤0得到:x≤,∵负整数解是0,1,2,∴2≤<3,解得8≤m<12.故选:C.【点评】本题考查了一元一次不等式的整数解,根据x的取值范围正确确定的范围是解题的关键.再解不等式时要根据不等式的基本性质.12.(3分)在迎宾晚宴上,若每桌坐12人,则空出3张桌子;若每桌坐10人,则还有12人不能就坐.设有嘉宾x名,共准备了y张桌子.根据题意,下列方程组正确的是()A.B.C.D.【分析】设有嘉宾x名,共准备了y张桌子.根据“若每桌坐12人,则空出3张桌子;若每桌坐10人,则还有12人不能就坐”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设有嘉宾x名,共准备了y张桌子,依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(每题3分,共15分)13.(3分)P(m﹣1,2﹣m)在y轴上,则m=1.【分析】根据y轴上的点的横坐标为0列式求解即可得到m的值.【解答】解:∵点P(m﹣1,2﹣m)在y轴上,∴m﹣1=0,∴m=1.故答案为:1.【点评】本题考查了点的坐标,熟记y轴上的点的横坐标为0是解题的关键.14.(3分)若=2.938,=6.329,则=293.8.【分析】将变形为=×100,再代入计算即可求解.【解答】解:==×100=2.938×100=293.8.故答案为:293.8.【点评】考查了立方根,关键是将变形为×10015.(3分)在平面直角坐标系中,点(2,3)到x轴的距离是3.【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点(2,3)到x轴的距离是3,故答案为:3.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.16.(3分)如图,三角形ABC的周长为22cm,现将三角形ABC沿AB方向平移2cm至三角形A′B′C′的位置,连接CC′,则四边形AB′C′C的周长是26cm.【分析】根据平移的性质,经过平移,对应点所连的线段相等,对应线段相等,找出对应线段和对应点所连的线段,结合四边形的周长公式求解即可.【解答】解:根据题意,得A的对应点为A′,B的对应点为B′,C的对应点为C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=22+4=26cm.故答案为:26cm.【点评】本题考查平移的性质,关键是根据经过平移,对应点所连的线段平行且相等,对应线段平行且相等解答.17.(3分)将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,则该班共有60人.【分析】依据各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,可得各组人数,进而得出总人数.【解答】解:∵各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,∴各组人数分别为5人、10人、25人、15人、5人,∴总人数为:5+10+25+15+5=60(人),故答案为:60.【点评】本题主要考查了频数分布直方图,解题时注意:频数分布直方图中的小长方形高的比就是各组的频数之比.三、计算题(每小题6分,共24分)18.(6分)计算+【分析】本题涉及绝对值、二次根式化简、立方根3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2﹣+3﹣6+3=2﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、二次根式、绝对值等考点的运算.19.(6分)解方程:3(x﹣2)2=27.【分析】方程两边都除以3,再根据平方根的定义开方,最后求出即可.【解答】解:3(x﹣2)2=27,(x﹣2)2=9,x﹣2=±3,x1=5,x2=﹣1.【点评】本题考查了平方根的定义的应用,解此题的关键是能根据平方根的定义得出关于x的一元一次方程,难度不是很大.20.(6分)解方程组【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②得:7x=14,即x=2,把x=2代入①得:y=0,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+3>5(x﹣1)得:x<4,解不等式x﹣6≥得:x≥,则不等式组的解集为≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、画图题(6分)22.(6分)如图,在平面直角坐标系中,已知A(﹣2,2),B(2,0),C(3,3),P(a,b)是三角形ABC的边AC上的一点,把三角形ABC经过平移后得三角形DEF,点P的对应点为P′(a﹣2,b﹣4).(1)画出三角形DEF;(2)求三角形DEF的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用△DEF所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:△DEF即为所求;(2)S△DEF=5×3﹣×5×1﹣×4×2﹣×1×3=15﹣2.5﹣4﹣1.5=7.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.五、解答题(23、24每题6分,25题7分、26、27每题10分,共39分)23.(6分)某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀正正正a30%良好正正正正正正30b合格正915%不合格35%合计6060100%(说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=18,b=50%;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为120.【分析】(1)根据样本容量和百分比求出频数,根据样本容量和频数求出百分比;(2)根据频数画出频数分布直方图;(3)求出八年级学生身体素质良好及以上的人数的百分比,根据总人数求出答案.【解答】解:(1)60×30%=18,30÷60×100%=50%,∴a=18,b=50%;(2)如图,(3)150×(30%+50%)=120.【点评】本题考查读频数分布表的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(6分)将证明过程填写完整.如图,AD⊥BC于点D,EF⊥BC于点F,∠1=∠2.求证AB∥DG.证明:∵EF⊥BC于点F,AD⊥BC于点D,(已知)∴∠CFE=∠CDA=90°(垂直的定义),∴AD∥EF(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行).【分析】根据平行线的判定得出∥EF,进而利用平行线的性质和判定解答即可.【解答】证明:∵EF⊥BC于点F,AD⊥BC于点D,(已知)∴∠CFE=∠CDA=90°(垂直的定义),∴AD∥EF(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行)故答案为:垂直的定义;EF;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【点评】此题考查平行线的判定和性质,关键是根据同位角相等,两直线平行得出AD∥EF解答.25.(7分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2019+(﹣b)2018.【分析】将代入方程组的第二个方程,代入方程组的第一个方程,联立求出a与b的值,代入计算即可求出所求式子的值.【解答】解:将代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则a2019+(﹣b)2018=﹣1+1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.26.(10分)某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购买50根跳绳,如果A型跳绳的数量不多于B型跳绳数量的3倍,那么A型跳绳最多能买多少条?【分析】(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据:“2根A 型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元”列方程组求解即可;(2)设购进A型跳绳m根,根据“A型跳绳的数量不多于B型跳绳数量的3倍”确定m 的取值范围.【解答】解:(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据题意,得:,解得:,答:一根A型跳绳售价是10元,一根B型跳绳的售价是36元;(2)设购进A型跳绳m根,依题意得:m≤3(50﹣m),解得:m≤37.5,而m为正整数,所以m最大值=37.答:A型跳绳最多能买37条.【点评】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,根据题意得出正确的等量关系是解题关键.27.(10分)如图,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD与AE相交于F,∠CFE=∠AEB.(1)若∠B=86°,求∠DCG的度数;(2)AD与BC是什么位置关系?并说明理由;(3)若∠DAB=α,∠DGC=β,直接写出当α、β满足什么数量关系时,AE∥DG?【分析】(1)根据平行线的判定定理得到AB∥CD,由平行线的性质得到∠DCG=∠B =86°;(2)由平行线的性质得到∠BAF=∠CFE,根据角平分线的定义得到∠BAF=∠F AD,等量代换得到∠DAF=∠CFE,∠DAF=∠AEB,由平行线的判定即可得到结论;(3)根据平行线的判定定理得到∠DAF=∠AEB,根据角平分线的定义得到∠DAB=2∠DAF=2∠AEB,然后根据平行线的性质即可得到结论.【解答】解:(1):∵∠BAD+∠ADC=180°,∴AB∥CD,∴∠DCG=∠B=86°;(2)AD∥BC;理由如下:∵AB∥CD,∴∠BAF=∠CFE,∵AE平分∠BAD,∴∠BAF=∠F AD,∴∠DAF=∠CFE,∵∠CFE=∠AEB,∴∠DAF=∠AEB,∴AD∥BC;(3)α=2β时,AE∥DG;理由如下:∵AD∥BC,∴∠DAF=∠AEB,∵AE平分∠BAD,∴∠DAB=2∠DAF=2∠AEB,当AE∥DG,∴∠AEB=∠G,∴α=2β.【点评】本题考查了平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年人教版七年级下册
数学期末试卷
一、选择题(24分)
1.下列运算正确的是()
A.=±3 B.|﹣3|=﹣3 C.﹣=﹣3 D.﹣32=9
2.下列调查最适合于抽样调查的是()
A.某校要对七年级学生的身高进行调查
B.卖早餐的师傅想了解一锅茶鸡蛋的咸度
C.班主任了解每位学生的家庭情况
D.了解九年级一班全体学生立定跳远的成绩
3.在下列各数中:
,3.1415926,,﹣,,﹣,0.5757757775…(相邻
两个5之间的7的个数逐次加1),无理数的个数()
A.1 B.2 C.3 D.4
4.点P(x﹣1,x+1)不可能在()
A.第一象限B.第二象限C.第三象限D.第四象限
5.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()
A.平行B.垂直C.平行或垂直D.无法确定
6.下列命题:
①两点确定一条直线;②两点之间,线段最短;③对顶角相等;④内错角相等;
其中真命题的个数是()
A.1个 B.2个 C.3个 D.4个
7.二元一次方程组的解满足2x﹣ky=10,则k的值等于()
A.4 B.﹣4 C.8 D.﹣8
8.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()
A .
B .
C .D.
9.如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围为()A.m≤9 B.m<12 C.m≥9 D.9≤m<12
10.(3分)象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”
的点的坐标为()
A.(﹣3,3)B.(0,3) C.(3,2) D.(1,3)
11.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=
()
A.45°B.50°C.55°D.60°
12.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°②OF平分∠BOD ③∠POE=∠BOF④∠POB=2∠DOF
其中正确的结论的个数为()
A.4 B.3 C.2 D.1
二、填空题(本大题共6个题,每题3分,共18分)
13.的平方根是.
14.若(x+y﹣2)2+|4x+3y﹣7|=0,则8x﹣3y的值为.
15.如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为.
16.一个正数x的平方根为2a﹣3和5﹣a,则x=.
17.点P到x轴的距离为2,到y轴的距离为3,且在第四象限,则P点坐标是.18.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.
三、解答题(58分)
19.(6分)计算及求值
(1)+|﹣2|++(﹣1)2017
(2)(x﹣3)2=320.(6分)解方程(不等式)组
(1)解方程组:
(2)解不等式组:,并把解集在数轴上表示出来.
21.(6分)如图所示,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.试说明AD∥BC.完成推理过程:
∵AB∥DC(已知)
∴∠1=∠CFE()
∵AE平分∠BAD(已知)
∴∠1=()
∵∠CFE=∠E(已知)
∴∠2=()
∴AD∥BC ()
格点上,点A ,B 的坐标分别是A (3,1),B (2,3).
(1)请在图中画出△AOB 关于y 轴的对称△A′OB′,点A′的坐标为 ,点B′的坐标为 ;
(2)请写出A′点关于x 轴的对称点A′'的坐标为 ;
(3)求△A′OB′的面积.
23.(8分)兰州市某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时,该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图(如图)的一部分.
(1)在图表中,a= ,b= ; (2)补全频数分布直方图;
(3)请估计该校1400名初中学生中,约有多少学生在1.5小时以内完成了家庭作业.
24.(8分)如图,∠1+∠2=180°,∠B=∠3. (1)判断DE 与BC 的位置关系,并说明理由. (2)若∠C=65°,求∠DEC 的度数.
25.(8分)为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?26.(8分)实践与探究:已知AB∥CD,点P是平面内一点.
(1)如图1,若点P在AB、CD内部,请探究∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.
(2)如图2,若点P移动到AB、CD外部,那么∠BPD、∠B、∠D之间的数量关系是否发生变化?请给出你的证明.。